

GRADE 12

MATHEMATICS

Date: 13 April 2021

Time: 2 hours Marks: 100

Instructions:

Read the following instructions carefully before answering the questions.

- This question paper consists of 7 questions in Section A and one question in Section B
- Answer ALL the questions in **SECTION A** and **SECTION B** is optional.
- Clearly show ALL calculations, diagrams, graphs, etc. that you have used in determining your answers.
- o Answers only will not necessarily be awarded full marks.
- You may use an approved scientific calculator (non-programmable and non-graphical), unless stated otherwise.
- o If necessary, round off answers to TWO decimal places, unless stated otherwise.

- An information sheet, with formulae, is included at the end of the question paper.
- THE diagram sheet that is included at the end of the paper must be handed in with your test, with construction lines added to the diagrams where necessary.
- Number the answers correctly according to the numbering system used in this question paper.
- o Write legibly and present your work neatly.

QUESTION 1

Given the sequence -5; 4; 21; 46;

- 1.1 Determine the general term of the above sequence. (4)
- Determine T₁₅ 1.2 (1)
- 1.3 Which term in the sequence will be equal to 364? (3)

[8]

QUESTION 2

- $2.1 \qquad \sum_{i=2}^{m} 32(2)^{5-i} < 500$
 - 2.1.1 Determine the value of m for which the above-mentioned statement is true, by using the correct sum formula. (4)
 - 2.1.2 Determine the value for $S_{\infty} S_4$ (3)

QUESTION 3

2x; x+1; 6-x; . . . are the first three (3) terms of an arithmetic sequence.

- 3.1 Determine the value for x. (2)
- 3.2 If x = 4, how many terms in the sequence add up to -575. (4)

[6]

QUESTION 4

The sum of the first *n* terms of a series is given by : $S_n = \frac{n}{8}(14-4n)$

- 4.1 Determine the sum of the first 25 terms of this series. (1)
- 4.2 Determine the value of term 25. (3)
- 4.3 Determine the general term of the series (5)

[9]

5.1 If $\cos 26^{\circ} = q$, write the following in terms of p:

$$5.1.1 \cos 334^{\circ}$$
 (1)

$$5.1.2 \sin 52^{\circ}$$
 (3)

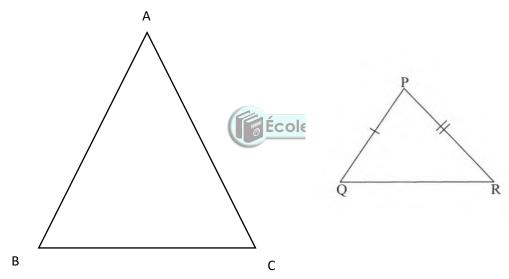
$$5.1.3 \sin 86^{\circ}$$
 (2)

[6]

Question 6

6.1 Given in the diagram below $\triangle ABC$ and $\triangle PQR$ with

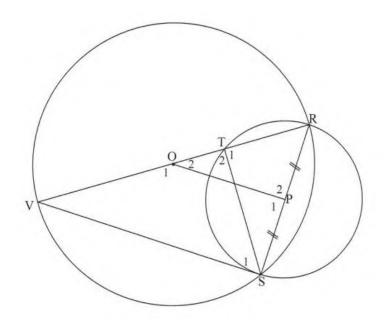
$$\hat{A} = \hat{P}$$
, $\hat{B} = \hat{Q}$ and $\hat{C} = \hat{R}$.



Prove the theorem that states that if $\triangle ABC \parallel \mid \triangle PQR$ then $\frac{AB}{PQ} = \frac{AC}{PR}$. (6)

Download more resources like this on ECOLEBOOKS.COM 13 April 2021 On ECOLEBOOKS.COM Term 1 To 6.2 Given in the diagram below, VR is the diameter of the circle with centre O.

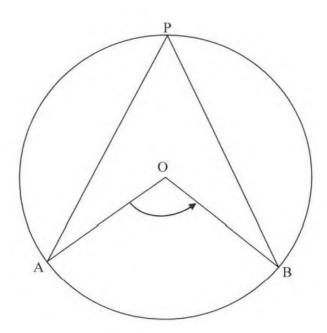
S is a point on the circumference. P is the midpoint of RS. The circle with RS as diameter intersects VR at T. ST, OP and SV are drawn.



