

Department: Education

PROVINCE OF KWAZULU-NATAL

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS P2

PREPARATORY EXAMINATION

SEPTEMBER 2020

MARKS: 150

TIME:

3 hours

This question paper consists of 11 pages and an information sheet.

Copyright reserved

Please turn over

INSTRUCTIONS AND INFORMATION

Read the following instructions carefully before answering the questions:

- 1. This question paper consists of 10 questions.
- 2. Answer ALL the questions.
- 3. Clearly show ALL calculations, diagrams, graphs, et cetera, which you have used in determining the answers.
- 4. Answers only will not necessarily be awarded full marks.
- 5. You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. If necessary, round off answers to TWO decimal places, unless stated otherwise.
- 7. Diagrams are NOT necessarily drawn to scale.
- 8. Number the answers correctly according to the numbering system used in this question paper.
- 9. Write neatly and legibly.

Copyright Reserved Please turn over

QUESTION 1

The total number of red cards issued per country to players during a soccer competition are given in the table below:

NUMBER OF RED CARDS	NUMBER OF COUNTRIES (f)	MIDPOINT OF INTERVAL (x)	f.x
$0 < x \le 2$	27		
$2 < x \le 4$	15		
$4 < x \le 6$	5		
$6 < x \le 8$	5		
$8 < x \le 10$	3		
TOTAL			

1.1 Calculate the estimated mean of the number of red cards bel country.	country. (.	oer country.	an of the number of red cards per country.	of the number of i	mean of th	ie estimated	Calculate the	1.1
--	-------------	--------------	--	--------------------	------------	--------------	---------------	-----

- 1.2 Draw an ogive curve to represent the above data. (3)
- 1.3 Calculate the interquartile range of the number of red cards issued per country in the competition. (2)

[8]

QUESTION 2

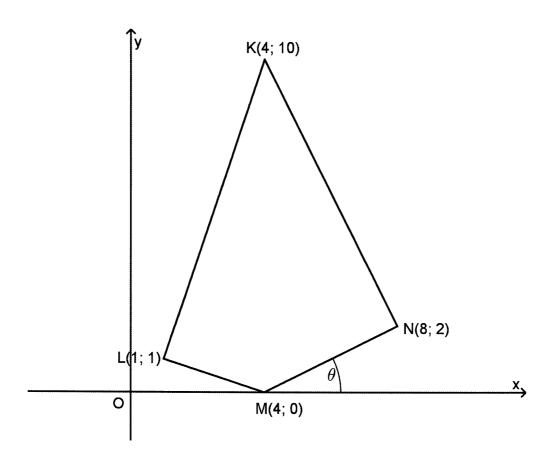
The table below shows a relationship between the monthly rent (x) a person pays for an apartment and the person's monthly income (y). Both are given in thousands of rands.

YEAR	2003	2004	2005	2006	2007	2008
Rent (x)	2	3	3,5	5,2	5,6	6
Income (y)	9	13,5	15	16,5	17	20

2.1 Determine the equation of the regression line. (4)

2.2 Determine the estimated monthly income if the rent per month is R9000. (2)

2.3 Calculate the value of the correlation coefficient. (2)


2.4 Describe the relationship between the monthly rent and the monthly income. (2)

[10]

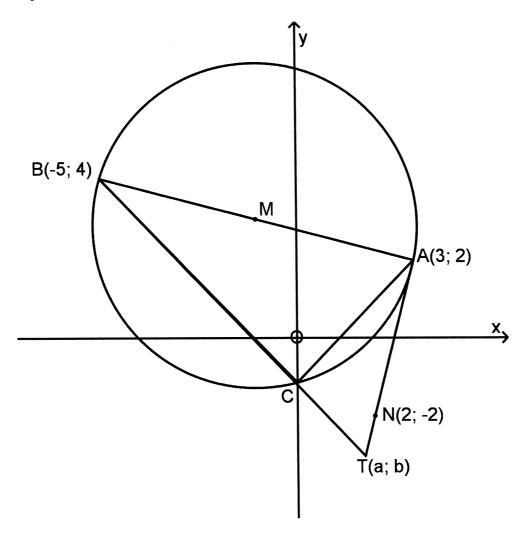
Copyright Reserved Please turn over

QUESTION 3

In the diagram KLMN is a quadrilateral with K(4; 10), L(1; 1), M(4; 0) and N(8; 2).

3.1 Determine the:

3.1.1	gradient of LM and MN	(4)
-------	-----------------------	-----


3.1.3 value of
$$\theta$$
 (2)

3.2 Show that
$$KL \perp LM$$
 (3)

[17]

QUESTION 4

In the sketch below, AB is a diameter with coordinates A(3; 2) and B(-5; 4) of circle ABC. M is the centre of the circle. BC produced meets AT in T. N(2; -2) is a point on the line TA. C is the y – intercept of the circle.

