Download more resources like this on ECOLEBOOKS.COM

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2020

MECHANICAL TECHNOLOGY: AUTOMOTIVE MARKING GUIDELINE

MARKS: 200

This marking guideline consists of 15 pages.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	C√	(1)
1.2	B✓	(1)
1.3	C✓	(1)
1.4	A✓	(1)
1.5	B✓	(1)
1.6	C✓	(1) [6]

QUESTION 2: SAFETY (GENERIC)

2.1 Gas welding (PPE)

- Eye protection ✓
- Overall / leather apron ✓
- Safety boots ✓
- Gloves ✓

(Any 2 x 1) (2)

2.2 Safety rules that must be followed whilst the surface grinder is in operation:

- Make sure that the sparks are of no danger to co-workers. ✓
- Do not force the material onto the grinding wheel. \checkmark
- Do not plunge grind. ✓
- Bring the material slowly into contact with the grinding wheel. \checkmark
- Never clean or adjust the machine whilst it is in motion. ✓
- Use cutting fluid. ✓
- Know where the emergency stop is located. \checkmark
- Stop the machine before any adjustment. \checkmark
- Keep tools clear from moving parts. ✓

(Any 2 x 1) (2)

²

Down]	load more resources like this on ECOLEBOOKS.CO	М
(EC/SEPT	TEMBER 2020) MECHANICAL TECHNOLOGY: AUTOMOTIVE	3
2.3	Completing a task on any machine: Switch the machine off. ✓	(1)
2.4	 TWO safety measures to observe before switching the angle grinder on: Make sure that there are no cracks or chips on the disc. ✓ Make sure that the emery disc that is fitted is rated above the revolutions at which it is turned by the motor. ✓ Make sure that the space between the tool rest and the emery disc does not exceed 3 mm. ✓ Ensure that guards are in place. ✓ Do not stand in front of the machine when switching it on; wait until it reaches its full speed. ✓ Do not force or bump the work piece against the emery disc. ✓ All grinding machines must have a sign indicating the revolutions at which the spindle rotates. ✓ 	(2)
2.5	 Importance of a welding helmet: To protect your eyes and face from ultra-violet rays and radiation 	(1)
2.6	 Types of workshop layouts: Process layout ✓ Product layout ✓ 	(2) [10]

(Any 2 x 1)

(6)

(1)

(2)

QUESTION 3: MATERIALS (GENERIC)

3.1

MATERIALS	DIFFERENT TYPES OF TESTS					
	Sound	Filing	Bend			
Cast iron	Very dull sound ✓	Easy ✓	Cannot bend √/ Snaps/breaks√/ Fracturea easily √			
Mild steel	Medium metallic sound ✓	Easy ✓	Benda easily √			

3.2 Heat treatment process:

•	Is the heating and cooling of metals in their solid state so as to
	change their properties ✓

3.3 Hardness factors:

- Workpiece size ✓
- Quenching rate ✓
- Carbon content ✓

3.4 Heat treatment processes:

3.4.1 **Tempering**

 Is a process applied to steel and it relieves the strains induced during the hardening process. ✓

ÉcoleBooks

- It decreases the degree of hardness ✓
- It increases toughness \checkmark
- It reduces brittleness ✓
- It gives steel fine grain structure \checkmark (Any 2 x 1) (2)

3.4.2 Annealing

- Relieves internal stress ✓
- Softens the metal ✓
- Makes metal ductile ✓
- Refines the grain structure ✓
- Reduces brittleness \checkmark (Any 2 x 1) (2)

3.5 Hardness of steel depends upon

- Carbon content ✓ (1)
 - [14]

Copyright reserved

Deemland mana		thig on	EGOLEDOORG	COM
(EC/SEPTEMBER 2020)	resources like MECHANICAL TECHNOL			<u>. COM</u>
	TIPLE-CHOICE QUESTI			
4.1 A ✓				(1)
4.2 C ✓				(1)
4.3 D ✓				(1)
4.4 B ✓				(1)
4.5 B ✓				(1)
4.6 D ✓				(1)
4.7 C ✓				(1)
4.8 D ✓				(1)
4.9 B√				(1)
4.10 A ✓				(1)
4.11 C ✓				(1)
4.12 D ✓				(1)
4.13 B√	Écol	eBooks		(1)
4.14 A ✓				(1) [14]

QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

5.1	Bubb 5.1.1	le gauge: ● Bubble gauge ✓	(1)
	5.1.2	 A – King-pin inclination scale ✓ B – Caster scale ✓ C – Camber scale ✓ D – Gauge zero scale ✓ E – Mounting equipment on wheel ✓ 	(5)
	5.1.3	 Caster angle ✓ Camber angle ✓ King-pin inclination ✓ 	(3)
5.2	 E M Z T 	p procedure to read camber: nsure that the wheels are in a straight ahead position. \checkmark ount the bubble gauge on the centre of the wheel. \checkmark ero the bubble gauge on the gauge zero scale. \checkmark ake the reading on the camber scale. \checkmark o the same for the other wheels. \checkmark	(5)
5.3	 TI TI TI Cl 	mic balancing of wheels: the plane of imbalance \checkmark the extent of unbalanced forces $\checkmark_{leBooks}$ the sense of direction of these forces (clockwise or counter ockwise / anticlockwise) \checkmark un-out of the tyre and wheel assembly \checkmark (Any 3 x 1)	(3)
E 4			(0)
5.4	Tools : 5.4.1	Turn table: To turn the front wheel 20° in and zero the bubble gauge ✓ and then turn the wheel 20° out to check the castor reading ✓	(2)
	5.4.2	Wheel balancer: To balance the wheels of a vehicle \checkmark for static and dynamic balance. \checkmark	(2)
	5.4.3	Optical alignment tool: To check the toe-in \checkmark and toe-out of a vehicle \checkmark	(2) [23]

Copyright reserved

Please turn over

6

Down	load m	ore resources like this on EC		
(EC/SEP	TEMBER 2020	MECHANICAL TECHNOLOGY: AUTOMOTIV	<u>E</u>	7
QUE	STION 6:	ENGINES (SPECIFIC)		
6.1	• The a	of vibration: action of unbalance forces upon the shaft ✓ wisting effects of the power stroke ✓		(2)
6.2	Fric	of vibration damper: tion face-type ✓ nbined rubber and friction disc ✓		(2)
6.3	In-built 6.3.1	engine balance features: Crankshafts are carefully balanced with webs drilled to form balance mass piece at points connecting rods. ✓✓		(2)
	6.3.2	Connecting rods and pistons are kept as light reduce reciprocating forces. $\checkmark\checkmark$	as possible to	(2)
	6.3.3	Flywheels are carefully balanced and are usual crankshaft flange in one position only. $\checkmark\checkmark$	ly fitted to the	(2)
6.4	NunPosEngFirir	that determine engine configuration: nber of cylinders ✓ ition of cylinders ✓ ine layout ✓ ng order ✓ ine location and mounting ✓	(Any 3 x 1)	(3)
6.5	In-liV-ty	of engine configuration: ne engine ✓ pe engine ✓ izontally opposed engine ✓	(Any 2 x 1)	(2)
6.6		cation of an engine configuration: nkshaft of a V-engine ✓		(1)
6.7	• The	that determine the firing order: position of the crank on the crankshaft ✓ arrangement of the cams on the camshaft ✓		(2)
6.8	-	order of a 5-cylinder in-line engine: DR 13542 ✓		(1)
6.9	A - Turk B - Turk C - Turk D - Con E - Con	harger internal components: bine exhaust gas outlet ✓ bine wheel OR impeller ✓ bine exhaust gas inlet ✓ npressor air discharge ✓ npressor ✓ npressor air inlet ✓		(6)

6.10 **Disadvantages of a turbocharger:**

- It can have lag problems. ✓
- It tends to heat up the air, reducing density. \checkmark
- Some require shut-down process. ✓
- It requires pressure lubrication for high speed bearings. ✓
- Its lubricant must be air cooled. \checkmark
- Over-revving must be controlled by waste gate. ✓

(Any 3 x 1) (3)

[28]

(2)

(6)

QUESTION 7: FORCES (SPECIFIC)

7.1 **Compression ratio:**

The compression ratio of an internal combustion engine is the ratio of compression of the inlet charge during the compression stroke \checkmark to the total volume of the cylinder. \checkmark

7.2 Compression ratio: Swept volume:

Swept volume =
$$\frac{\prod D^2}{4}L$$

= $\frac{\prod (9.0^2)}{4} \times 11$
= 700 cm³

Compression ratio = $\frac{SV+CV}{CV}$ = $\frac{700+70}{70}$ \checkmark 11:1 \checkmark