- 6.2.1 Give a reason why $OP \perp RS$. (1)
- 6.2.2 Prove that $\Delta ROP ||| \Delta RVS$. (4)
- 6.2.3 Prove that $\Delta RVS \parallel \Delta RST$. (3)
- 6.2.4 Prove that $ST^2 = VI$. TR ÉcoleBooks (5)

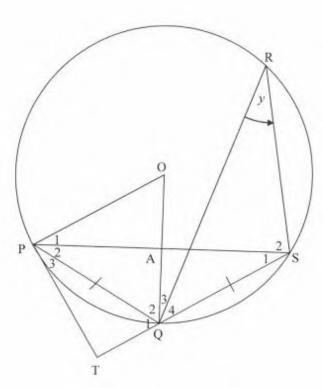
[19]

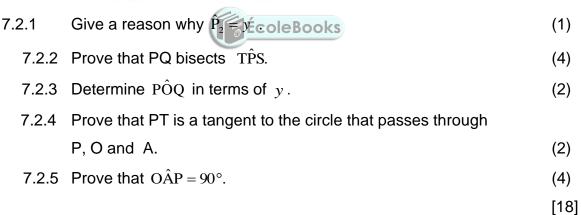
- 7.1 In the diagram below, O is the centre of the circle and P is a point on the circumference of the circle. Arc AB subtends AÔB at the centre of the circle and APB at the circumference of the circle.
 - Use the diagram to prove the theorem that states that $A\hat{O}B = 2A\hat{P}B$ (5)



Download more resources like this on ECOLEBOOKS.COM Term 1 Tes 7.2 In the diagram, O is the centre of the circle and P, Q, S and R are

points on the circle. PQ = QS and $Q\hat{R}S = y$. The tangent PT at P meets SQ produced at T. OQ intercepts PS at A.





Total Section A: 73 marks

SECTION B: OPTIONAL

QUESTION 8

8.1 Calculate the following without using calculator:

81.1
$$\sin 236^{\circ} \cdot \cos 169^{\circ} + \sin 371 \cdot \cos(-124^{\circ})$$
 (4)

8.1.2
$$\frac{-\cos 10^{\circ} + \sin^{2} 190^{\circ}}{\cos (-145^{\circ}).\cos 235^{\circ}}$$
 (6)

8.2 Prove the following identities:

8.2.1
$$\frac{\cos 2A + \sin A}{\cos^2 A} = \frac{2\sin A + 1}{1 + \sin A}$$
 (5)

8.2.2
$$\frac{\sin(x+45^\circ)}{\cos(x-45^\circ)} = \frac{\sin 2x+1}{(\sin x + \cos x)^2}$$
 (6)

8.3 Determine the general solution for:

8.3.3
$$2\sin(3x-15^\circ)+1=0$$
 (4)

8.3.4 Hence determine all possible values for x,

If
$$x \in [-270^\circ; 90^\circ]$$
 (2)

[27]

Total Section B: 27 marks

Download more resources like this on ECOLEBOOKS.COM 13 April 2021 Ownloaded from Stanmore on Torm 1 Te INFORMATION SHEET: MATHEMATICS

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$A = P(1+ni)$$
 $A = P(1-ni)$ $A = P(1-i)^n$

$$A = P(1-ni)$$

$$A = P(1-i)^n$$

$$A = P(1+i)^n$$

$$T_n = a + (n-1)d$$

$$T_n = a + (n-1)d$$
 $S_n = \frac{n}{2}(2a + (n-1)d)$

$$T_n = ar^{n-1}$$

$$S_n = \frac{a(r^n - 1)}{r - 1} \quad ; r \neq 1$$

$$S_{\infty} = \frac{a}{1-r}$$
; $-1 < r < 1$

$$F = \frac{x[(1+i)^n - 1]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{i}$$

$$P = \frac{x[1 - (1+i)^{-n}]}{x}$$

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \qquad \text{M}\left(\frac{x_1 + x_2}{2}; \frac{y_1 + y_2}{2}\right)$$

$$M\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$$

$$y = mx + c$$

$$y - y_1 = m(x - x_1)$$

$$y - y_1 = m(x - x_1)$$
 $m = \frac{y_2 - y_1}{x_2 - x_1}$

$$m = \tan \theta$$

$$(x-a)^2 + (y-b)^2 = r^2$$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

 $\sin(\alpha + \beta) = \sin \alpha . \cos \beta + \cos \alpha . \sin \beta$

$$\cos(\alpha + \beta) = \cos \alpha \cdot \cos \beta - \sin \alpha \cdot \sin \beta$$