- 4.1 Determine the co-ordinates of M the centre of the circle (2)
- 4.2 Write down the equation of the circle in the form $(x-p)^2 + (y-q)^2 = r^2$ (3)
- 4.3 Prove that TA is a tangent to the circle at A. (5)
- 4.4 Determine the equations of the lines

4.5 If the coordinates of T are (a; b), calculate the values of a and b. (3)

[23]

QUESTION 5

5.1 Without using a calculator, evaluate

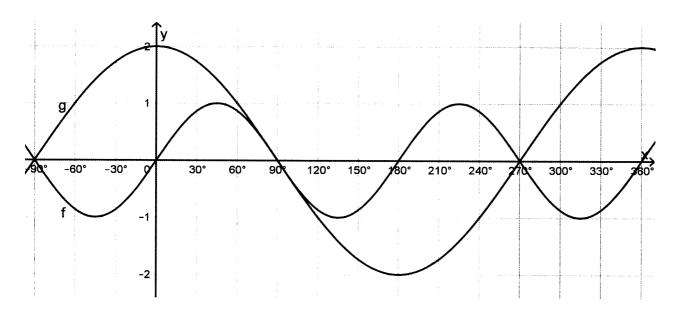
$$\cos 79^{\circ} \cos 311^{\circ} + \sin 101^{\circ} \sin 49^{\circ} \tag{4}$$

5.2 Given: $\sin (x + y) = 3 \sin (x - y)$

Prove that:
$$\tan x = 2 \tan y$$
 (4)

5.3 Given:
$$\frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2\sin x} = \sin x$$

5.3.1 Prove that
$$\frac{\cos x}{\sin 2x} - \frac{\cos 2x}{2\sin x} = \sin x \tag{4}$$


5.3.2 Hence, solve for x where $x \in [0^{\circ}; 360^{\circ}]$:

$$1 + 2\cos 2x = \frac{\cos 2x}{2\sin x} - \frac{\cos x}{\sin 2x} \tag{6}$$

[18]

QUESTION 6

In the diagram, the graphs of $f(x) = a \sin bx$ and $g(x) = c \cos dx$ are drawn for the interval $x \in [-90^\circ; 360^\circ]$

6.1 Determine the values of
$$a$$
, b , c and d .

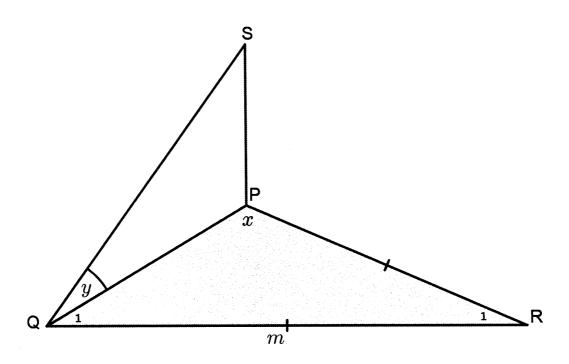
6.2 Write down the period of
$$g$$
. (1)

6.3 Determine the value(s) of x in the interval $x \in [-90^{\circ}; 360^{\circ}]$, for which

$$6.3.1 \quad f(x) \le g(x) \tag{2}$$

6.3.2
$$f'(x) \times g'(x) > 0$$
 where $g(x) > 0$ (3)

Copyright Reserved

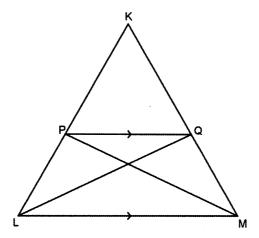

Please turn over

(4)

[10]

QUESTION 7

In the diagram P, Q and R are three points in the same horizontal plane. PR = QR = m, $Q\hat{P}R = x$. SP is perpendicular to PQ. The angle of elevation of S from Q is y.

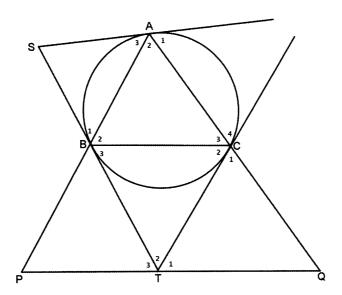


- 7.1 Express the area of $\triangle PQR$ in terms of x and m. (5)
- 7.2 Show that $PQ = 2m \cos x$ (4)
- 7.3 Hence, prove that $SP = 2m \cos x \tan y$ (2)

[11]

QUESTION 8

8.1 In the diagram below Δ KLM is given, with P and Q lying on KL and KM respectively such that PQ || LM. PM and LQ are drawn.



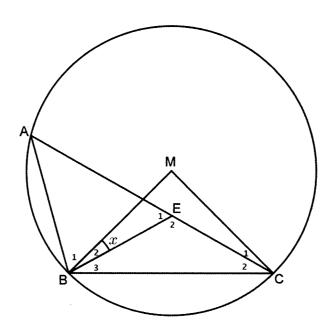
Prove that
$$\frac{KP}{PL} = \frac{KQ}{QM}$$
 (6)

Copyright Reserved

8.2 In the diagram, SBT, SA and TC are tangents to the circle at B, A and C respectively. AB is produced to P and AC is produced to Q such that T lies on the line PQ.

$$\text{In } \Delta APQ, \frac{AB}{AP} = \frac{AC}{AQ}.$$

Use the above information to prove:

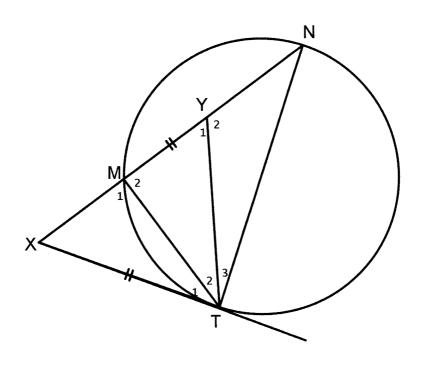

8.2.1
$$\hat{A}_2 = \hat{T}_1$$
 (4)

8.2.2
$$\triangle ABC /// \triangle TCQ$$
 (4)

[23]

QUESTION 9

In the diagram, M is the centre of the circle through A, B and C. E is on AC. AC bisects MĈB and EB bisects MBC. $\hat{B}_2 = x$


