

TOTAL MARKS	
-------------	--

NATIONAL SENIOR CERTIFICATE EXAMINATION NOVEMBER 2019

MATHEMATICS: PAPER I

EXAMINATION NUMBER								
Time: 3 hours						1	50 m	arks

PLEASE READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- 1. This question paper consists of 32 pages and an Information Sheet of 2 pages (i–ii). Please check that your question paper is complete.
- Read the questions carefully.
- 3. Answer ALL the questions on the question paper and hand it in at the end of the examination. Remember to write your examination number in the space provided.
- 4. Four blank pages (pages 29 to 32) have been included at the end of the exam paper. If you run out of space for a question, use these pages. If you use this extra space, make sure that you indicate this clearly at the question to ensure that your answer is marked in full.
- 5. Diagrams are not necessarily drawn to scale.
- 6. You may use an approved non-programmable and non-graphical calculator, unless otherwise stated. Ensure that your calculator is in **DEGREE** mode.
- Clearly show ALL calculations, diagrams, graphs etc. that you have used in determining your answers. Answers only will NOT necessarily be awarded full marks.
- 8. Round off to one decimal place unless otherwise stated.
- 9. It is in your own interest to write legibly and to present your work neatly.

FOR OFFICE USE ONLY: MARKER TO ENTER MARKS

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	TOTAL
14	16	15	17	11	9	9	16	22	7	14	/150

SECTION A

QUESTION 1

(a) -2 is one root of the equation $2x^2 + x + k = 0$.

((1)) [Prove	that	k =	-6.
١		, ,	1010	uiui	<i>/</i> \ –	Ο.

(2)

(2) Determine the other root.

(2)

(b) Solve for *x* in each case:

$$(1) x-3\sqrt{x+2}=2$$

(6)

NATIONAL SENIOR CERTIFICATE: MATHEMATICS: PAPER I

Page 3 of 32

(2) $x^2 - x \le 6$

(4) **[14]**

Busi opens a new credit card account that charges compound interest at 12,3% p.a. compounded weekly.

Interest:

• 12,3% p.a. compounded weekly

[<https://www.postoffice.co.uk/credit-card/platinum>]

Note: For the calculations in this question, assume that the relevant years have 52 weeks each.

She purchases a computer for an amount of R12 349,00 immediately after activating her credit card.

-	ÉcoleBooks
-	
-	
-	
-	
-	

NATIONAL SENIOR CERTIFICATE: MATHEMATICS: PAPER I

Page 5 of 32

(b) Determine how long it will take Busi to pay off the money that she owes on her

•	ases using this	card.				
_						
	_		_			
If the deter	depreciation ra nine what its va	te of her comp lue will be afte	outer is 20% er two years.	per annum	on a straight-l	ine ba

(a)	(1)	Determine $f'(x)$ from first principles if: $f(x) = -5x^2 + x$.
		(5)
	(2)	Hence, or otherwise, determine the equation of the tangent to $f(x)$ at the point where $x = 1$.
		(3)

(4)

(3)

(b) Determine:

(1)	$\frac{dy}{dx}$ if $y =$	$x^3 + \sqrt{x^3}$
	$\frac{d}{dx}$ " y =	X

_		

[15]

Page 9 of 32

QUESTION 4

(a) A pentagon is created using candles as shown in the diagram below.

By adding more candles, a row of two pentagons is formed.

Continuing to add candles, a row of three pentagons can be formed.

ed in a row if			or peni	ayons	llial	can L

IEB Copyright © 2019 PLEASE TURN OVER

(4)

	rithmetic series has a first term of 3, a last term of 47 and the sum of all the s is 300.
(1)	Determine the number of terms in the series.
	(3)
(2)	Determine the common difference.
	ÉcoleBooks
	(3)
	terms (1)

Calculate: $\sum_{n=2}^{\infty}$	(-)		
-			
	c sequence, the third ter termine the value of <i>p</i> .	m is $5p+1$, the fifth ten	m is 4 and the se
	termine the value of <i>p</i> .	m is $5p+1$, the fifth tended	m is 4 and the se
	termine the value of <i>p</i> .		m is 4 and the se
	termine the value of <i>p</i> .		m is 4 and the se
	termine the value of <i>p</i> .		m is 4 and the se
	termine the value of <i>p</i> .		m is 4 and the se
	termine the value of <i>p</i> .		m is 4 and the se

The table below shows the number of passengers that were on a bus after every stop.