In
$$\triangle ABC$$
: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc.\cos A$ $area \triangle ABC = \frac{1}{2}ab.\sin C$

$$area \, \Delta ABC = \frac{1}{2} ab. \sin C$$

 $\sin(\alpha - \beta) = \sin \alpha . \cos \beta - \cos \alpha . \sin \beta$

$$\cos(\alpha - \beta) = \cos\alpha \cdot \cos\beta + \sin\alpha \cdot \sin\beta$$

$$\cos 2\alpha = \begin{cases} \cos^2 \alpha - \sin^2 \alpha \\ 1 - 2\sin^2 \alpha \\ 2\cos^2 \alpha - 1 \end{cases}$$

$$\sin 2\alpha = 2\sin \alpha . \cos \alpha$$

$$\bar{x} = \frac{\sum fx}{n}$$

$$\sigma^2 = \frac{\sum_{i=1}^n \left(x_i - \overline{x}\right)^2}{n}$$

$$P(A) = \frac{n(A)}{n(S)}$$

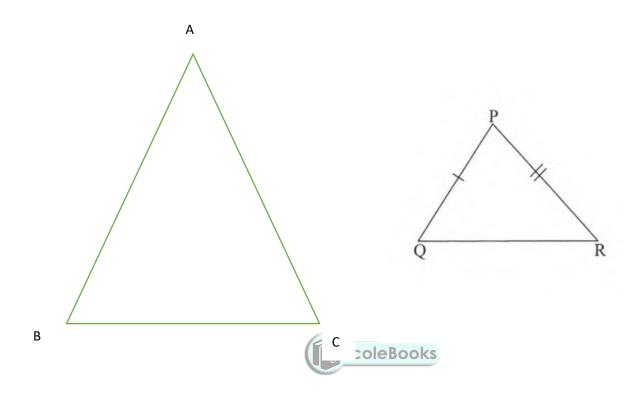
$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

$$\hat{y} = a + bx$$

$$b = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

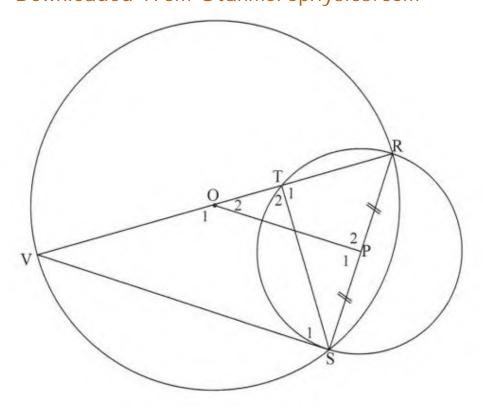
Question 6

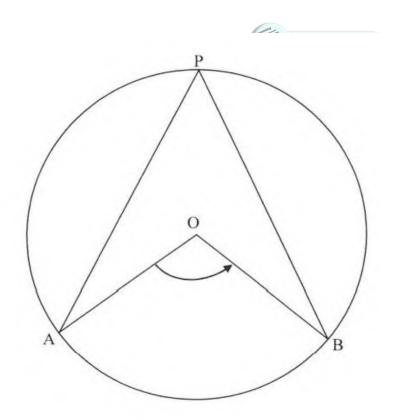
6.1

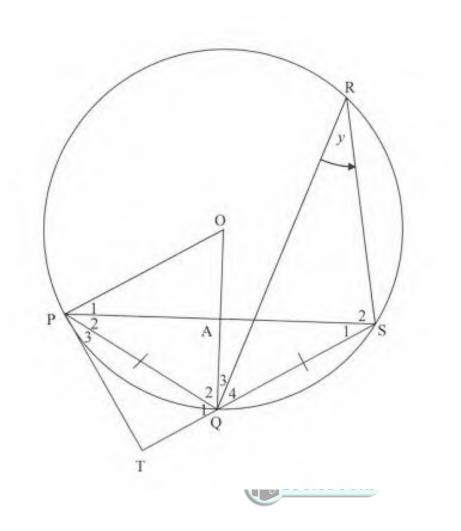


6.2

Download more resources like this on ECOLEBOOKS.COM 13 April 2021 Downloaded from Stanmorephysics.com Term 1 Test 1







NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICS TEST

TERM 1

MARKING GUIDELINE
2021

Time: 1,5 hours Marks: 73 Section A

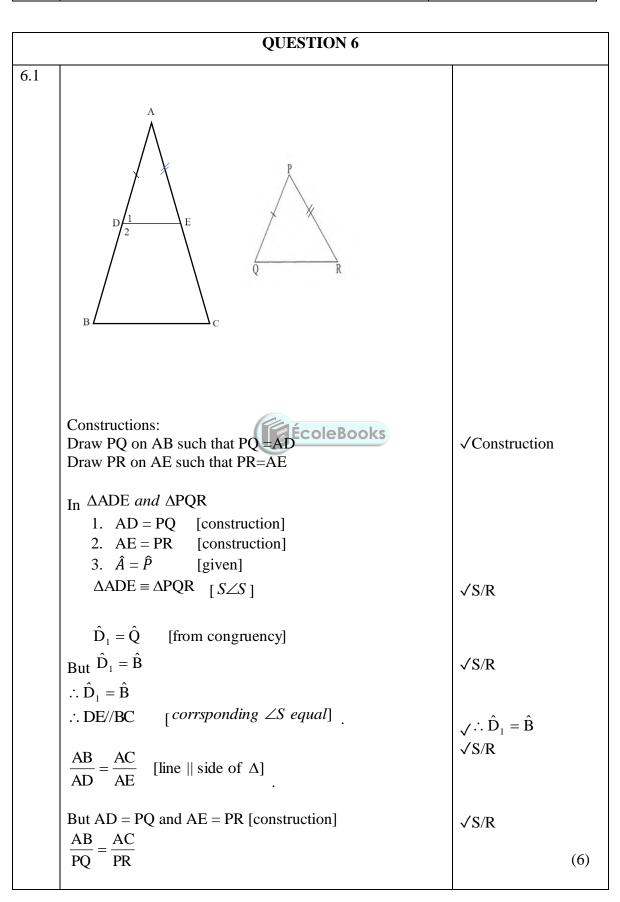
Time: 2 hours Marks: 100 Section A and B

		QUESTION 1	
1.1	-5; 4; 21; 46;		$\sqrt{a} = 4$ $\sqrt{b} = -3$ $\sqrt{c} = -6$ $\sqrt{T_n}$
	9 17 25		$\sqrt{b} = -3$
	8 8		
	2a=8		$\sqrt{c} = -6$
	$\therefore a=4$		$\int T_n$
	3a+b=9		
	3(4)+b=9		(4)
	$\therefore b = -3$		
	a+b+c=-5		
	4 - 3 + c = -5		
	$\therefore c = -6$		
	$T_n = 4n^2 - 3n - 6$		
1.2	$T_{(15)} = 4(15)^2 - 3(15) - 6$		\sqrt{answer} (1)
	=849		
1.3	$364 = 4n^2 - 3n - 6$	Car	$\sqrt{360} = 4n^2 - 3n - 6$
	$4n^2 - 3n - 370 = 0$	ÉcoleBooks	$\sqrt{n} = \frac{-37}{4}, \text{ NA}$
	(4n+37)(n-10)=0		
	$n = \frac{-37}{4}$ or $n = 10$		$\checkmark : n = 10$
	7		(2)
	$\therefore n = 10$		(3)
		OHECTION 2	[8]
2.1.1	m	QUESTION 2	(1 m)
	$\sum_{i=2}^{m} 32(2)^{5-i} < 500$		$256\left(1-\frac{1}{2}\right)$
	256+128+64+<500		$\frac{2}{1}$ < 500
			$1-\frac{1}{2}$
	$S_n = \frac{a(1-r^m)}{1-r}$		√ ∠ ∠
	$\begin{bmatrix} 25 & 1 \end{bmatrix}^m$		√correct use of logs
	$256\left(1-\frac{1}{2}\right)$		$\checkmark : m > 5.4$
	$\frac{(2)}{1}$ < 500		(m = 6
	$\frac{1-\overline{2}}{2}$		$\sqrt{m}=6$
	(, , ,		
	$512\left(1-\frac{1}{2}^{m}\right)$		(4)
	$\frac{312(1-\frac{1}{2})}{}$ < 500		
	1		

	$1 - \frac{1}{2}^{m} < \frac{125}{128}$	
	$\frac{1}{2}^m > \frac{3}{128}$	
	$m > \log_{\frac{1}{2}} \frac{3}{128}$ $m > 5.4$	
	$\therefore m = 6$	
2.1.2	$S_{\infty} - S_4 = \frac{a}{1 - r} - \frac{a(1 - r^n)}{1 - r}$ $256 \left(1 - \frac{1}{2}\right)$	
	$=\frac{256}{1-\frac{1}{2}} - \frac{256\left(1-\frac{1}{2}^{4}\right)}{1-\frac{1}{2}}$	$\int S_{\infty} - S_4$ $\int \text{substitution}$
	= 512-480 = 32	√answer (3)
	OHECTION 2	[7]
3.1	QUESTION 3 $2x; x+1; 6-x; \dots$	
	x+1-2x = 6-x-(x+1) $-+1 = -2x+5$ $x = 4$	$\sqrt{T_2 - T_1} = T_3 - T_2$ $\sqrt{\text{answer}} \qquad (2)$
3.2	8; 5; 2; $-575 = \frac{n}{2} [2(8) + (n-1)(-3)]$ $-1150 = n(19 - 3n)$ $3n^{2} - 19n - 1150 = 0$ $(3n + 50)(-23) = 0$ $n = 23 \text{ or } n \neq -\frac{50}{3}$	✓ substitution of S_n ✓ substitution of a and d ✓ standard form
		[6]