- 9.1 Determine the size of \hat{E}_2 in terms of x. (4)
- 9.2 Show $BAC = 90^{\circ} 2x$ (3)
- 9.3 Prove that AE is a diameter of circle ABE. (5)

[12]

Download more resources like this on ECOLEBOOKS.COM Mathematics Downloaded from Stanmage hays ics. com

QUESTION 10

10.1 In the diagram XMN is a straight line and XT is a tangent to the circle. Y is a point on XN so that XY = XT.

Prove that:

$$10.1.2 \frac{XM}{XT} = \frac{XT}{XN} \tag{6}$$

10.2 Given that MY = 20 mm, YN = 50 mm and XT = k mm:

10.2.1 Express XM in terms of
$$k$$
. (3)

10.2.2 Calculate the length of
$$k$$
. (4)

[18]

TOTAL MARKS: 150

ORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$

$$A = P(1 - ni)$$

$$A = P(1-i)'$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}(2a + (n-1)d)$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$

$$r \neq 1$$

$$S_n = \frac{a(r^n - 1)}{r - 1}$$
; $r \neq 1$ $S_{\infty} = \frac{a}{1 - r}$; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$P = \frac{x[1 - (1 + i)^{-n}]}{i}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad M\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \tan \theta$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cdot \cos A$ area $\triangle ABC = \frac{1}{2}ab \cdot \sin C$

$$a^2 = b^2 + c^2 - 2bc \cdot \cos A$$

$$area \, \Delta ABC = \frac{1}{2} ab. \sin C$$

$$\sin(\alpha + \beta) = \sin \alpha \cdot \cos \beta + \cos \alpha \cdot \sin \beta$$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

$$\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$$

$$\cos(\alpha - \beta) = \cos \alpha \cdot \cos \beta + \sin \alpha \cdot \sin \beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha.\cos \alpha$$

$$\bar{x} = \frac{\sum f.x}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

$$\hat{y} = a + bx$$

$$\sigma^2 = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n}$$

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

education

Department:
Education
PROVINCE OF KWAZULU-NATAL

MATHEMATICS P2

PREPARATORY EXAMINATION

SEPTEMBER 2020

SPECIAL ANSWER BOOK

NATIONAL SENIOR CERTIFICATE

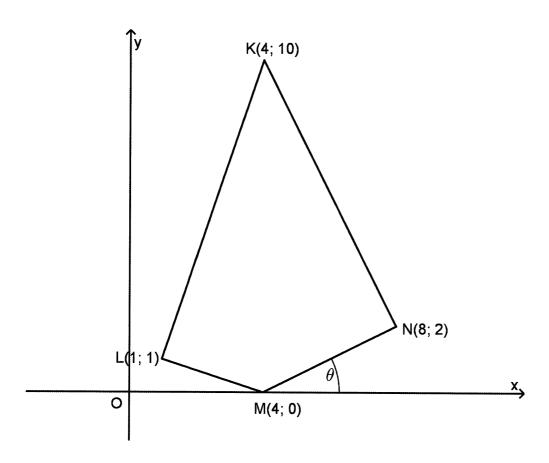
GRADE 12

NAME OF CANDIDATE:	
The	150
TIME: 3 hours	

This answer book consists of 20 pages

QUESTION 1

NUMBER OF RED CARDS	NUMBER OF COUNTRIES (f)	MIDPOINT OF INTERVAL (x)	f.x
$0 < x \le 2$	27		
$2 < x \le 4$	15		
$4 < x \le 6$	5		
$6 < x \le 8$	5		
$8 < x \le 10$	3		
TOTAL			

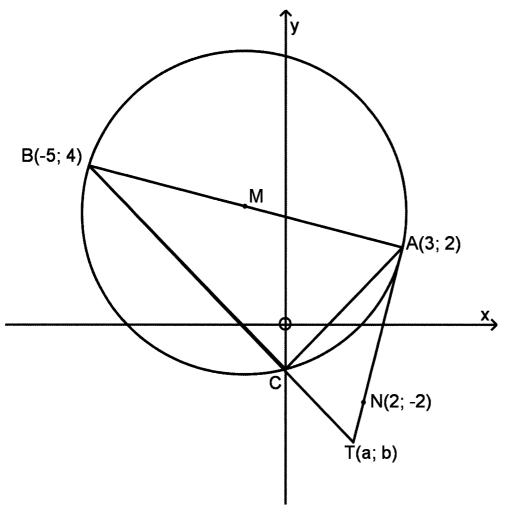

	Solution/Oplossing	Marks/ Punte
1.1		
		(3)
1.2	The red cards issued to countries during a soccer competition	
	60 50	
	9 40	
	30 Hi 20	
	10 0	
	0 2 4 6 8 10 12 Number of red cards	
		(3)
1.3		
		(2)
		[8]

Copyright reserved Please turn over

YEAR	2003	2004	2005	2006	2007	2008
Rent (x)	2	3	3,5	5,2	5,6	6
Income (y)	9	13,5	15	16,5	17	20

	Solution/Oplossing	Marks/ Punte
2.1		
		(4)
2.2		
		(2)
2.3		
2.4		(2)
2.4		(2)
		[10]

QUESTION 3



	Solution/Oplossing	Marks/ Punte
		1 une
3.1.1		
		_
		(4)
3.1.2		
		(2)
L		

Copyright reserved

	Solution/Oplossing	Marks/
2.1.2		Punte
3.1.3		
		_
		-
		-
		(2)
2.1.4		
3.1.4		
		-
		-
		-
		(2)
3.2		
		-
		-
		_
		1
		(2)
		(3)
3.3		
		_
		-
		-
		(4)
L	1	[17]