7.3 New compression ratio:

Swept volume =
$$\frac{\prod(9,61^2)}{4} \times 11$$

= 797,865 cm³
Compression ration = $\frac{797,865 + 70}{70}$

$$=12,4:1$$
 (4) (4)

7.4 Methods used in raising compression ratio:

- Remove shims between the cylinder block and cylinder head. \checkmark
- Fit thinner cylinder head gasket. ✓
- Machine metal from cylinder head. ✓
- Skim metal from cylinder block. ✓
- Fit piston with higher crown. ✓
- Fit crankshaft with longer stroke. ✓
- Increase the bore of the cylinders. ✓ (Any 4 x 1) (4)

Copyright reserved

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

(EC/SEPTEMBER 2020) MECHANICAL TECHNOLOGY: AUTOMOTIVE

7.5 Indicated power:

Indicated power is a measure to determine the total power developed by the burning of fuel in the combustion chamber of an internal combustion engine. $\checkmark \checkmark$

(2)

9

7.6 **Power calculations:**

7.6.1 Indicated power = $P \times L \times A \times N \times n$

$$L = \frac{86}{1000} = 0,086 \text{ m }\checkmark$$

$$A = -\frac{\pi D^2}{4}$$

$$=\frac{\pi\times 0,09^2}{4} \checkmark$$

=6,36 × 10⁻³ m² ✓

$$N = \frac{4200}{60 \times 2} \checkmark$$
$$= 35 \text{ f/s} \checkmark$$

N = 4 cylinders

Indicated power = $1200000 \times 0,086 \times 6,36 \times 10^{-3} \times 35 \times 4\sqrt{}$

7.6.2 Brake power = $2 \pi NT$ $N = \frac{4200}{60}$ $70 r/s \checkmark$ = $2 \times \pi \times 70 \times 180 \checkmark$ = 211115,03 W = 79168,13 W = 79,2 kW \checkmark

(3)

(2)

7.6.3 Mechanical efficiency = $\frac{BP}{IP} \times 100\%$

$$= \frac{79,2}{92} \times 100\% \quad \checkmark$$

= 82,5% \checkmark

7.7 **Term definition:**

It is the percentage energy that an engine puts out due to mechanical losses as compared to the ideal engine power. $\checkmark\checkmark$ (2) [32]

Down]	load	more	resources	s like	this	on	ECOLE	BOOKS.CON	1	
(EC/SEPT	EMBER 2	2020)	MECHANICA	L TECHNO	LOGY: AU	томс	DTIVE		11	
QUES	STION	8: MAIN	TENANCE (SP	ECIFIC)						
8.1	Reas 8.1.1	 Too Ign Diri Imp Fau Nor 	nigh CO (carbo o rich mixture ✓ ition misfire ✓ ay or restricted a proper operation ulty thermostat n-functioning P alytic converted	air filter ✓ n of the fu or coolant VC valve s	el deliver sensor ✓ system ✓	y sys	tem √	(Any 3x1)	(3)
	8.1.2	ResChoRej	ctive measure set fuel mixture eck for misfire a place air filter. eck and correct	s. ✓ and repair. ∕		m. √		(Any 3 x 1)		(3)
	8.1.3	Gases • CO • SO • NO • HC • O ₂	2 ✓ ✓ ✓					(Any 3 x 1)	(3)
8.2	•	der leak Vet test ✓	age testing:	Écol	eBooks					(1)
8.3	Cylin 8.3.1		age and cause ge inlet valve ✓							(1)
	8.3.2	Blown	cylinder head	gasket or o	cracked o	cylind	er block ✓			(1)
	8.3.3	Piston	rings are worn	\checkmark						(1)
8.4	 Oil Oil Oil Oil 	l pressure pressure	esting: when the eng when the eng when the eng on high revolu	ine is cold ine is hot.	. ✓					(4)

8.5 Causes of low fuel pressure reading: Faulty fuel pump ✓ • Blocked or restricted fuel filter ✓ • Cracked or restricted fuel line ✓ • Clogged pump inlet strainer ✓ • Low voltage to fuel pump ✓ Faulty fuel pressure regulator ✓ • Faulty fuel pump relay ✓ • Empty fuel tank ✓ (Any 3 x 1) (3) 8.6 Cooling system pressure testing: • Water hoses ✓ • Water pump ✓ Radiator ✓ Corroded core plugs ✓ Interior heater radiator ✓ • Faulty radiator cap ✓ (Any 3 x 1) (3) [23]