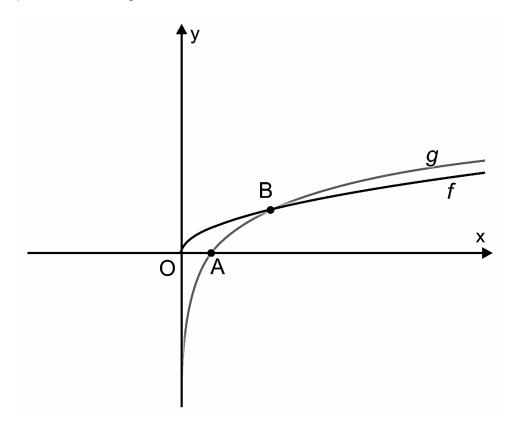
	First stop	Second stop	Third stop	Fourth stop
# Passengers	2	20	34	44

The number of passengers on the bus after the n^{th} bus stop can be given by $T_n = an^2 + bn + c$ where a, b and $c \in \mathbb{R}$.

Dotormino a h	and c	
Determine a, b	and c.	
	Contract of the second	
	ÉcoleBooks	

NATIONAL SENIOR CERTIFICATE: MATHEMATICS: PAPER I

Page 13 of 32

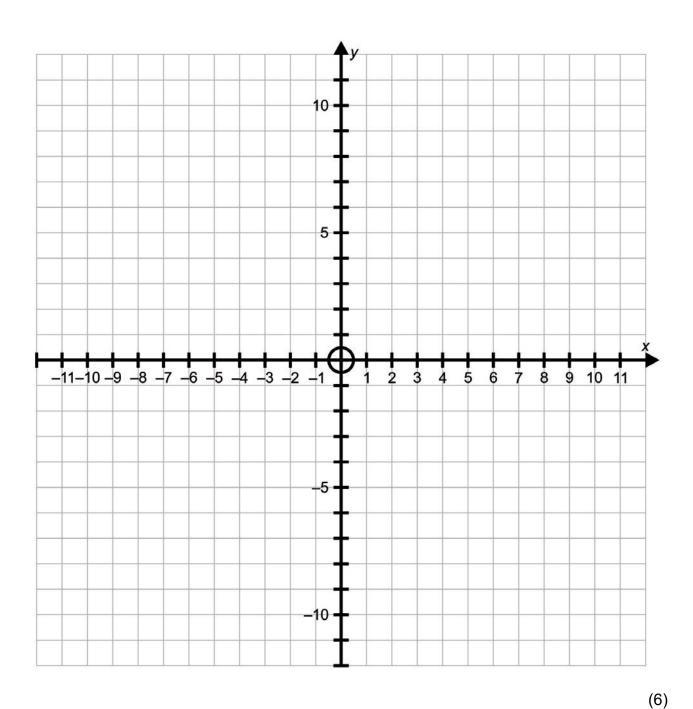

												(-)
												(3)
Explai stop.	in why the	e formu	ıla give	n in Qເ	estion	5(c) (does	not v	vork aft	ter th	e eleve	enth
-												
				E Éc.	olo R o	oks						
			(Écc	oleBo	oks						
			(Écc	oleBo	oks						
			(Éco	oleBo	oks						
			(Écc	oleBo	oks						(3)
			(Éco	oleBo	oks						(3)

SECTION B

QUESTION 6

In the diagram below, the graphs of $f(x) = \sqrt{kx}$ and $g(x) = \log_a x$ are given.

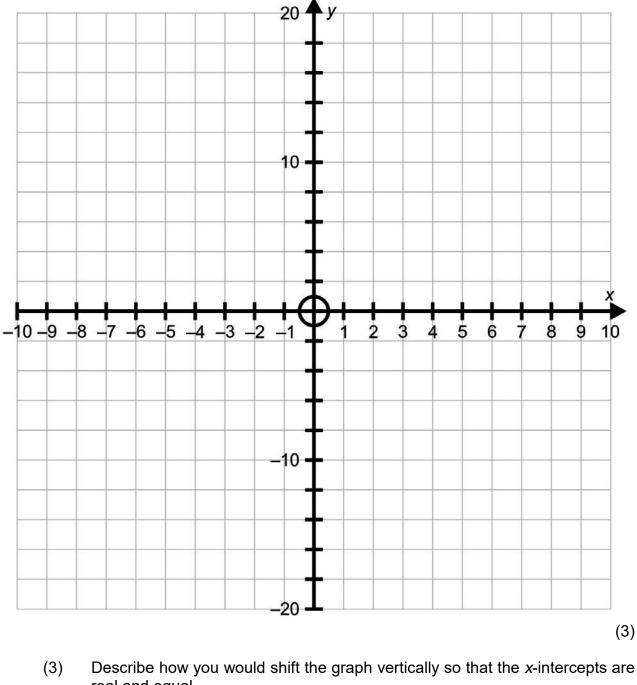
Note: O represents the origin.


