

KWAZULU-NATAL PROVINCE

EDUCATIONREPUBLIC OF SOUTH AFRICA

HARRY GWALA DISTRICT

MATHEMATICS

Practice Paper for June Provincial Test 2021

NATIONAL SENIOR CERTIFICATE

GRADE 12

Marks: 75

Time: 1hr 30mins

This question paper consists of 6 pages 1 diagram sheet and an information sheet.

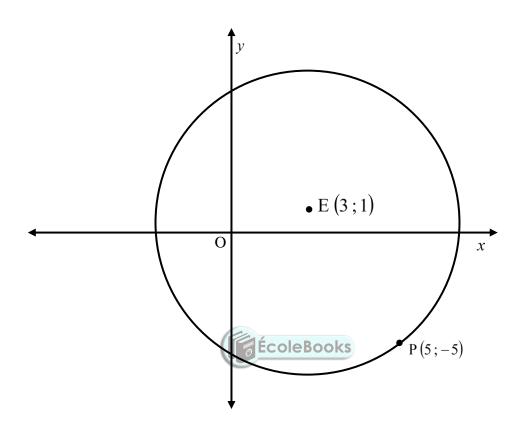
Downloaded from Stanmorephysics.com

Mathematics 2 June 2021 Practice NSC

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions.

- 1. This question paper consists of 7 questions.
- 2. Answer **ALL** questions.
- 3. Clearly show **ALL** calculations, diagrams, graphs, et cetera that you have used in determining your answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. An approved scientific calculator (non-programmable and non-graphical) may be used, unless stated otherwise.
- 6. If necessary, answers should be rounded off to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper. Write neatly and legibly.



Mathematics 3 June 2021 Practice NSC

QUESTION 1

In the diagram below, the circle centred at E(3;1) passes through point P(5;-5).

1.1 Determine the equation of:

1.1.1 The circle in the form
$$x^2 + y^2 + Ax + By + C = 0$$
. (4)

1.1.2 The tangent to the circle at
$$P(5; -5)$$
 in the form $y = mx + c$. (5)

- 1.2 A smaller circle is drawn inside the circle. Line EP is a diameter of the small circle. Determine the:
 - 1.2.1 Coordinates of the centre of the smaller circle. (3)
 - 1.2.2 Length of the radius. (3)
- 1.3 Hence, or otherwise, determine whether point C(9;3) lies inside or outside the circle centre at E. (3) [18]

Mathematics

4 NSC June 2021 Practice

QUESTION 2

Given: $f(x) = \left(\frac{1}{5}\right)^x$

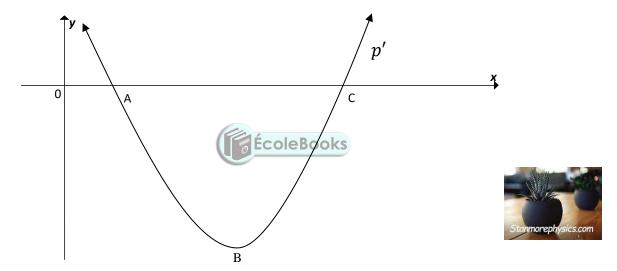
- 2.1 Determine the equation of f^{-1} in the form $y = \dots$ (1)
- 2.2 Sketch the graphs of f and f^{-1} on the same system of axes on the diagram sheet. Clearly show all intercepts with the axes. (4)
- 2.3 Write down the domain of f^{-1} . (2)
- 2.4 For which values of x will $f(x).f^{-1}(x) \ge 0$? (2)
- 2.5 Write down the range of g(x) if g(x) = -f(x) 3. (2) ÉcoleBooks [12]

QUESTION 3

- 3.1 Given: $f(x) = 2.2^x 1$
 - 3.1.1 Write down the range of f. (2)
 - 3.1.2 g(x) = f(x-1) + 1. Write down the equation of g^{-1} , the inverse of g in the form y = ... (2)
- 3.2 Given: $h(x) = -\sqrt{\frac{x}{3}} ; x \ge 0$
 - 3.2.1 If k(x) is the inverse of h, give the equation of k(x) (2)
 - 3.2.2 Give the coordinates of the point of intersection of h(x) and k(x) [8]

Mathematics 5 June 2021 Practice NSC

QUESTION 4


4.1 From first principles, determine
$$f'(x)$$
 if $f(x) = 4x^2 - x$. (5)

4.2 Determine:
$$D_x \left[x^2 - \frac{1}{2x^3} + \sqrt{x} \right]$$
 (3)

[8]

QUESTION 5

The sketch below shows the graph of p'(x) where $p(x) = x^3 + bx^2 + 24x + c$. A(2;0) is an x-intercept of both p(x) and p'(x). C is the other x-intercept of p'(x).

