

basic education

Department: **Basic Education REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATION/ NATIONAL SENIOR CERTIFICATE EXAMINATION

ELECTRICAL TECHNOLOGY: ELECTRONICS

2019

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 15 pages.

Copyright reserved Please turn over

INSTRUCTIONS TO THE MARKERS

- 1. All questions with multiple answers imply that any relevant, acceptable answer should be considered.
- 2. Calculations:
	- 2.1 All calculations must show the formulae.
	- 2.2 Substitution of values must be done correctly.
	- 2.3 All answers MUST contain the correct unit to be considered.
	- 2.4 Alternative methods must be considered, provided that the correct answer is obtained.
	- 2.5 Where an incorrect answer could be carried over to the next step, the first answer will be deemed incorrect. However, should the incorrect answer be carried over correctly, the marker has to recalculate the values, using the incorrect answer from the first calculation. If correctly used, the candidate should receive the full marks for subsequent calculations.
	- 2.6 Markers should consider that learner answers may deviate slightly from the guideline, depending on how and where in the calculation rounding off was used.
- 3. This marking guideline is only a guide with model answers. Alternative interpretations must be considered and marked on merit. However, this principle should be applied consistently throughout the marking session at ALL marking centres.

QUESTION 1: OCCUPATIONAL HEALTH AND SAFETY (GENERIC)

- 2.1.2 Inductive reactance is the opposition \checkmark to an alternating current by the reactive component of a inductor \checkmark in an ac circuit. If only the formula is given by the learner $= 1$ mark If the formula is accompanied by the correct explanation = 2 marks. (2)
- 2.2 2.2.1 $=$ 16,59 Ω $= 2 \times \pi \times 60 \times 44 \times 10^{-3}$ $X_L = 2 \times \pi \times f \times L$ ü ü \checkmark (3) 2.2.2 $= 22, 1$ Ω $2 \times \pi \times 60 \times 120 \times 10$ 1 $2 \times \pi \times f \times C$ $X_c = \frac{1}{2 \times \pi \times f \times C}$ $=\frac{1}{2\times\pi\times60\times120\times10^{-6}}$ ü \checkmark (3) 2.2.3 $Z = \sqrt{R^2 + (X_c - X_L)^2}$ C AL $=\sqrt{R^2 +}$ ü

$$
= \sqrt{25^2 + (22.11 - 16.59)^2}
$$

= 25.6 Ω (3)

2.3 2.3.1 $= 3,67 A$ 60 $=\frac{220}{20}$ X $I_{\rm C} = \frac{V}{V}$ C $S = \frac{V_S}{Y}$ ü \checkmark (3) 2.3.2 $= 2,33 \, \text{A}$ $= 6 - 3.67$ $I_X = I_L - I_C$ ü \checkmark (3) 2.3.3 The phase angle is lagging \checkmark because I_L is greater than $I_C \checkmark$ (2) 2.4 2.4.1 At resonance frequency $X_L = X_C$ $X_C = 50,27 Ω$ (1) 2.4.2 $= 3,17$ μ F $= 3,17\times 10^{-6}$ F $50,27\times 2\pi \times 1000$ $=\frac{1}{50,27\times2\pi\times1}$ $\mathsf{X}_\mathrm{C} \!\times\! 2\pi \!\times\! \mathsf{f}$ $C = \frac{1}{\sqrt{2}}$ $=\frac{1}{\mathsf{X}_{\mathsf{C}}\times 2\pi \times}$ ü ü ü (3) 2.4.3 The value of the current will be halved \checkmark as the circuit resistance is inversely proportional to the applied voltage. \checkmark The value of the current will be halved if the resistance is $doubled = 1 mark$ (2) 2.5 2.5.1 = 97,95 Hz $2\pi\sqrt{80\times}10^{-3}\times 33\times10$ 1 2π $\sqrt{\mathsf{L}} \times {\mathsf{C}}$ $f_r = \frac{1}{2\pi\sqrt{L}\times}$ $=\frac{1}{2\pi\sqrt{80\times10^{-3}\times33\times10^{-6}}}$ ü ü ü (3) 2.5.2 $=4A$ 30 $=\frac{120}{20}$ Z $I = \frac{V_s}{I}$ (*Z* = *R at resonance*) ü ü \checkmark (3)

