Download more resources like this on ECOLEBOOKS.COM

NATIONAL SENIOR CERTIFICATE

GRADE 12

SEPTEMBER 2021

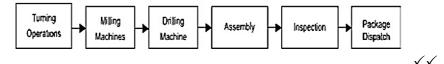
MECHANICAL TECHNOLOGY: WELDING AND METALWORK MARKING GUIDELINE

MARKS: 200

This marking guideline consists of 13 pages.

SECTION A: COMPULSORY

QUESTION 1: MULTIPLE-CHOICE QUESTIONS


- 1.1 C√
- 1.2 D√
- 1.3 D√
- 1.4 A ✓ 1.5 B ✓
- 1.3 DV 1.6 D /
- 1.6 B√

QUESTION 2: SAFETY (GENERIC)

2.1 Safety precautions

- Pressure gauges must be checked and tested regularly and adjusted or replaced if any malfunctioning occurs. ✓
- Supporting pins that keep the platform at a desired height on the frame must be inspected for damage. ✓
- Check the floor for oil and apparatus for leaks.
- The platform on which the workpiece rests must be rigid and square with the press cylinder. (Any 2 x 1) (2)

2.2 **Product Layout**

2.3 **Perspex shield** is installed to shield flying objects hurting the operator's eye. \checkmark (1)

- 2.4 2.4.1 Identification of machine Surface grinder √
 - 2.4.2 Labels for parts of a surface grinder
 - A Workpiece ✓
 - B Machine spindle \checkmark
 - C Magnetic table \checkmark
 - D Grinding wheel \checkmark (4 x 1) (4) [10]

2

(6 x 1) **[6]**

(2)

(1)

Copyright reserved

(EC/SEPTEMBER 2021) MECHANICAL TECHNOLOGY (WELDING AND METALWORK)

QUESTION 3: MATERIALS (GENERICS)

3.1 Heat treatment refers to heating and cooling of metals under controlled conditions in their solid state so as to change their properties. \checkmark

(2)

3.2 HEAT TREATMENT PROCESS

		PROCESS	PROPERTY	
	3.2.1	Hardening	Very hard, maximum tensile and brittle	e√
	3.2.2	Tempering	Ductile ✓	
	3.2.3	Annealing	Soft and ductile. ✓	
	3.2.4	Normalising	Tough and machinable. ✓	
			(4	(4) (4)
3.3	It hardIt prov	for case hardening: lens the surface. ✓ ides a wear resistant sur othens core to withstand		x 1) (2)
	• Oneng			× 1) (2)
3.4	Carbon e Steel with process.	n low carbon content √w	ill not respond very much to the harden	ing (2)
3.5	Bend tFilling	test	naterials ✓ coleBooks (Any 2	x 1) (2)
3.6	 To rel proces To sof To matical 	sses. √	that may have been set up during c machining processes. ✓	other
		e brittleness.	(Any 2	x 1) (2) [14]

QUESTION 4 MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

- 4.1 D√
- 4.2 C ✓
- 4.3 B √
- 4.4 D√
- 4.5 A √
- 4.6 C ✓
- 4.7 B ✓ 4.8 B ✓
- 4.0 D V 4.9 A √
- 4.10 B√
- 4.11 D√
- 4.12 D√
- 4.13 B√
- 4.14 D√

(14 x 1) **[14]**

3

QUESTION 5: MATERIALS TEMPLATES – ROLLING AND BENDING

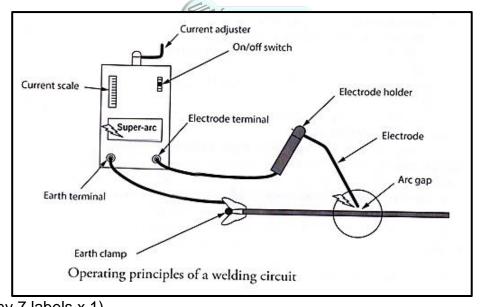
MECHANICAL TECHNOLOGY (WELDING AND METALWORK) (EC/SEPTEMBER 2021)

5.1	 Purpose of purlins in roof trusses: Purlins are fastened to the roof trusses ✓ to attach the roof covering. ✓ 	
5.2	 Reason why stiffeners are used in beams. To strengthen the web of the beam. ✓ 	(1)
5.3	 The use of strip templates: They are used for longer sections of angle iron to mark off holes to be drilled. ✓ 	(1)
5.4	 What does templates indicate? The correct form and measurements of the project ✓ The type of material to be used. (thickness and size) ✓ Job number Drawing number The number of components required This side up or other side up markings Coloured or shaped markings to denote hole diameters (Any 2 x 1) 	(2)
5.5	 Labels of roof truss: A – Purlin ✓ B – Rafter ✓ C – Tie beam ✓ D – Shoe plate ✓ E – Inclined toe ✓ 	(5)
5.6	Sketches:	
	5.6.1	(3)
		(3)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