5.1 Show that the numerical value of b is equal to -9. Clearly show all your calculations.

(3)

5.2 Calculate the coordinates of C.

(3)

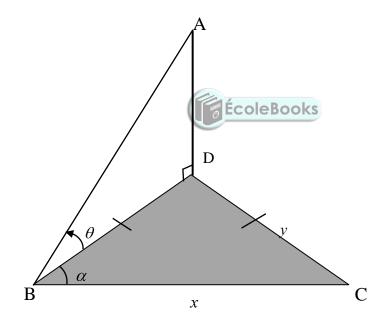
5.3 For which value(s) of x will p(x) be increasing?

- (3)
- 5.4 Calculate the value(s) of x for which the graph of p is concave up.
- (2)
- Sketch a possible graph of p(x). Clearly indicate the x-coordinates of the turning points and the point of inflection.
- (4) [**15**]

Harry Gwala District

Mathematics 6 June 2021 Practice NSC

QUESTION 6


- 6.1 If a car valued at R255 000 depreciates on a reducing balance method at an interest rate of 12,5 % p.a., calculate the book value of the car after 7 years. (3)
- How long will it take for a motor car to double in value if the annual inflation rate is 8,5 %?

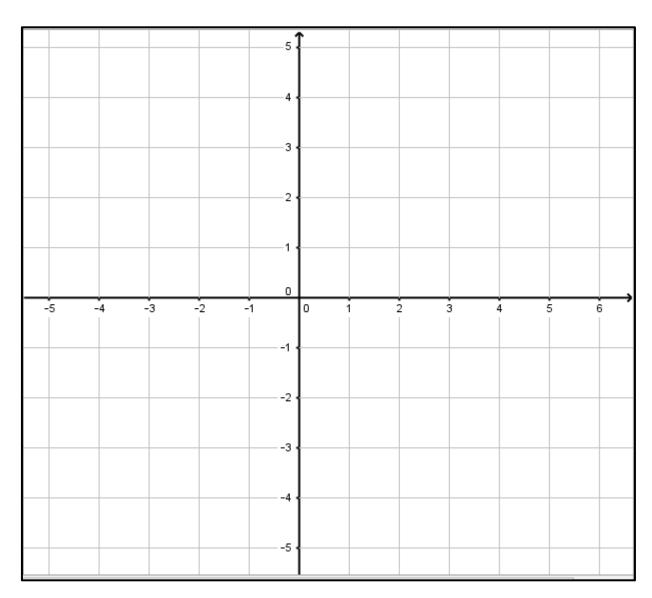
(4)

[7]

QUESTION 7

In the diagram below, B, C and D are three points on the same horizontal plane such that BD = DC = y. $C\hat{B}D = \alpha$ and $A\hat{B}D = \theta$. Line BC = x.

Prove that
$$AB = \frac{x}{2\cos\alpha\cos\theta}$$
 [7]


TOTAL = 75

Mathematics 7 June 2021 Practice NSC

DIAGRAM SHEET

Name and	Surname:	•••••
Class:	•••••	

QUESTION 2.2

Please hand in this page with your Answer Script

INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$

$$A = P(1 - ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}(2a + (n-1)d)$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$r \neq 1$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
; $r \neq 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \text{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x)$$

$$y = mx + c$$
 $y - y_1 = m(x - x)$ $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$ $(x - a)^2 + (y - b)^2 = r^2$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{\alpha}{\sin \alpha}$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ $area \triangle ABC = \frac{1}{2}ab \cdot \sin C$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta \qquad \sin(\alpha - \beta) = \sin \alpha \cdot \cos \beta - \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\sin(\alpha - \theta)$$
 $\sin(\alpha - \theta)$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\bar{x} = \frac{\sum x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sigma^2 = \frac{\sum_{i=1}^n (x_i - \bar{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