<u>12</u>

DOMUTC	ad more resources like this on ECOLEBOOKS.COM	
(EC/SEPTER	BER 2020) MECHANICAL TECHNOLOGY: AUTOMOTIVE 13	<u>}</u>
QUEST	ON 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)	
Г	urpose of automatic gearbox: b relieve the driver of clutch and gearshift operation \checkmark , thereby allowing e driver to concentrate on driving the vehicle \checkmark (a)	(2)
9.2 A • •	dvantages of an automatic gearbox It reduces driving fatigue. ✓ It ensures reduction of wheel spin under bad road condition. ✓ The vehicle can be stopped suddenly without the engine stalling ✓ The system puts a damper on/muffles all engine vibrations. ✓ (Any 3 x 1)	(3)
	orque converter: 3.1 Torque converter ✓ ((1)
g	 3.2 Parts A - One-way clutch ✓ B - Turbine ✓ C - Pump ✓ D - Turbine shaft ✓ E - Gearbox housing ✓ 	(5)
g	 3.3 Torque converter functions: Transfers engine torque to the transmission. ✓ Multiplies the engine torque. ✓ Provides a direct drive from engine to transmission. ✓ It muffles/puts a damper on all engine vibrations. ✓ It acts as flywheel. ✓ (Any 3 x1) (4) 	(3)
ç	 Function of parts: It sets the fluid in motion at high pressure to the turbine, ✓ thereby causing the turbine to rotate with great torque. ✓ 	(2)
A	orque multiplication: s the car speed increases, ✓ the torque multiplication tapers off adually. ✓ [18]	(2) 8]

(EC/SEPTEMBER 2020)

(Any 4 x 1)

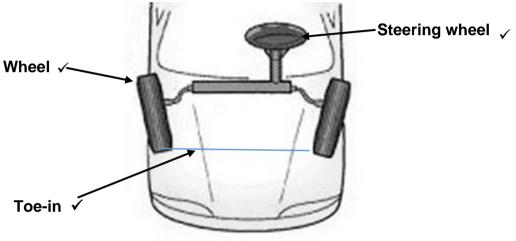
QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRONICS) (SPECIFIC)

10.1 **Properties of a good steering mechanism:**

- Light and easy to control ✓
- Free from vibration and road shocks ✓
- Self-centring ✓
- Able to operate effectively under the influence of the suspension and braking system ✓
- It must be as direct as possible to reduce too much driver's attention. ✓

(4)

(4)


(2)

(2)

(2)

10.2

Toe-in

FRONT

10.3 Alignments:

10.3.1 **Caster angle:**

It gives self-centring action to the steering \checkmark thereby keeping the wheels in straight ahead position. \checkmark

10.3.2 Ackermann principle:

To avoid the need for tyres to slip sideways \checkmark when following the path around a curve. \checkmark

10.3.3 King pin inclination:

To bring the front wheel back to the straight ahead position \checkmark after rounding a corner without any driver effort. \checkmark

14

Downl	load more resources like this on ECOLEBOOKS.COM	
(EC/SEPT	TEMBER 2020) MECHANICAL TECHNOLOGY: AUTOMOTIVE	<u>15</u>
10.4	Camber: 10.4.1 Positive camber. \checkmark 10.4.2 A – Tyre \checkmark B – Vertical line \checkmark C – Centre line \checkmark D – Positive camber angle \checkmark E – Lower control arm \checkmark F – Road surface \checkmark	(1)
	 10.4.3 Positive camber angle is the outward tilt ✓ of a front wheel away from The vehicle when viewed from the front. ✓ 	(0)
10.5	 Factors to be taken into account before attempting alignment adjustment: Kerb mass must be checked against the manufacturer's specifications ✓ Uneven wear on tyres ✓ Tyre pressure ✓ Run-out on wheels ✓ Kingpins and bushes ✓ Suspension ball joints for wears ✓ Suspension bushes for excessive free movements ✓ Tie-rod ends ✓ Sagged springs ✓ Ineffective shock absorbers ✓ Spring U-bolts ✓ Chassis for possible cracks ✓ Wheel must be balanced ✓ Wheel alignment specifications ✓ Drive shaft CV-joints ✓ 	(5)
10.6	Purpose of wheel balancing: To avoid shimming and bouncing of wheel assembly which can cause wearing of the steering mechanism and suspension parts. $\checkmark \checkmark$	(3)
10.7	 Wheel balancing: Static balance ✓ Dynamic balance ✓ 	(2) [32]
	TOTAL:	200