4

Download more resources like this on ECOLEBOOKS.COM	
(EC/SEPTEMBER 2021) MECHANICAL TECHNOLOGY (WELDING AND METALWORK)	<u>5</u>
5.7 Calculations:	
Mean diameter = 220 + 220 + 12 \div 2 \checkmark	
= 452 ÷ 2	
= 226 mm ✓	(2)
Circumference = 3,142 x 226 mm	
= 710,09 mm ✓	(1)
Length required for 2 straight pieces = 66 mm + 66 mm	
= 132 mm ✓	
Length of material for 1 clamp = $710,09$ mm + 132 mm	
= 842,309 mm ✓	
Length of material for 20 clamps = 842,309 mm x 20	
= 16 841 mm ✓	(3) [23]



QUESTION 6: TOOLS

6.1	 TWO different types of tap wrenches: T-handle or double handle OR ✓ Adjustable wrenches ✓ 		(2)
6.2	 Uses of bench grinders: Grinding off excess material ✓ Cleaning surfaces with a wire wheel ✓ Polishing or buffing 	(Any 2 x 1)	(2)
6.3	 Purpose of a powersaw: It is used to rough cut large sections of metal. ✓ 		(1)
6.4	 Determine the drilling speed of a pedestal drilling machine: Slower speed – for large diameters ✓ Faster speed – for small diameter holes. ✓ 		(2)
6.5	 Reasons why guillotines have material thickness cutting limit To preserve the shearing blades. ✓ 	ts:	

Thicker or harder material will chip the brittle blade and result in poor future cuts or jamming of the guillotine. ✓
 (2)

6.6 Sketch of basic AC arc welding machine:

(Any 7 labels x 1)

(7)

(2) [**18**]

6.7 The use of shielding gas in MIG welding:

• MIG welding machines use a shielding gas to protect the weld pool ✓ from atmospheric gases. ✓

Copyright reserved

QUESTION 7: FORCES

7.1	7.1.1	 Stress This is an internal force in material resisting a load. √√ 	(2)
	7.1.2	 Strain This is the measurement of the deformation produced by the external forces and is determined by the ratio between deformation and original length. 	(2)
	7.1.3	 Safety factor This is the maximum number of times with which the maximum stress is decreased to obtain a safe stress. √√ 	(2)

7.2 7.2.1 The stress in the material:

$$Stress = \frac{Load}{Area}$$
but Area = $\frac{\pi d^2}{4}$

$$= \frac{\pi \times (0,05)^2}{4} \checkmark$$

$$1,964 \times 10^{-3} \text{ m}^2 \checkmark$$

$$Stress = \frac{50 \times 10^3}{1,964 \times 10^{-3}} \checkmark$$

$$= 25,46 \times 10^6 \text{ Pa}$$

$$= 25,46 \text{ MPa} \checkmark \qquad (4)$$

7.2.2 The strain if the final length of the bar is 3,00 m.

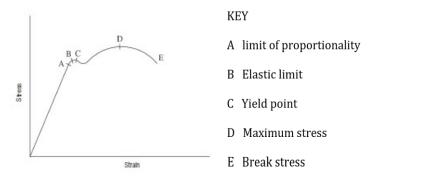
$$Strain = \frac{\Delta L}{OL}$$

$$but$$
Final length = OL + ΔL

$$\Delta L = final length - OL \qquad \checkmark$$

$$= 3,005 - 3$$

$$= 0,005 m \qquad \checkmark$$


$$Strain = \frac{0,005}{3}$$

$$= 1,67 \times 10^{-3} \qquad \checkmark$$
(3)

7

(EC/SEPTEMBER 2021)

7.3 Labelled sketch of the stress strain graph.

(Each label x 1)