QUESTION 4

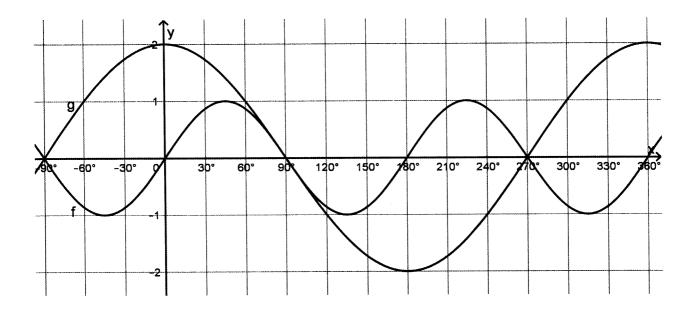
Punte
1 unte
(2)
(3)

Copyright reserved Please turn over

	Solution/Oplossing	Marks/ Punte
4.3		
		(5)
4.4.1		
		(4)
4.4.2		
		(6)
1		

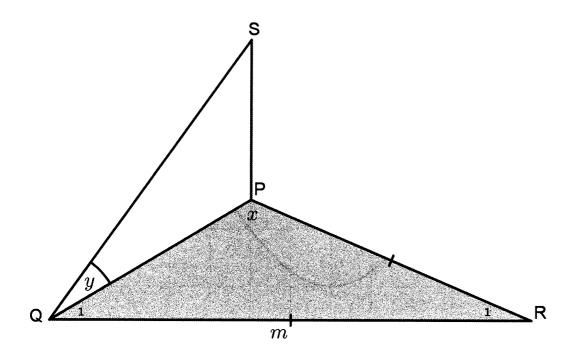
	Solution/Oplossing	Marks/ Punte
4.5		
4.3		
		-
		_
		-
		(3)
		[23]

QUESTION 5


	Solution/Oplossing	Marks/ Punte
5.1		
:		
		(4)
5.2		

Copyright reserved Please turn over

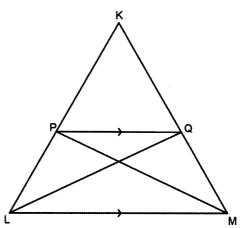
	Solution/Oplossing	Marks/ Punte
5.2 (CONT)		
()		
		(4)
5.3.1		
		(4)


	Solution/Oplossing	Marks/ Punte
5.3.2		
		(6)
Additi	onal space/Bykomende ruimte	

Copyright reserved Please turn over

	Solution/Oplossing	Marks/ Punte
6.1		
		(4)
6.2		
		(1)
6.3.1		
		(2)
6.3.2		
		(3)
L		[10]

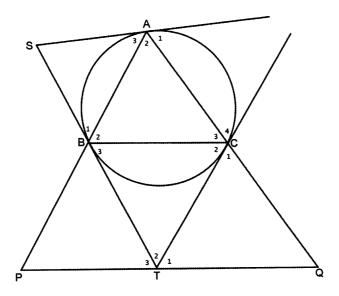
QUESTION 7


	Solution/Oplossing	Marks/ Punte
7.1		
		(5)

Copyright reserved

Please turn over

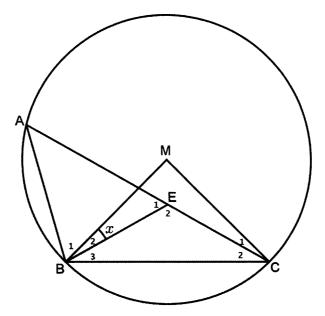
	Solution/Oplossing	Marks/ Punte
7.2		
		(4)
7.3		
7.5		
		(2)
		[11]


Downloaded from Stanmorephysics.com **QUESTION 8**

	Solution/Oplossing	Marks/ Punte
8.1		runte
		(6)

Copyright reserved

Please turn over



	Solution/Oplossing	Marks/ Punte
8.2.1		
		'
		(4)
8.2.2		
		-
		-
		(4)

	Solution/Oplossing	Marks/ Punte
8.2.3		1 unic
		(4)
8.2.4		
	·	
		(5)
		[23]

Additional space/Bykomende ruimte	Marks/ Punte

Copyright reserved Please turn over

	Solution/Oplossing	Marks/ Punte
9.1		
		(4)
9.2		
		(3)

	Solution/Oplossing	Marks/ Punte
9.3		runte
		(5)
		[12]
		[12]

QUESTION 10

	Solution/Oplossing	Marks/ Punte
10.1.1		
×		
		(5

Copyright reserved Please turn over

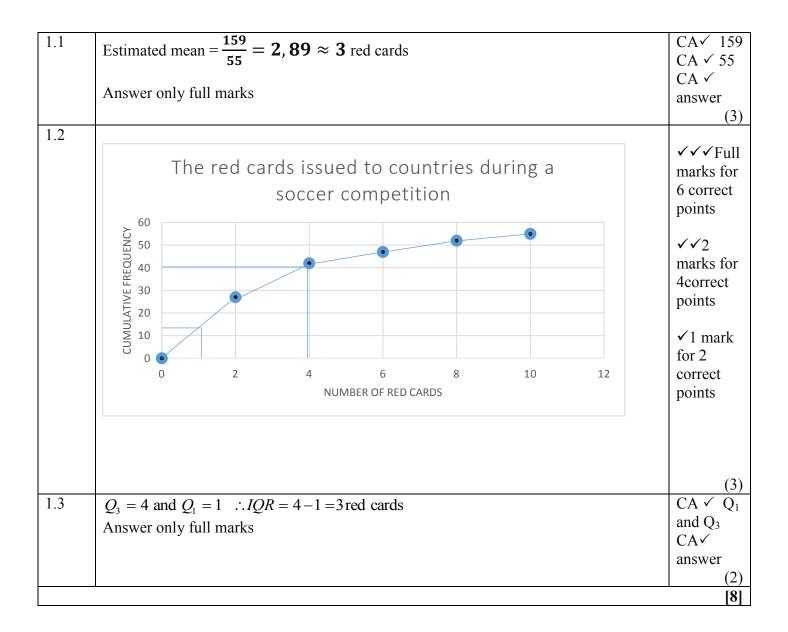
	Solution/Oplossing	Marks/ Punte
10.1.2		
		<u>-</u>
		(6)
10.2.1		
10.2.1		
		(3)
10.2.2		
		(4)
		(4)
		[18]