The graphs of f and g intersect at the point B(3;1).

Determine the values of x, represented on this sketch, for which f(x) > g(x).

(a)

OITA	NAL SENIOR CERTIFICATE: MATHEMATICS: PAPER I	Page 15 of 32
)	Determine the values of <i>k</i> and <i>a</i> .	
		(4
	Determine f^{-1} , the inverse of f in the form $y =$, and state its domain.	
	ÉcoleBooks	
		(3
		(3 [9


(a)	Sketch the graphs of $f(x) = 3^{x+1}$ and $g(x) = 3^{2x}$ on the same set of axes.
	Show any asymptotes, intercepts with the axes and points of intersection clearly.
	Sketch your graph on the grid provided on the next page.
	Working space:
	ÉcoleBooks

,		

(a)	(1)	Explain why the equation $(2x-1)^2 = -5$ does not have any real solutions	.
			(1)
	(2)	On a set of axes, sketch the graph of $y = (2x-1)^2 + 5$. Show the coordinates of the turning point and the <i>y</i> -intercept.	
		Sketch your graph on the grid provided on the next page.	
		Working space:	
		ÉcoleBooks	

(3)	Describe how you would shift the graph vertically so that the x-intercepts are
	real and equal.

(1)

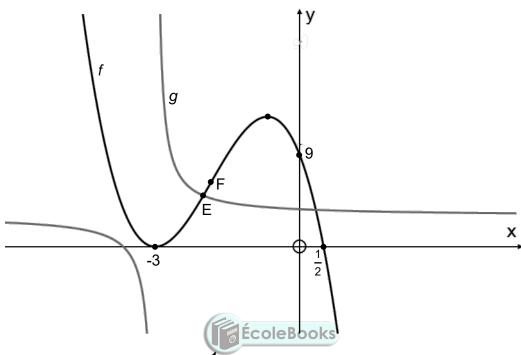
NATIONAL SENIOR CERTIFICATE: MATHEMATICS: PAPER I

Page 21 of 32

equation has real roots.	
e values of k for which the x-intercepts of y and unequal.	$= (2x-1)^2 + R$
	$=(2x-1)^2+I$
	$=(2x-1)^2+h$
	$=(2x-1)^2+k^2$

(b)	Let the larger root of $px^2 + qx + r = 0$ be P . Let the larger root of $x^2 + qx + pr = 0$ be Q .	
	Determine the ratio <i>P</i> : <i>Q</i> .	
	ÉcoleBooks	(4) [16]

NATIONAL SENIOR CERTIFICATE: MATHEMATICS: PAPER I


Page 23 of 32

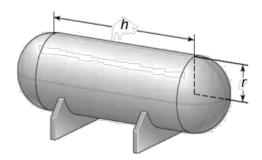
QUESTION 9

In the diagram below, the graphs of $f(x) = ax^3 + bx^2 + cx + d$ and $g(x) = \frac{2}{x+p} + q$ are given.

E is a point of intersection of the graphs of f and g.

F is the point of inflection of f.

The graph of f cuts the x-axis at $x = \frac{1}{2}$, touches it at x = -3 and cuts the y-axis at 9.


(a) (1) Show that $a = -2$, $b = -11$, $c = -12$ and d	(a)	(1)	Show that $a = -2$, b	= -11, $c = -12$ and $d = 9$
--	-----	-----	------------------------	------------------------------

· · ·	
<u> </u>	

(2)	Determine the χ co-ordinate of F.
	(3)
If the	gradient at point E of the graph of $f(x)$ is 8, determine the co-ordinates of E.
	ÉcoleBooks
	(3)
If the	graph of g has a vertical asymptote at the minimum stationary point of f mine the equation of g in the form $y = \frac{2}{x+p} + q$.
	(3)

gradient.	posi
Determine the value(s) of x for which $f(x) \ge g(x)$ in the interval $x \in (-\infty, 0]$.	
Determine the value(s) of x for which $f(x) \ge g(x)$ in the interval $x \in (-\infty, 0]$.	
ÉcoleBooks	
Determine the values of k , if the graph of f is shifted so that the new $h(x) - k = -2x^3 - 11x^2 - 12x + 9$ does not intersect the graph of g for $x \ge 0$.	w gr
$H(x) - K = -2x - 11x - 12x + 9$ does not intersect the graph of g for $x \ge 0$.	