	QUESTION 4		
4.1	$S_{25} = \frac{25}{8} [14 - 4(25)]$	√answer	(1)
	$=-268\frac{3}{4}$		
4.2	$T_{25} = S_{25} - S_{24}$ $T_{25} = -268 \frac{3}{4} - \left(\frac{24}{8} [14 - 4(24)] = 22 \frac{3}{4}\right)$	√method √substitution √answer	(3)
4.3	$S_1 = T_1 = \frac{1}{8}[14 - 4(1)] = \frac{5}{4}$	$\checkmark S_1 = T_1 = \frac{5}{4}$	
	$T_2 = \frac{2}{8}[14 - 4(2)] - \frac{5}{4} = \frac{1}{4}$	$ \sqrt{T_2} = \frac{1}{4} $	
	$T_3 = \frac{3}{8}[14 - 4(3)] - \frac{3}{2} = -\frac{3}{4}$	$\int T_3 = -\frac{3}{4}$	
	5; 1; -3; $\rightarrow T_n = 9 - 4n$ $\frac{5}{4}$; $\frac{1}{4}$; $-\frac{3}{4}$; $\rightarrow T_n = \frac{9 - 4n}{4}$	$\sqrt{T_n} = 9 - 4n$	
	$\frac{3}{4}; \frac{1}{4}; -\frac{3}{4}; \rightarrow T_n = \frac{3}{4}$	$\int_{1}^{\infty} T_{n} = \frac{9 - 4n}{4}$	(5)
			[9]
	QUESTION 5		
5.1.1	$\cos 334^{\circ} = \cos (360^{\circ} - 26^{\circ})$ $= \cos 26^{\circ}$	√answer	(1)
<i>5</i> 1 0	= q		(1)
5.1.2	$ \frac{1}{q} $		
	$\sin 52^\circ = \sin 2(26^\circ)$	√diagram	
	$= 2\sin 26^{\circ}\cos 26^{\circ}$	√identity	
	$=2.\sqrt{1-q^2}(q)$		
	$=2q\sqrt{1-q^2}$	√answer	(3)
5.1.3	$\sin 86^{\circ} = \sin(60^{\circ} + 26^{\circ})$ = $\sin 60^{\circ} \cos 26^{\circ} + \cos 60^{\circ} \sin 26^{\circ}$	√identity	
	$= \frac{\sqrt{3}}{2}.q + \frac{1}{2}\sqrt{1 - q^2}$	√answer	(2)

	[6]



6.2.1	Line from centre to midpoint of chord	√Reason	(1)
6.2.2	In \triangle ROP and \triangle RVS		
	1. $\hat{R} = \hat{R}$ [common]	√S/R	
	2. $\hat{S}_1 = 90^{\circ}$ [angle in semi-circle] $\hat{P}_2 = 90^{\circ}$ (proven)	√R	
	$\hat{\mathbf{S}}_1 = \hat{\mathbf{P}}_2$	√S	
	3. $\hat{V} = \hat{O}_2$ (angles in Δ) $\Delta ROP \parallel \Delta RVS \qquad [2:2:2]$	√R	(4)
6.2.3	$\Delta ROP \parallel \Delta RVS \qquad [\angle; \angle; \angle]$		
0.2.3	$_{In}$ ΔRVS and ΔRST		
	1. $\hat{R} = \hat{R}$ (common)		
	2. $\hat{T}_1 = \hat{S}_1 = 90^\circ$ (angle in semi circle)	√S √R	
	3. $T\hat{S}R = \hat{V}$ ($\angle s \text{ in } \Delta$) $\Delta RVS \parallel \Delta RST$ ($\angle S \text{ in } \Delta$)	√R	(3)
6.2.4	In $\triangle STV$ and $\triangle RST$ $R\hat{T}S = V\hat{T}S = 90^{\circ}$ $\hat{R} = 90^{\circ} - T\hat{S}R$ $= T\hat{S}V$ $T\hat{S}R = \hat{V}$ (angles in Δ) $\triangle RST \parallel \triangle STV$ ([A,A,A)	√S √R √S	(3)
	$\frac{RT}{ST} = \frac{TS}{VT} \qquad \text{(from similarity)}$	√R	
	$ST^2 = VT. TR$	√S	(5)
			[19]