TOTAL: 150

Additional space/Bykomende ruimte	Marks/ Punte

NATIONAL SENIOR CERTIFICATE

GRADE 12


MATHEMATICS P2
PREPARATORY EXAMINATION
SEPTEMBER 2020
MARKING GUIDLINES

MARKS: 150

TIME: 3 hours

This marking guideline consists of 12 pages.

NUMBER OF RED CARDS	NUMBER OF COUNTRIES (f)	MIDPOINT OF INTERVAL (x)	f. x
$0 < x \le 2$	27	1	27
$2 < x \le 4$	15	3	45
$4 < x \le 6$	5	5	25
$6 < x \le 8$	5	7	35
$8 < x \le 10$	3	9	27
TOTAL	55		159

Download more resources like this on ECOLEBOOKS.COM Mathematical Math

2.1	A = 5,97; B = 2,18	A ✓ for A
	Y = 5.97 + 2.18 x	A √ for B
		A✓✓
		For equation
	Answer only full marks	(4)
2.2	Estimated monthly income	CA✓
	y = 5.97 + 2.18(9)	substitution
	= 25,59	CA√ answer
	∴ Monthly income = R25598,89	(2)
	If 9000 is used only 1 mark	
2.3	r = 0.94	CA√√ (2)
2.4	Very strong positive relationship between the monthly rent and the monthly	CA ✓ strong
	income.	CA ✓ positive
		(2)
		[10]

3.1.1	0-1 1	A✓ sub into correct formula
	$m_{LM} = \frac{0-1}{4-1} = -\frac{1}{3}$	$A \checkmark -\frac{1}{3}$
	2 - 0 1	3
	$m_{MN} = \frac{2-0}{8-4} = \frac{1}{2}$	A✓ Sub into correct formula
		A $\sqrt{\frac{1}{2}}$
		2
		(4)
3.1.2	$KM = \sqrt{(4-4)^2 + (10-0)^2}$	CA ✓ subst
	$=\sqrt{100}$	CA ✓10 units
	=10 units	(2)
	Answer only full marks	
3.1.3	$m_{MN} = \frac{1}{2}$	$CA \checkmark \tan \theta = \frac{1}{2}$
	$m_{MN} = \frac{1}{2}$ $\tan \theta = \frac{1}{2}$	<u></u>
	$\theta = 26,57^{\circ}$	CA $\checkmark \theta = 26,57^0$ provided acute
	Answer only full marks	angle (2)
3.1.4	$(x_1 + x_2 y_1 + y_2)$	A√correct substitution
	$\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$ ÉcoleBooks	
	$\left(\frac{1+8}{2}; \frac{1+2}{2}\right)$	
	$\left(\frac{9}{2}; \frac{3}{2}\right)$ $m_{KL} = \frac{10 - 1}{4 - 1} = 3$	A√answer (2)
2.2	(2 '2)	· /
3.2	$m_{KL} = \frac{10-1}{4-1} = 3$	A√subst
	$m_{KL} \times m_{LM} = 3 \times \left(-\frac{1}{3}\right)$	A√3
	= -1	$A \checkmark product = -1$
	$ \begin{array}{c c} & : KL \perp LM \\ \hline & 10-2 \end{array} $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
3.3	$m_{\nu N} \equiv \frac{10-2}{}$	
	$m_{KN} = \frac{28 - 2}{4 - 8}$ $= -2$	A√M _{KN} -2
	$\therefore KN \perp NM$ $\therefore K\widehat{L}M + K\widehat{L}M = 1000$	A√KN ⊥ MN A√Sum of 180°
	∴ $K\widehat{L}M + K\widehat{N}M = 180^{\circ}$ ∴ $KLMN$ is cyclic quadrilateral (converse, opp \angle^s of a cyclic	A \checkmark Sum of 180°
	quad are supplementary)	$M_{MN} = \frac{1}{2} : (-2) \left(\frac{1}{2}\right) = -1$
		A√ reason
		(4) [17]
'		