2.5.3 $=$ 196,94 V $= 4 \times 49,24$ $V_{L} = I \times X_{L}$ ü \checkmark (3)

Copyright reserved Please turn over

SC/NSC – Marking Guidelines

2.5.4 The voltage across X_L is $V_L = IX_L$. During resonance current is at a maximum. \checkmark As a result V_L would be higher due to the current being at a maximum. \checkmark However because $V_L = V_c$ the reactive voltage is zero \checkmark and effectively this voltage increase does not affect the supply voltage. X_L is greater than R, therefore V_L will be greater than V_R during resonance because the current in a series circuit is common through all components leading to the voltage across the inductor being greater than the supply voltage. (4) **[40] QUESTION 3: SEMICONDUCTOR DEVICES (SPECIFIC)** 3.1 N-channel \checkmark depletion mode MOSFET P-channel \checkmark depletion mode MOSFET N-channel enhancement mode MOSFET P-channel enhancement mode MOSFET (2) $3.2 \qquad 3.2.1 \qquad$ Enhancement mode \checkmark (1) $3.2.2$ $+/- 4 \text{ mA}$ \checkmark (1) 3.2.3 • When a rising negative \checkmark voltage (-V_{GS}) is applied to the gate, the drain-source current (I_{DS}) decrease. \checkmark • When a rising positive $\frac{1}{2}$ voltage $(+\vee_{\text{GS}})$ is applied to the gate the drain-source current (I_{DS}) increase. \checkmark This confirms that the gate material is p-type which is forward biased by a positive voltage and reverse biased by a negative voltage. (4) 3.3 $3.3.1$ The emitter is a heavily doped p-type \checkmark semi-conductor. (1) 3.3.2 The intrinsic standoff ratio is determined by the ratio of the internal resistances (rb₁ to rb₁ + rb₂) \checkmark The formula will be accepted as correct. (1) 3.3.3 The moment the emitter voltage (V_E) is increased to above V_X the UJT is said to 'fire' \checkmark and goes into its 'trigger' state. \checkmark (2) $3.4 \quad 3.4.1 \quad 1.4 \vee \checkmark$ (1)

 $3.5.2$ 0 V (common mode rejection) \checkmark (1)

(3)

[30]

- 3.5.3 If the amplitude of the signal on the non-inverting input is increased, the Op-amp will amplify the difference between the two inputs. \checkmark
	- Because the non-inverting input is bigger than the inverting input, \checkmark
	- The output signal will now be in phase with the non-inverting input \checkmark input \checkmark (3)

3.6 $3.6.1$ Negative feedback \checkmark (1)

3.6.2

$$
V_{OUT} = V_{IN} \left(1 + \frac{R_F}{R_{IN}} \right) \qquad \checkmark
$$

= 20 × 10⁻³ \left(1 + \frac{100 × 10^3}{220} \right) \checkmark
= 9,11 V

- 3.7 3.7.1 Two comparators/amplifiers √ One R/S flip-flop \checkmark Three 5 k Ω resistors \checkmark Transistor (3)
	- 3.7.2 The three 5 kΩ resistors divides \checkmark the supply voltage into two stepped down voltages of 1/3 and $2/3 \checkmark$ of the supply voltage. (2)

QUESTION 4: SWITCHING CIRCUITS (GENERIC)

- 4.1 Bistable refers to two stable states, \checkmark either high or low in multivibrators. (1)
- 4.2 4.2.1

NOTE R**1** acts as a pull down resistor ensuring that during switch on, the output will start at $+V_{SAT}$

If the output is drawn inverted, 1 mark will be awarded for identifying both correct trigger points. (2)

Copyright reserved Please turn over

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

4.4.3 The capacitor charges through (R**1**+R**2**), causing a long RC time constant, \checkmark but discharges through only R₂ \checkmark causing a short time constant. (2) 4.4.4