	QUESTION 7		
7.1			
	Construction: Draw PO extended	√Construction	
	OP = OA (radii) $\hat{P}_1 = \hat{A}$ (angles opp. equal sides) But $\hat{O}_1 = \hat{P}_1 + \hat{A}$ (ext. angle of triangle) $\hat{O}_1 = 2\hat{P}_1$	√S/R √S/R	
	Similarly $\hat{O}_2 = 2\hat{P}_2$ $A\hat{O}B = 2A\hat{P}B$ ÉcoleBooks	√S √S	(5)
7.2.1	Angles in the same segment	√answer	(1)
	$\hat{P}_2 = \hat{S}_1 = y$ (angles opp equal sides) $\hat{S}_1 = \hat{P}_3 = y$ (tan cord theorem)	√S √R √S √R	(4)
	$\hat{\mathbf{P}}_2 = \hat{\mathbf{P}}_3$		(1)
7.2.3	PQ bisects TPS $P\hat{O}Q = 2\hat{S}_1 = 2y \ (\angle \text{at centre} = 2 \angle \text{at circumference})$	√S √R	(2)
7.2.4	$T\hat{P}A = \hat{P}_2 + \hat{P}_3$ (proven) $T\hat{P}A = P\hat{Q}O$ (proven) PT is a tangent (converse theorem tan cord)	√S √R	(2)
7.2.5	$O\hat{P}Q + O\hat{Q}P = 180^{\circ}-2y$ (angles of triangle) $O\hat{Q}P = 90^{\circ}-y$ (angles opp equal sides)	√S √R √S/R	
	$90^{\circ} - y + y + Q\hat{A}P = 180^{\circ}$ $Q\hat{A}P = 90^{\circ}$	√S	(4)
			[18]

OPTIONAL:

QUESTION 8

$= -\sin 56^{\circ}(-\cos 11^{\circ}) + \sin 11^{\circ}.(-\cos 56^{\circ})$ $= \sin (56^{\circ} - 11^{\circ})$ $= \sin 45^{\circ}$ $= \frac{1}{\sqrt{2}}$ $\frac{1}{\sqrt{\sqrt{2}}}$ (4) $= \frac{1}{\sqrt{2}}$ $= \frac{-\cos^{2} 10^{\circ} + \sin^{2} 190^{\circ}}{\cos (-145^{\circ}).\cos 235^{\circ}}$ $= \frac{-\cos^{2} 10^{\circ} + \sin^{2} (180^{\circ} + 10^{\circ})}{\cos (180^{\circ} + 35^{\circ}).\cos (270^{\circ} - 35)}$ $= \frac{-\cos^{2} 10^{\circ} + \sin^{2} 10^{\circ}}{-\cos 35^{\circ}.(-\sin 35^{\circ})}$ $= \frac{-\cos^{2} 10^{\circ} + \sin^{2} 10^{\circ}}{-\cos 35^{\circ}.(-\sin 35^{\circ})}$ $\sqrt{-\cos 35^{\circ}}$	8.1.1	$\sin 236^{\circ}.\cos 169^{\circ} + \sin 371.\cos(-124^{\circ})$	$\sqrt{-\sin 56^{\circ}(-\cos 11^{\circ})}$
$ \begin{aligned} &= \sin(56^{\circ} - 11^{\circ}) \\ &= \sin 45^{\circ} \\ &= \frac{1}{\sqrt{2}} \end{aligned} $ $ \begin{aligned} &= \frac{1}{\sqrt{2}} & $		$= -\sin 56^{\circ}(-\cos 11^{\circ}) + \sin 11^{\circ}.(-\cos 56^{\circ})$	√sin11°.(−cos56°
$ \begin{aligned} &= \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{\sqrt{2}}} \\ 8.1.2 & \frac{-\cos^2 10^\circ + \sin^2 190^\circ}{\cos(-145^\circ).\cos 235^\circ} \\ &= \frac{-\cos^2 10^\circ + \sin^2 (180^\circ + 10^\circ)}{\cos(180 - 35^\circ).\cos(270^\circ - 35)} \\ &= \frac{-\cos^2 10^\circ + \sin^2 10^\circ}{-\cos 35^\circ.(-\sin 35^\circ)} & \checkmark + \sin^2 10^\circ \\ &\checkmark - \cos 35^\circ \end{aligned} $		$=\sin(56^\circ-11^\circ)$	
		$=\sin 45^{\circ}$	√ sin 45°
8.1.2 $\frac{-\cos^{2} 10^{\circ} + \sin^{2} 190^{\circ}}{\cos(-145^{\circ}) \cdot \cos 235^{\circ}}$ $= \frac{-\cos^{2} 10^{\circ} + \sin^{2} (180^{\circ} + 10^{\circ})}{\cos(180 - 35^{\circ}) \cdot \cos(270^{\circ} - 35)}$ $= \frac{-\cos^{2} 10^{\circ} + \sin^{2} 10^{\circ}}{-\cos 35^{\circ} \cdot (-\sin 35^{\circ})}$ $\sqrt{+\sin^{2} 10^{\circ}}$ $\sqrt{-\cos 35^{\circ}}$		$=\frac{1}{1}$	1
8.1.2 $ \frac{-\cos^{2} 10^{\circ} + \sin^{2} 190^{\circ}}{\cos(-145^{\circ}) \cdot \cos 235^{\circ}} $ $ = \frac{-\cos^{2} 10^{\circ} + \sin^{2} (180^{\circ} + 10^{\circ})}{\cos(180 - 35^{\circ}) \cdot \cos(270^{\circ} - 35)} $ $ = \frac{-\cos^{2} 10^{\circ} + \sin^{2} 10^{\circ}}{-\cos 35^{\circ} \cdot (-\sin 35^{\circ})} $ $ \checkmark + \sin^{2} 10^{\circ} $ $ \checkmark - \cos 35^{\circ} $		$\sqrt{2}$	$\sqrt{\sqrt{2}}$ (4)
$= \frac{-\cos^2 10^\circ + \sin^2 (180^\circ + 10^\circ)}{\cos(180 - 35^\circ) \cdot \cos(270^\circ - 35)}$ $= \frac{-\cos^2 10^\circ + \sin^2 10^\circ}{-\cos 35^\circ \cdot (-\sin 35^\circ)}$ $\checkmark + \sin^2 10^\circ$ $\checkmark - \cos 35^\circ$	8.1.2	$-\cos^2 10^\circ + \sin^2 190^\circ$. /
$\cos(180-35^{\circ}).\cos(270^{\circ}-35)$ $= \frac{-\cos^{2}10^{\circ} + \sin^{2}10^{\circ}}{-\cos35^{\circ}.(-\sin35^{\circ})}$ $\sqrt{+\sin^{2}10^{\circ}}$ $\sqrt{-\cos35^{\circ}}$			
$\cos(180-35^{\circ}).\cos(270^{\circ}-35)$ $= \frac{-\cos^{2}10^{\circ} + \sin^{2}10^{\circ}}{-\cos35^{\circ}.(-\sin35^{\circ})}$ $\sqrt{+\sin^{2}10^{\circ}}$ $\sqrt{-\cos35^{\circ}}$		$-\cos^2 10^\circ + \sin^2 (180^\circ + 10^\circ)$	
$-\cos 35^{\circ}.(-\sin 35^{\circ})$ $\sqrt{-\cos 35^{\circ}}$		$\cos(180-35^{\circ}).\cos(270^{\circ}-35)$	
$-\cos 35^{\circ}.(-\sin 35^{\circ})$ $\sqrt{-\cos 35^{\circ}}$		$-\cos^2 10^\circ + \sin^2 10^\circ$	$\sqrt{+\sin^2 10^\circ}$
		$-\cos 35^{\circ}.(-\sin 35^{\circ})$	4 250
1 1 2 2 1			
- (cos 10 sm 10)		$= \frac{-(\cos^2 10^\circ - \sin^2 10^\circ)}{\text{ÉcoleBooks}}$	$\sqrt{-\sin 35^\circ}$
cos 35° sin 35°		cos 35° sin 35°	
$=\frac{-\cos 2\times 10^{\circ}}{\cos 2\times 10^{\circ}}$		= 	
cos35° sin 35°			
$= \frac{-\cos 20^{\circ}}{250 \div 250}$		l = 	√-cos20°
$ \begin{array}{c} \cos 35^{\circ} \sin 35^{\circ} \\ -2 \cos 20^{\circ} \end{array} $			
$=\frac{-2\cos 2\theta}{2\cos 35^{\circ}\sin 35^{\circ}}$		l = 	
$-2\cos 20^{\circ}$			
$=\frac{25325}{\sin 2 \times 35^{\circ}}$			
$-2\sin 70^{\circ}$ $\sqrt{-2\sin 70^{\circ}}$			$\sqrt{-2\sin 70^\circ}$
$= \frac{1}{\sin 70^{\circ}}$ $\sqrt{\sin 70^{\circ}}$			√sin 70°
=-2 (6)		=-2	(6)
8.2.1 $\cos 2A + \sin A = 2\sin A + 1$	8.2.1	$\cos 2A + \sin A = 2 \sin A + 1$	
$\frac{-\cos^2 A}{\cos^2 A} = \frac{1+\sin A}{1+\sin A}$			
LHS:		LHS.	
$\cos 2A + \sin A \qquad 1 - 2\sin^2 A + \sin A \qquad \sqrt{1 - 2\sin^2 A}$			$\sqrt{1-2\sin^2 A}$
$\frac{\cos 2A + \sin A}{\cos^2 A} = \frac{1 - 2\sin^2 A + \sin A}{1 - \sin^2 A}$ $\sqrt{1 - \sin^2 A}$			
V 2 5 11 11 11 11 11 11 11 11 11 11 11 11 1		COSTI I SHI TI	V = 522 12
$-1+\sin A-2\sin^2 A$			
$= \frac{1-\sin^2 A}{1-\sin^2 A}$			