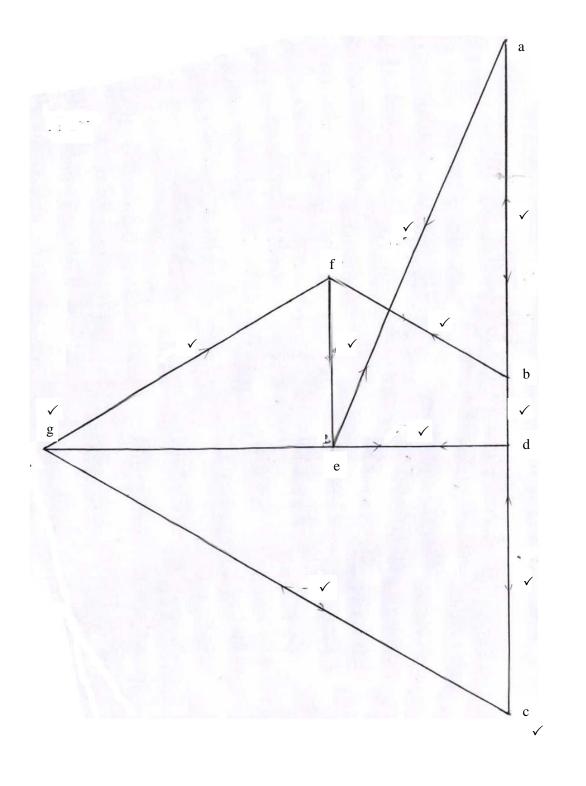
(7)

7.4 7.4.1 Calculate the reactions at the supports LR and RR

CALCULATING REACTIONS

Take moments about RR LR x 13 = $(50 \times 5 \times 10,5) + (400 \times 8) + (600 \times 3) \checkmark$ = 2 625 + 3 200 + 1 800 \checkmark LR = 586,5 N \checkmark Take moments about LR RR x 13 = $(600 \times 10) + (400 \times 5) + (50 \times 5 \times 2,5) \checkmark$ = $6000 + 2000 + 625 \checkmark$ RR = 663,5 N \checkmark (6)

7.4.2 Calculate the BM at each point of the beam A, B, C and D.


BENDING MOMENTS BMA: = 586,5 x 0 = 0 Nm \checkmark BMB: = (586,5 x 5) - (250 x 2,5) = 2307,5 Nm \checkmark BMC: = (586,5 x 10) - (250 x 7,5) - (400 x 5) = 1 990 Nm \checkmark BMD: = (586,5 x 13) - (250 x 10,5) - (400 x 8) - (600 x 3) = 0 m \checkmark (4)

7.4.3 Calculate the shear force at A, B, C and D.

SHEAR FORCE SFA: 586,5 N \checkmark SFB: 586,5 - 250 = 336,5 N \checkmark SFC: 586,5 - 250 - 400 = -64,5 N \checkmark SFD: 586,5 - 250 - 400 - 600 = -663,5 N \checkmark (4)

Copyright reserved

7.5 Vector diagram: Scale 10 mm = 1 N

(11) **[45]**

QUESTION 8: JOINING METHODS (INSPECTION OF WELDS)

8.1	 Internal defects - Nickbreak test: Slag inclusion ✓ Porosity ✓ Lack of fusion ✓ Oxidised metal Burned metal 	(Any 3 x 1)	(3)
8.2	 Visual requirements for an acceptable weld: Shape of the profile ✓ Uniformity of the surface ✓ Overlap ✓ Free from any external defects Penetration bead 		
	Root groove	(Any 3 x 1)	(3)
8.3	 Elements during the visual inspection in welding: Shape of profile ✓ Uniformity of the surface ✓ Overlap ✓ Undercutting Penetration bead Root groove Performing an X-ray test on a welded joint:	(Any 3 x 1)	(3)
	 The X-ray or gamma ray source is placed in front of the objetested. ✓ Once the tester is standing behind lead shields and far away harmful exposure, the source is activated for a brief moment X-rays penetrate the test piece. ✓ As they pass through the areas of lower density (air pockets, inclusions) the rays expose the film as lighter on the negative welding defect. ✓ Photographic films are useful because they provide a permather shadow which can be carefully studied. ✓ 	from possible ✓ and the cracks or e, indicating a	(5)
8.5	 Factors that determine the current setting in arc welding. Base metal type ✓ 		

- Base metal thickness ✓
- Electrode thickness ✓

<u>10</u>

(3 x 1) (3)