Download more resources like this on ECOLEBOOKS.COM

Matheman Mathematical Mathematical

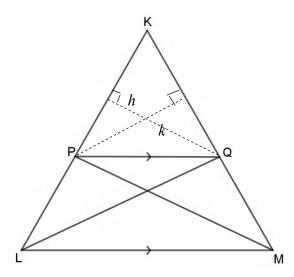
	T . O . 4 . O	
4.1	$M\left(\frac{-5+3}{2}; \frac{4+2}{2}\right) = M(-1;3)$	$A \checkmark x = -1$
	$M(\frac{1}{2}; \frac{1}{2}) = M(-1; 3)$	$A \checkmark y = 3$
		(2)
		· · ·
4.2	$r^2 = BM^2 = (-5+1)^2 + (4-3)^2 = 17$	CA✓ subst into equation
		$CA \checkmark r^2 = 17$
	(, 4)2 , (, 0)2 , 45	
	$\therefore (x+1)^2 + (y-3)^2 = 17$	CA√equation
		For CA marks coordinates of M
		must be in second quadrant
		<u> </u>
		(3)
4.3	$m_{AB} = \frac{2-3}{3+1} = -\frac{1}{4}$ $m_{AN} = \frac{2+2}{3-2} = 4$	$A \checkmark m_{MA}$ or m_{BA}
1	$ m_{AB} = \frac{1}{2} = -\frac{1}{4}$	TI WIMA OI WBA
	$\frac{1}{3} + \frac{1}{4} + \frac{4}{3} + \frac{1}{4} + \frac{4}{3} + \frac{1}{4} + \frac{1}$	
	2+2	$A \checkmark m_{AN}$
	$m_{AN} = \frac{1}{2} = 4$	7111
		A / 1 . C 1: . 1
	$m_{AB} \times m_{AN} = -1$	A \checkmark product of gradients = -1
	$\therefore B\hat{A}T = 90^{\circ}$	$A \checkmark 90^{0}$
	TA is a tangent (conv. tangent and diameter)	A√reason
	$\therefore TA$ is a tangent (conv. tangent and diameter)	
		(5)
4.4.1	$m_{TA} = m_{AN} = 4$	$CA \checkmark m_{TA} = m_{AN}$
1. 7. 1		
	y = 4x + c	CA√equation
	Subst. $(3; 2)$: $2 = 4(3) + c$	$CA\checkmark$ subst of (3; 2) or (2; -2)
	-10 = c	
	$\therefore y = 4x - 10$	CA√ equation
	EcoleBooks	(4)
4.4.2		()
4.4.2	Let $C(x; y)$	
	$\therefore (x+1)^2 + (y-3)^2 = 17$	CA√equation of circle
	At C; $x = 0$	
	, , , , , , , , , , , , , , , , , , ,	
	$\therefore (0+1)^2 + (y-3)^2 = 17$	$CA \checkmark subst x = 0$
	$(y-3)^2 = 16$	
	¥ /	
	$y - 3 = \pm 4$	
	y = 7 or y = -1	CA√y values
	$\therefore C(0; -1)$	CA√co-ordinate
		err eo ordinate
	-1-4	
	$m_{BC} = \frac{-1-4}{0+5} = -1$	CA√gradient
	U T J	
	Now $y = -x - 1$	CA√equation
		(6)
		(6)
4.5	Lines AT and BT intersect at C	
	$\therefore 4x - 10 = -x - 1$	CA√equations equal
		C11. equations equal
	5x = 9	
	9	
	$x = \frac{1}{a} = a$	CA√value of a
	5 .	CAY value of a
	$x = \frac{9}{5} = a$ $b = -\frac{9}{5} - 1 = -2\frac{4}{5}$	
	$b = -\frac{1}{2} - 1 = -2\frac{1}{2}$	CA√value of b, For CA marks
	5 5	
		A and B are points in the 4 th
		quadrant
		(3)
<u></u>		[23]

		·	
5.1	cos 79° cos 311° + sin 101° sin 49°		
	$= \cos 79^{\circ} \cos 49^{\circ} + \sin 79^{\circ} \sin 49^{\circ}$	$A\checkmark\cos 49^{\circ} A\checkmark\sin 79^{\circ}$	
	$=\cos(79^{\circ}-49^{\circ})$		
	$= \cos 30^{\circ}$	A√cos 30°	
		A ✓ answer	
	$=\frac{\sqrt{3}}{2}$	A allswel	(4)
			(4)
	Answer only no marks, used calculator		
5.2	$\sin(x+y) = 3\sin(x-y)$		
	$\sin x \cos y + \cos x \sin y$	A√expansion	
	$= 3(\sin x \cos y - \cos x \sin y)$		
	$\sin x \cos y + \cos x \sin y$	A√like terms added	
	$= 3 \sin x \cos y - 3 \cos x \sin y$		
	$-2\sin x\cos y = -4\cos x\sin y$	A√divide	
	$\div -2\cos x\cos y$:		
	$\frac{\sin x}{\cos x} = 2\left(\frac{\sin y}{\cos y}\right)$	Av (sin a)	
	$\cos x = (\cos y)$	$\frac{\sin x}{\cos x} = 2\left(\frac{\sin y}{\cos y}\right)$	
	$\therefore \tan x = 2 \tan y$	$\cos x \langle \cos y \rangle$	
			(4)
5.3.1	$\cos x \cos 2x$ EcoleBool	S	(¬)
3.3.1	$\frac{\sin x}{\sin 2x} - \frac{\cos 2x}{2\sin x} = \sin x$		
	SIII ZX Z SIII X		
	LHS: $\frac{\cos x}{\cos x} - \frac{\cos 2x}{\cos x}$		
	$\sin 2x$ $2\sin x$		
	$-\frac{\cos x}{1-2\sin^2 x}$	$A \checkmark 2 \sin x \cos x$	
	$-\frac{1}{2\sin x\cos x} - \frac{1}{2\sin x}$	$A \checkmark 1 - 2\sin^2 x$	
	$1 \qquad (1-2\sin^2 x)$		
	$=\frac{1}{2\sin x}-\frac{1}{2\sin x}$		
	$1-1+2\sin^2 x$	A√numerator	
	$=\frac{2\sin x}{2\sin x}$	71. Indifficiator	
	$2\sin^2 x$	A√answer	
	$=\frac{1}{2\sin x}$	A. allower	
	$=\sin x$		(4)
	=RHS		