	$= \frac{(1+2\sin A)(1-\sin A)}{(1-\sin A)(1+\sin A)}$ $= \frac{1+2\sin A}{(1+\sin A)}$ $\therefore LHS = RHS$	√factorise numerator √factorise denominator (4)
8.2.2	$\frac{\sin(x+45^{\circ})}{\cos(x-45^{\circ})} = \frac{\sin 2x + 1}{(\sin x + \cos x)^2}$	
	LHS: $ \frac{\sin(x+45^{\circ})}{\cos(x-45^{\circ})} = \frac{\sin x \cos 45^{\circ} + \cos c \sin 45^{\circ}}{\cos x \cos 45^{\circ} + \sin x \sin 45^{\circ}} $ $ = \frac{\sin x \cdot \frac{\sqrt{2}}{2} + \cos x \frac{\sqrt{2}}{2}}{\cos x \cdot \frac{\sqrt{2}}{2} + \sin x \frac{\sqrt{2}}{2}} $ $ = 1 $	$\sqrt{\sin x \cos 45^{\circ} + \cos c \sin 45^{\circ}}$ $\sqrt{\cos x \cos 45^{\circ} + \sin x \sin 45^{\circ}}$ $\sqrt{\sin x \cos 45^{\circ} + \cos c \sin 45^{\circ}}$ $\sqrt{2}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{3}$ $\sqrt{4}$ $\sqrt{4}$
	RHS: $ \frac{\sin 2x + 1}{(\sin x + \cos x)^2} = \frac{\sin 2x + 1}{\sin^2 x + \sin x \cos x + \cos^2 x} $ $ = \frac{\sin 2x + 1}{1 + 2\sin x \cos x} $ $ = \frac{\sin 2x + 1}{1 + \sin 2x} $ $ = 1 $ $ \therefore LHS = RHS $	√simplifying denominator √square identity √1 (7)
8.3.1	$2\sin(3x-15^\circ)+1=0$ $\sin(3x-15^\circ) = -\frac{1}{2}$ Ref angle: $x = 30^\circ$ $\frac{3^{\text{rd}}}{}$	$\int \sin(3x - 15^\circ) = -\frac{1}{2}$
	$3x-15^{\circ} = 180^{\circ} + 30^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ $3x = 225^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ $x = 75^{\circ} + k.120^{\circ}; k \in \mathbb{Z}$ 4 th	$\sqrt{x} = 75^{\circ} + k.120^{\circ}$ $\sqrt{k} \in \mathbb{Z}$
	$3x-15^{\circ} = 360^{\circ} - 30^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$ $3x = 345^{\circ} + k.360^{\circ}; k \in \mathbb{Z}$	$\sqrt{x} = 115^{\circ} + k.120^{\circ}$ (4)

	$x = 115^{\circ} + k.120^{\circ}; k \in \mathbb{Z}$	
8.3.2	$x \in \{-245^{\circ}; -165^{\circ}; -125^{\circ}; -45^{\circ}; -5^{\circ}, 75^{\circ}\}$	✓ three correct ✓ six correct (2)