KWAZULU-NATAL PROVINCE

EDUCATIONREPUBLIC OF SOUTH AFRICA

HARRY GWALA DISTRICT

MARKING GUIDELINE

For June Practice for Control Test

NATIONAL SENIOR CERTIFICATE

GRADE 12

Marks: 75

Time: 1hr 30min

Mathematics 2 March 2021 NSC

QUESTION 1

1.1.1	centre E(3;1) $(x-3)^2 + (y-1)^2 = r^2$ $(5-3)^2 + (-5-1)^2 = r^2$ $40 = r^2$ $(x-3)^2 + (y-1)^2 = 40$ $x^2 - 6x + 9 + y^2 - 2y + 1 = 40$ $x^2 - 6x + y^2 - 2y = 30$	✓ substitution E(3; 1) ✓ substitution P(5; -5) ✓ $40 = r^2$ ✓ standard form (4)
1.1.2	$m_{rad} = \frac{1 - (-5)}{3 - 5}$ $= \frac{6}{-2} = -3$ $m \frac{1}{3} [\text{radius } \perp \tan]_{tan}$ $y = \frac{1}{3}x + c$ $-5 = \frac{1}{3}(5) + c$ $c = \frac{-20}{3}$ $y = \frac{1}{3}x - \frac{20}{3}$ $y = \frac{1}{3}x - \frac{20}{3}$	✓ correct substitution ✓ $m_{rad} = -3$ ✓ $m_{rad} = \frac{1}{3}$ ✓ substitution (5; -5) ✓ equation (5)
1.2.1	centre = $\frac{x_1 + x_2}{2}$; $\frac{y_1 + y_2}{2}$ = $\frac{3+5}{2}$; $\frac{1-5}{2}$ centre(4; -2) $(x-4)^2 + (y+2)^2 = r^2$ $(3-4)^2 + (1+2)^2 = r^2$ $10 = r^2$ $r = \sqrt{10}$	✓ method ✓ x value ✓ y value ✓ substitution of centre ✓ substitution (3; 1) ✓ = $\sqrt{10}$
		(3)

Download more resources like this on ECOLEBOOKS.COM

Mathematics 3 March 2021 NSC

1.3	$r = \sqrt{40}$	$\checkmark r = \sqrt{40}$
	$EC = \sqrt{(9-3)^2 + (3-1)^2}$	✓ distance EC
	$=2\sqrt{10}$	✓ motivation
	C is on the circumference	(3)
		[18]

QUESTION 2

$2.1 y = \log_{\frac{1}{5}} x$	✓ ✓ answer	(2)
$f(x)$ $y = x$ $(0,1)$ $f^{-1}(x)$ $g = x$ $(1;0)$ $f^{-1}(x)$	$f:$ $\checkmark (0;1)$ $\checkmark \text{ shape}$ $f^{-1}:$ $\checkmark (1;0)$ $\checkmark \text{ shape}$	(4)
$2.3 x > 0; x \in R$	✓ answer DO NOT PENALIZE IF $x \in R$ IS OMITTED	(2)
$2.4 0 < x \le 1; x \in R$	✓ \checkmark answer DO NOT PENALIZE IF $x \in R$ IS OMITTED	(2)
$2.5 y < -3; y \in R$	✓ \checkmark answer DO NOT PENALIZE IF $x \in R$ IS OMITTED	(2)
		[12]

QUESTION 3

3.1.1 $y > -1; y \in \mathbb{R}$	$y > 0; y \in \mathbb{R}$	2
----------------------------------	---------------------------	---

Downloaded from Stanmorephysics.com

Mathematics 4 March 2021 NSC

3.1.2	$g(x) = 2^{x}$ $\therefore g^{-1} : y = \log_{2} x$	$g(x) = 2^x$ $y = \log_2 x$	2
	9 17 118211	y 1082 N	
3.2.1	$k(x) = 3x^2 \; ; x \le 0$	$k(x) = 3x^2$ $x \le 0$	2
		$x \le 0$	
3.2.2	(0; 0) OR	Answer	2
			[8]

QUESTION 4

Penalise for notation: Only once in this question.