Download more resources like this on ECOLEBOOKS.COM Mathematical Math

$1 + 2\cos 2x = \frac{1}{2s}$ $1 + 2\cos 2x$ $1 + 2\cos 2x$ $1 + 2(1 - 2\sin^2 x)$ $1 + 2 - 4\sin^2 x$	$ \begin{aligned} &= -\sin x \\ &= -\sin x \end{aligned} $		$A\checkmark - \sin x$
$4\sin^2 x - \sin x - 3$ $(\sin x - 1)(4\sin x)$ $\sin x = 1$ $x = 90^\circ$	-	$\sin x = -\frac{3}{4}$ $\text{ref} \angle = 48,59^{\circ}$ x = 228.59 OR $x = 311,41^{\circ}$	A✓ standard quadratic form A ✓ Factors CA✓90 ⁰ CA✓228.59° CA✓311.41° (6)

6.1	a = 1 $b = 2$ $c = 2$ $d = 1$ ÉcoleBooks	$A \checkmark a = 1$ $A \checkmark b = 2$ $A \checkmark c = 2$ $A \checkmark d = 1$
		(4)
6.2	360°	A√360°
		(1)
6.3.1	$x \in [-90^{\circ}; 90^{\circ}] or x \in [270^{\circ}; 360^{\circ}]$	AA✓✓ values and notation
		(2)
6.3.2	$x \in (-45^{\circ}; 0^{\circ})$ or $x \in (45^{\circ}; 90^{\circ})$ or $x \in (315^{\circ}; 360^{\circ})$	AAA✓✓✓ values and
		correct notation
		(3)
		[11]


7.1	n ΔPQR:	
	$\hat{Q}_1 = x \qquad (PR = QR)$	$A\widehat{\checkmark Q}_1 = x$
	$\hat{R} = 180^{\circ} - 2x \qquad (sum \ of \ \angle \ \Delta PQR)$	$A\widehat{\sqrt{R}} = 180^{\circ} - 2x$
	$\hat{Q}_1 = x \qquad (PR = QR)$ $\hat{R} = 180^{\circ} - 2x \qquad (sum \ of \ \angle \Delta PQR)$ $Area \ of \ \Delta PQR = \frac{1}{2}pq \sin \hat{R}$ $= \frac{1}{2}m \cdot m \sin(180^{\circ} - 2x)$	A√Subst. into Area rule A√sin2x
	$= \frac{1}{2}m^2 \sin 2x$	A√answer
		(5)
7.2	$\therefore \frac{PQ}{\sin(180^\circ - 2x)} = \frac{m}{\sin x}$	A√Use of sine rule
	$\therefore PQ = \frac{m \cdot \sin(180^\circ - 2x)}{\sin x}$ $m \cdot \sin 2x$	A√subst into sine Rule
	$\therefore PQ = \frac{m \cdot \sin 2x}{\sin x}$ $\therefore PQ = \frac{m \cdot 2 \sin x \cdot \cos x}{\sin x \cdot \cos x}$	$A \checkmark \sin 2x$
	$\therefore PQ = \frac{m \cdot 2 \sin x \cdot \cos x}{\sin x}$	$A \checkmark 2 \sin x \cos x$

Download more resources like this on ECOLEBOOKS.COM

Mathenland MPD oaded from Stanning Cephysic Expanding Examination September 2020

QUESTION 8

8.1

R.T.P	$\frac{KP}{PL} = \frac{KQ}{QM}$		
	PL QM		
	CONSTRUCTION:	A√construction	
	In ΔKPQ, draw perpendicular heights, h from Q to KP and K from P to KQ		
	$\frac{\text{Area of } \Delta \text{KPQ}}{\text{Area of } \Delta \text{LPQ}} = \frac{\frac{1}{2} \text{KP} \times \text{h}}{\frac{1}{2} \text{PL} \times \text{h}}$	A✓method	
	$=\frac{\mathrm{KP}}{\mathrm{PL}}$	$A\checkmark \frac{KP}{PL}$	
	$\frac{Area of \Delta KPQ}{Area of \Delta MQP} = \frac{\frac{1}{2}KQ \times k}{\frac{1}{2}QM \times k}$	A✓method	
	$=\frac{KQ}{QM}$	$A\checkmark \frac{KQ}{QM}$	
	But area of $\triangle PLQ$ = Area of $\triangle MPQ$ Same base, same height		
	$\therefore \frac{\text{Area of } \Delta \text{KPQ}}{\text{Area of } \Delta \text{LPQ}} = \frac{\text{Area of } \Delta \text{KPQ}}{\text{Area of } \Delta \text{MQP}}$	A√method	
	$\therefore \frac{KP}{PL} = \frac{KQ}{QM}$		(6)