Downl	oad more resources like this on ECOLEBOOKS.COM	
(EC/SEP	TEMBER 2021) MECHANICAL TECHNOLOGY (WELDING AND METALWORK)	<u>11</u>
8.6	 Factors that should be considered during oxyacetylene welding to ensure quality welding: Correct flame for the work at hand ✓ Correct angle of welding torch and rod ✓ Depth of fusion ✓ The welding rate (Any 3 x 1) 	(3)
8.7	 Preventative measures for porosity during MIG welding: Cleaning the welding surface. ✓ Avoid rust in MIG wire electrode. ✓ Ensure that supply of shielding gas is not interrupted. ✓ Avoid welding in windy condition. (Any 3 x 1) 	(3) [23]
QUE	STION 9: JOINING METHODS (STRESSES AND DISTORTION)	
9.1	 Methods used to reduce distortion: Do not over-weld ✓ Apply intermittent welding ✓ Place welds near the neutral axis ✓ Use as few passes as possible ✓ Use back-step welding ✓ Anticipate the shrinkage forces Plan the welding sequence Use strongbacks Use clamps, jigs and fixtures ÉcoleBooks (Any 5 x 1) 	(5)
9.2	 Ose clamps, jigs and lixtues (Ally 5 × 1) Distortion on a welded joint: Weld distortion is the warping of the base plate ✓ caused by heat from the welding arc/flame. ✓ 	(3)
9.3	 The meaning of shrinkage in a welded joint: Shrinkage is a form of plastic deformation ✓ where the metal has deformed because of contraction on cooling. ✓ 	(2)
9.4	The iron-carbon equilibrium diagram labels: A – Ferrite and pearlite ✓ B – Ferrite and austenite ✓ C – Austenite ✓ D – Cementite and austenite ✓ E – Pearlite and cementite ✓ 	(5)
9.5	 The factors that affect the grain size of steel when it is being cold worked: The prior amount of cold work. ✓ The temperature and time of the annealing process. ✓ The composition ✓ The melting point ✓ 	(4) [18]

QUESTION 10: MAINTENANCE

10.1 Tagging plates have multiple holes:

 It has multiple holes ✓ so that more than one technician can lock out the machine simultaneously. ✓

10.2 General maintenance guidelines for a pedestal drilling machine:

- Visual checks of electrical wiring, switches, etc. \checkmark
- Verify that all guards are secure and function correctly \checkmark
- Ensure workspace is clear and without hindrances.
- Confirm availability and conditions of PPE
- Lubricate moving parts.
- Use moisture-penetrating oil spray to prevent rust.
- Check the availability of specific tools.
- Check the run-out of the spindle.
- Inspect belts for wear and tear.
- Ensure the drive belt is correctly tensioned.
- Check the condition of the rack and pinion mechanisms and lubricate.
- Ensure cuttings are removed.
- Inspect the Morse taper sleeves for burrs/scratches. (Any 2 x 1) (2)

10.3 Reasons for the maintenance of machines in the welding workshop:

- Promote cost saving. ✓
- Improves safety. ✓
- Increases equipment efficiency ole Books
- Fewer equipment failure.
- Improves reliability of equipment. (Any 2 x 1) (2)

10.4 Methods to reduce friction when drilling holes:

- By reducing both drill speed and feed speed. \checkmark
- By applying lubrication. (cutting fluid) \checkmark

(2) **[8]**

(2)

(EC/SEPTEMBER 2021) MECHANICAL TECHNOLOGY (WELDING AND METALWORK)

QUESTION 11: TERMINOLOGY (DEVELOPMENT)

Calculations:

11.1
$$1-2 = \frac{\pi x D}{12} \checkmark$$

 $= \frac{3.142 \times 72}{12} \checkmark$
 $1-2 = 18,849 \checkmark$
 $1-2 = 2-3 = 3-4 = 18,849 \checkmark$ (4)
11.2 $1-X = \sqrt{(0X-R)^2} \checkmark + Vertical height^2 \checkmark$
 $= \sqrt{(45-36)^2} + 50^2 \checkmark$
 $= 50,8 \checkmark$ (4)
11.3 $1-a = \sqrt{(1-x)^2} \checkmark + (a-x)^2 \checkmark + Vertical height^2 \checkmark$
 $= \sqrt{(9)^2} + 45^2 + 50^2 \checkmark$
 $= 67,868 \checkmark$ (5)
11.4 $2-a = \sqrt{(o-x) - R \cos 30^{o})^2} \checkmark$
 $= \sqrt{(45-36 \cos 30^{o})^2} + [(a-x) - R \sin 30^o] + height^2$
 $= \sqrt{(45-36 \cos 30^o)^2} + [(a-x) - R \sin 30^o] + height^2$
 $= \sqrt{(13,823^2} + 27^2 + 50^2 \checkmark$
 $= 58,481 \checkmark$ (6)
11.5 $a - x = 90 \div 2 \checkmark$
 $= 45 \checkmark$ (2)

<u>13</u>