An oil tank's structure, as shown in the diagram below, consists of a cylindrical body of length h m and two hemispherical ends of radius r m and has a volume of 1 000 m³.

[<https://www.chegg.com>]

Determine the value of *r* such that the total surface area of the tank is a minimum.

Show all working and justifications.

Formulae:

Surface area of sphere = $4\pi \hat{r}$	Volume of sphere = $\frac{4}{3}\pi r^3$
Surface area of cylinder = $2\pi l^2 + 2\pi rh$	Volume of cylinder = $\pi r^2 h$

ÉcoleBooks	

Ten coins are arranged in a row:

QUESTION 11

(a)

	nree are R2 coins vo are R5 coins
	many different arrangements are possible, knowing that all the coins of value are identical?
70%	trees in an orange orchard are harvested twice a year. During the first hat of the oranges are picked while the rest are left.
70% At th	
70% At th not p	of the oranges are picked while the rest are left. e second harvest, 35% of the remaining oranges are picked while the re-
70% At th not p	of the oranges are picked while the rest are left. e second harvest, 35% of the remaining oranges are picked while the restricked.
70% At th not p	of the oranges are picked while the rest are left. e second harvest, 35% of the remaining oranges are picked while the restricked. Ime no oranges were added between harvests.
70% At th not p	of the oranges are picked while the rest are left. e second harvest, 35% of the remaining oranges are picked while the restricked. Ime no oranges were added between harvests.
70% At th not p	of the oranges are picked while the rest are left. e second harvest, 35% of the remaining oranges are picked while the restricked. Ime no oranges were added between harvests.
70% At th not p	of the oranges are picked while the rest are left. e second harvest, 35% of the remaining oranges are picked while the restricked. Ime no oranges were added between harvests.

- (2) If it is further given that all the oranges that are picked are packaged with:
 9% from each harvest selected for export
 - 9 /0 Horri cacif flativest selected for expo

•	31%	sold	to	the	local	market	and
---	-----	------	----	-----	-------	--------	-----

 the rest are sent 	to a fa	ctory to	be made	into juice.
---------------------------------------	---------	----------	---------	-------------

There are 120 oranges in an export box. If 172 export boxes are part then how many oranges were there in the total crop?	
There are 120 oranges in an export box. If 172 export boxes are part then how many oranges were there in the total crop?	
There are 120 oranges in an export box. If 172 export boxes are part then how many oranges were there in the total crop?	
There are 120 oranges in an export box. If 172 export boxes are part then how many oranges were there in the total crop?	
There are 120 oranges in an export box. If 172 export boxes are part then how many oranges were there in the total crop?	
There are 120 oranges in an export box. If 172 export boxes are part then how many oranges were there in the total crop?	
There are 120 oranges in an export box. If 172 export boxes are part then how many oranges were there in the total crop?	
There are 120 oranges in an export box. If 172 export boxes are part then how many oranges were there in the total crop?	
There are 120 oranges in an export box. If 172 export boxes are part then how many oranges were there in the total crop?	
There are 120 oranges in an export box. If 172 export boxes are part then how many oranges were there in the total crop?	
There are 120 oranges in an export box. If 172 export boxes are part then how many oranges were there in the total crop?	

77 marks

Total: 150 marks

Page 29 of 32

ADDITIONAL SPACE (ALL questions)

REMEMBER TO CLEARLY INDICATE AT THE QUESTION THAT YOU USED THE ADDITIONAL SPACE TO ENSURE THAT ALL ANSWERS ARE MARKED.				
_				
		Écolo	eBooks	
_				

NATIONAL SENIOR CERTIFICATE: MATHEMATICS: PAPER I	
Cart	
ÉcoleBooks	

NATIONAL SENIOR CERTIFICATE: MATHEMATICS: PAPER I	
EcoleBooks	

NATIONAL SENIOR CERTIFICATE: MATHEMATICS: PAPER I	
ÉcoloRooks	
EcoleBooks	