Mathematical Order of Stanning Cephysic Expanding Examination September 2020

	10		
8.2.1	In ΔAPQ:		
	BC PQ $\frac{AB}{AP} = \frac{AC}{AQ}.; \text{ conv prop}$	A√S A√R	
	$\widehat{T}_1 = \widehat{C}_2$ alternate $\angle s$; BC PQ $\widehat{A}_2 = \widehat{C}_2$ tangent TC; chord BC $\therefore \widehat{A}_2 = \widehat{T}_1$	A✓ S/R A✓ S/R	
			(4)
8.2.2	In ΔABC and ΔTCQ:	, .	
	$\widehat{C}_3 = \widehat{Q}$ corr \angle^s ; BC PQ $\widehat{A}_2 = \widehat{T}_1$ proved above $\widehat{B}_2 = \widehat{C}_1$ rem \angle^s	A✓ S/R	
	$\hat{A}_2 = \hat{T}_1$ proved above	A✓ S/R A✓ S/R	
		AV S/R A√ S/R	
	∴ ΔABC∭ΔTCQ ∠∠∠	7X' 5/1X	
			(4)
8.2.3	$\widehat{B}_1 = \widehat{C}_3$ tangent SB; chord AB	A√S A√R	
	$\widehat{Q} = \widehat{C}_3$ proven	A√ S	
	$\therefore \widehat{B}_1 = \widehat{Q}$	A√ S/R	
	\therefore ABTQ is cyclic conv. ext $\angle = \text{int} \angle \text{of cyclic quad}$.	AV S/K	(4)
8.2.4	TB = TC tangents from common point	A√S A√R	(1)
	$\widehat{B}_3 = \widehat{C}_2$ TB = TC; \angle s opp eq. sides	A√S	
	$\widehat{T}_1 = \widehat{C}_2$ alt. $\angle s$; BC \parallel PQ	A√S/R	
	$\begin{array}{l} \therefore \ \widehat{B}_3 = \widehat{T}_1 \\ \therefore \ TQ \ \ \text{is a tangent} \end{array} \qquad \text{conv. tan; chord theorem} $	A√S/R	
			(5)
			[23]

9.1	In ΔMBC:	
	$\hat{B}_2 = \hat{B}_3 = x$ BE bisects MBC	A√S
	$\therefore \hat{MBC} = 2x$	
	$\hat{MBC} = \hat{MCB} = 2x$ angles opposite equal sides	A√S/R
	In ΔBEC:	
	$\hat{E}_2 = 180^\circ - (x+x)$ Sum of angles of a Δ	A✓S/R
	$= 180^{\circ} -2x$	A√Answer
		(4)

Download more resources like this on ECOLEBOOKS.COM

Mathematical Math

1	-
	- 1
	- 1

9.2	In \triangle MBC:B \hat{M} C = 180° - (2x+2x) Sum of angles of a \triangle	
	$= 180^{\circ} - 4x$	A√S A√R
	But $\hat{BAC} = \frac{1}{2}\hat{BMC}$ \(\angle \text{at centre twice angle}\)	
	$= \frac{1}{2}(180^{\circ} - 4x)$	A√S/R
	=90-2x	(3)
9.3	In ΔABE:	
	$\hat{E}_1 + \hat{E}_2 = 180^{\circ}$ Straight line	A√S/R
	$\hat{E}_1 = 180^{\circ} - E_2$	
	$= 180^{\circ} - (180^{\circ} - 2x)$ ÉcoleBooks	
	=2x	A✓S
	In ΔABE:	
	$A\hat{B}E + B\hat{A}C + \hat{E} = 180^{\circ}$ Sum of $\angle s$ of Δ	A✓S/R
	$\hat{ABE} = 180^{\circ} - (\hat{BAC} + \hat{E}_1)$	
	$= 180^{\circ} - (90^{\circ} - 2x + 2x)$	
	= 90°	A√S
	\therefore AE is a diameter of circle ABE (Subtends) \angle 90°	A✓R
		(5)
		[12]

QUESTION 10

10.1.1 Let $\widehat{Y}_1 = a$ and $\widehat{N} = b$	
	A√ S/R
$\widehat{T}_1 = \widehat{N} = b \qquad \text{(cxt. 2 old = staff opp. 23)}$ $\widehat{T}_1 = \widehat{N} = b \qquad \text{(tan XT; chord MT)}$	
$X\widehat{T}Y = a$ (tall XT, chord MT) $X\widehat{T}Y = a$ (angles opposite equal sides)	A√S A√R
$\widehat{T}_2 = X\widehat{T}Y - \widehat{T}_1$ (angles opposite equal sides)	
$\begin{vmatrix} 1_2 - X 1 1 - 1_1 \\ = a - b \end{vmatrix}$	A√ S/R
$\begin{array}{c} -a-b \\ \therefore \widehat{T}_3 = \widehat{T}_2 \end{array}$	
$\begin{array}{c} :: I_3 - I_2 \\ :: YT \text{ bisects } \widehat{MTN} \end{array}$	
II Disects MIIIN	
	A√S
	(5)
$10.1.2$ In Δ XMT and Δ XTN:	A (C/D
\hat{X} is common	A√S/R
$\widehat{T}_1 = \widehat{N}$ tan XT; chord MT	$A \checkmark S A \checkmark R$
$\widehat{M}_1 = X\widehat{T}N$ remaining \angle	A√R A√R
∴ ∆XMT∭∆XTN ∠∠∠	AVK
$\therefore \frac{\Delta M}{XT} = \frac{\Lambda T}{XN} = \frac{MT}{TN}$ similar Δ 's	A√ S/R
XM XT	Tr S/IC
ÉcoleBooks	(6)
10.2.1 $XM = XY - 20$ $XY = XT$	A√S A√R
= k - 20	A√answer
	(3)
$10.2.2 \mid \frac{XM}{M} = \frac{XT}{M}$	A✓ LHS
$\frac{1}{XT} = \frac{1}{XN}$	A√ RHS
l. 20 l.	
$\therefore \frac{k-20}{k} = \frac{k}{k+50}$	
	A√Simplification
$\therefore (k - 20)(k + 30) = k$ $\therefore k^2 + 30k - 1000 = k^2$	A' Simpimeation
30k - 1000 = k	
30k = 1000 $30k = 1000$	
	A√Answer
	(4)
	[18]

TOTAL: 150