4.1	$f(x) = Ax^2$		
4.1	$ \begin{aligned} f(x) &= 4x^2 - x \\ f(x+h) &= 4(x+h)^2 - (x+h) \end{aligned} $		
	$= 4(x^2 + 2xh + h^2) - x - h$	$\checkmark 4x^2 + 8xh + 4h^2 - x - h$	
	$= 4x^2 + 8xh + 4h^2 - x - h$	$\begin{vmatrix} \mathbf{v} & 4x & + 6xn + 4n & -x - n \end{vmatrix}$	
	$f(x+h) - f(x) = 8xh + 4h^2 - h$	(0 1 + 412 1	
		$\checkmark 8xh + 4h^2 - h$	
	$f'(x) = \lim_{h \to 0} \frac{h(8x + 4h - 1)}{h}$	/ factorising	
	$f'(x) = \lim_{h \to 0} \frac{f'(x)}{h}$	✓ factorising	
	EcoleBooks		
	$= \lim_{h \to 0} \left(8x + 4h - 1\right)$	✓ simplify	
	$h \rightarrow 0$	Simping	
	= 8x - 1	✓ answer CA	
			(5)
4.2	p [.2 1 , /=]	✓ 2 <i>x</i>	
	$D_x \left[x^2 - \frac{1}{2x^3} + \sqrt{x} \right]$ $= D_x \left[x^2 - \frac{1}{2} x^{-3} + x^{\frac{1}{2}} \right]$	$\sqrt{\frac{3}{2}}x^{-4}$ only CA if index is	
	$\begin{bmatrix} 1 & 1 & 1 \\ -D & 1 & \frac{1}{2} \end{bmatrix}$	negative integer.	
	$\begin{bmatrix} -\nu_x[x & -\frac{1}{2}x & +x^2] \end{bmatrix}$	1	
	$=2x+\frac{3}{2}x^{-4}+\frac{1}{2}x^{-\frac{1}{2}}$	$\checkmark \frac{1}{2}x^{-\frac{1}{2}}$ only CA if index is rational	
	$-2x+\frac{\pi}{2}x+\frac{\pi}{2}x^2$	_	
			(3)

QUESTION 5

5.1	$p'(x) = 3x^{2} + 2bx + 24$ subst $A(2; 0)$ $0 = 3(2)^{2} + 2b(2) + 24$ $-36 = 4b$ $-9 = b$	✓ p'(x) ✓ subst ✓ answer	(3)C
5.2	$p'(x) = 0$ $3x^2 - 18x + 24 = 0$	$\checkmark p'(x) = 0$	(3)R

Download more resources like this on ECOLEBOOKS.COM Mathematics 5 March 20

March 2021 NSC

5.3	$x^{2} - 6x + 8 = 0$ $(x - 2)(x - 4) = 0$ $x = 2; x = 4$ $C(4; 0)$ $p \text{ increasing}: p'(x) > 0.$ $x < 2 \text{ or } x > 4$	✓ factors ✓ $C(4; 0)$ ✓ $p'(x) > 0$ ✓ $x < 2 \text{ or } x > 4$ CA from 8.4.2	
5.4	p concave up : $p''(x) > 0$ $x > 3$	$\checkmark p''(x) > 0$ $\checkmark x > 3$ CA from 8.4.2 (middle of 2 x – intercepts)	(3)C
5.5	(2;0) x (3;f(3)) (4;f(4))	√(2;0) √infl x = 3 √ TP x = 4 √ shape	(2)C

QUESTION 6

6.1	$A = P(1-i)^{n}$ $A = 255000(1-0.125)^{7}$ $= R 100 \ 137.45$	A✓ formula A✓ correct substitution CA✓ answer	(3)
6.2	$A = P(1+i)^n$	✓✓ correct substitution into	
	$2x = x(1+0.085)^n$	correct formula	
	$n = \frac{\log 2}{\log(1 + 0.085)}$	\checkmark making n the subject	
	= 9 years	✓answer	(4)

Mathematics 6 March 2021 NSC

QUESTION 7

7.1	$\hat{BDC} = 180^{\circ} - 2\alpha$		$\checkmark \hat{BDC} = 180^{\circ} - 2\alpha$	
	$\frac{y}{\sin \alpha} = \frac{x}{\sin 180^{\circ} - 2\alpha}$		✓ method	
	$y = \frac{x \sin \alpha}{\sin(180^\circ - 2\alpha)}$	Starmorephysics.com	✓ substitution	
	$y = \frac{x \sin \alpha}{2 \sin \alpha \cos \alpha}$		$\sqrt{2\sin\alpha\cos\alpha}$	
	$y = \frac{x}{2\cos\alpha}$			
	$\cos \theta = \frac{BD}{AB}$		$\checkmark AB = \frac{BD}{\cos \theta}$	
	$AB\cos\theta = BD$		$r = \frac{r}{\cos \theta}$	
	$AB = \frac{BD}{\cos \theta}$			
	$AB = \frac{x}{2\cos\alpha} \div \cos\theta$		✓ substitution BD	
	$AB = \frac{x}{2\cos\alpha} \times \frac{1}{\cos\theta}$		✓ simplification	
	$AB = \frac{x}{2\cos\alpha\cos\theta}$	ÉcoleBook	s	(7)
				[7]