NOTE: If the output is inverted, 1 mark will be awarded for identifying both trigger points correctly. (2)

-
- 4.5 $4.5.1$ R_F and R₁ create a voltage divider. \checkmark
	- They divide the output voltage to produce a small fraction of the output voltage across R_1 .
	- This small fraction is fed to the Op-amp's non-inverting input. \checkmark (3)

4.5.2

Electrical Technology: Electronics 9 DBE/2019

 [Download more resources like this on ECOLEBOOKS.COM](https://ecolebooks.com)

4.7 $4.7.1$ By adding another input resistor to the summing amplifier input. \checkmark (1)

SC/NSC – Marking Guidelines

4.7.2
\n
$$
V_{OUT} = -\left(V_1 \frac{R_F}{R_1} + V_2 \frac{R_F}{R_2} + V_3 \frac{R_F}{R_3}\right)
$$
\n
$$
= -\left(50 \times 10^{-3} \frac{100 \times 10^3}{5 \times 10^3} + 150 \times 10^{-3} \frac{100 \times 10^3}{10 \times 10^3} + 300 \times 10^{-3} \frac{100 \times 10^3}{15 \times 10^3}\right) \quad \checkmark
$$
\n
$$
= -(1 + 1.5 + 2)
$$
\n
$$
= -4.5 \text{ V}
$$
\n(3)

4.7.3 The answer in 4.7.2 is negative because the inputs are fed into the inverting input \checkmark which will cause the output to be 180° out of phase. phase. (1)

4.8.4 4.8.1 It improves input and output impedances.
$$
\checkmark
$$

\nIt improves output gain. \checkmark

\nIt improves the stability of the circuit. \checkmark

\n(3)

(2)

Copyright reserved Please turn over

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

- 4.10.4 A short RC time constant will cause the capacitor to charge and discharge completely. \checkmark
	- This will resemble a square wave output signal \checkmark with rounded leading and trailing edges. \checkmark (3)

QUESTION 5: AMPLIFIERS (SPECIFIC)

5.1 Transistor amplifiers make use of a small signal stage at its input to enlarge a very low level signal \checkmark of voltage or current to a more manageable size, this reduces distortion \checkmark into the output stage. A small signal stage is used to amplify an input signal to drive the next stage of amplification. (2)

To amplify the signal deserves only 1 mark

[60]

(2)

NOTE: If cross-over distortion is shown, the answer is correct.

5.3 Improved stability \checkmark More reliable and constant voltage gain Can increase or decrease input and out impedances Decrease distortion of the signal Increased bandwidth (1) 5.4 5.4.1 Voltage divider base biasing. \checkmark 1)

- 5.4.3 C**¹** allows ac signals to pass in the input but stops any DC signals that might upset the bias arrangement. \checkmark C**²** allows the AC in the output to pass to the next stage but blocks the DC signals. \checkmark Alternative for C**2** Used as coupling between the two stages. (2)
- 5.4.4 The coupling capacitors cause the voltage gain to reduce \checkmark due to an increase in reactance \checkmark at lower frequencies. (2)
- 5.4.5 Distortion occurs if the steady bias voltage and current are too low (cut off) \checkmark or too high (saturation) \checkmark or the AC input is too large \checkmark (3)

Copyright reserved Please turn over

5.7.2 Cross-over distortion can be eliminated by biasing the two transistors Q_1 and Q_2 \checkmark into class AB mode. \checkmark Adding a decoupling capacitor on the input will prevent the negative cycle on the input from draining the biasing to earth thus causing distortion.

By adding two diodes in the place of R_2 and R_3 . (2)

5.8

- 5.9 5.9.1 The first LC circuit (variable capacitor C₁ and primary winding of Tr₂) will resonate at the required frequency \checkmark which is passed to the second stage \checkmark and suppress other frequencies. \checkmark
	- The second LC circuit (variable capacitor C_2 and the secondary winding of Tr₂) makes the circuit more frequency selective \checkmark
	- This enables the circuit to be tuned to a variety of frequencies. \checkmark (5)

