

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

ELECTRICAL TECHNOLOGY: POWER SYSTEMS

NOVEMBER 2018

MARKS: 200

П

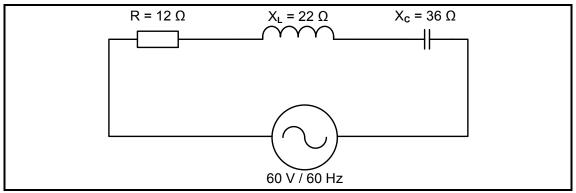
TIME: 3 hours

This question paper consists of 10 pages, a 2-page formula sheet and 1 answer sheet.

Please turn over

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of SIX questions.
- 2. Answer ALL the questions.
- 3. Answer QUESTIONS 2.2.1 and 2.2.2 on the attached ANSWER SHEET.
- 4. Write your CENTRE NUMBER and EXAMINATION NUMBER on the ANSWER SHEET and hand it in with your ANSWER BOOK, whether you have used it or not.
- 5. Sketches and diagrams must be large, neat and fully labelled.
- 6. Show ALL calculations and round off answers correctly to TWO decimal places.
- 7. Number the answers correctly according to the numbering system used in this question paper.
- 8. You may use a non-programmable calculator.
- 9. Show the units for ALL answers of calculations.
- 10. A formula sheet is provided at the end of this question paper.
- 11. Write neatly and legibly.


Copyright reserved

Download mo	ore	resources	like	this	on	ECOLEBOOKS.COM
Electrical Technolog	gy: Pow	ver Systems	3			DBE/November 2018
			NSC			

QUESTION 1: OCCUPATIONAL HEALTH AND SAFETY (GENERIC)

1.1	Define the term <i>major incident</i> with reference to the Occupational Health and Safety Act, 1993 (Act 85 of 1993).	(2)		
1.2	State TWO general duties of manufacturers with regard to a product that will be used at the workplace.	(2)		
1.3	Explain why horseplay is an unsafe act in the workshop.	(2)		
1.4	State TWO procedures to protect yourself when helping a person who is being shocked by electricity.	(2)		
1.5	Define the term <i>qualitative risk analysis</i> .	(2) [10]		
QUESTION 2: RLC CIRCUITS (GENERIC)				

- 2.1 Define the term *impedance* with reference to RLC circuits. (2)
- 2.2 Illustrate the phase relationship between current and voltage by drawing the waveforms of the following circuits on the ANSWER SHEET:
 - 2.2.1 Pure capacitive circuit (2) ÉcoleBooks 2.2.2 Pure inductive circuit
- 2.3 FIGURE 2.3 below shows an RLC series circuit that consists of a 12 Ω resistor, an inductor with a reactance of 22 Ω and a capacitor with a reactance of 36 Ω , all connected across a 60 V/60 Hz supply. Answer the questions that follow.

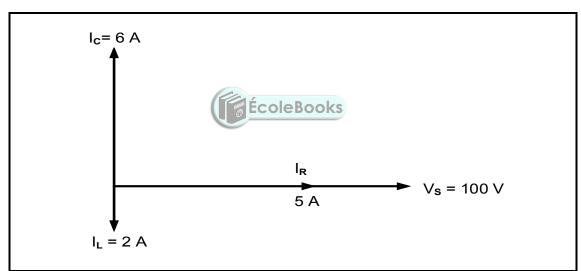
FIGURE 2.3: RLC SERIES CIRCUIT

Given:

R	=	12 Ω
XL	=	22 Ω
Xc	=	36 Ω
V_{S}	=	60 V
f	=	60 Hz

(2)

(2)


4 NSC

Calculate the:

2.4

2.3.1	Capacitance of the capacitor	(3)
2.3.2	Inductance of the inductor	(3)
2.3.3	Impedance of the circuit	(3)
2.3.4	Total current through the circuit	(3)
2.3.5	Reactive power at a phase angle of 50°	(3)
Explain how the value of the inductive reactance will be affected if the supply frequency is doubled.		(2)

- 2.5 Define the term *resonant frequency*.
- 2.6 Refer to FIGURE 2.6 and answer the questions that follow.

FIGURE 2.6: RLC PHASOR DIAGRAM

- 2.6.1 Calculate the following:
 - (a) Inductive reactance (3)
 - (b) Capacitive reactance (3)
 - (c) Reactive current (3)
 - (d) Total current (3)
- 2.6.2 State whether the phase angle is lagging or leading. (1)
- 2.7 Describe how a low resistance value affects the bandwidth of an LC tuned circuit. (2)

Copyright reserved

Please turn over

[40]

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Download more resources	like this	on ECOLEBOOKS.COM	
Electrical Technology: Power Systems	5	DBE/November 20	18
	NSC		

QUESTION 3: THREE-PHASE AC GENERATION (SPECIFIC)

3.1		e size of the angles between the phases of a balanced three-phase erated waveform.	(1)
3.2	Define t	he following terms:	
	3.2.1	Apparent power	(2)
	3.2.2	Power factor	(2)
3.3	State Th	HREE advantages for the supplier when the power factor improves.	(3)
3.4	With reference to three-phase power generation:		
	3.4.1	State THREE disadvantages of single-phase AC generation.	(3)
	3.4.2	Explain the advantage of connecting a three-phase alternator in star.	(2)
3.5	Explain	how copper losses are reduced in overhead transmission lines.	(2)
3.6	A 380 V three-phase system supplies a star-connected inductive load. The input power to the load is 18 kW with a lagging power factor of 0.8.		

ÉcoleBooks

Given:

VL	=	380 V
P _{in}	=	18 kW
Cos θ	=	0,8 lagging

Calculate the:

3.6.1	Phase voltage	(3)
3.6.2	Line current to the load	(3)
3.6.3	Apparent power	(3)

3.7 The two-wattmeter method is used to measure power of a three-phase motor. The readings on the wattmeters are 1,2 kW and 2,3 kW respectively. Answer the questions that follow.

Given:

P ₁ = P ₂ =	,	
3.7.1	Calculate the total input power to the motor.	(3)
3.7.2	State THREE advantages of the two-wattmeter method over the three-wattmeter method.	(3)

NSC

QUESTION 4: THREE-PHASE TRANSFORMERS (SPECIFIC)

4.1	Name THREE losses that occur in transformers.	(3)
4.2	State TWO applications of a delta-star transformer.	(2)
4.3	State TWO functions of the oil used in transformers.	(2)
4.4	Describe the operation of a transformer.	(5)
4.5	Explain why transformers have a better efficiency in comparison to other machines.	(3)
4.6	State the purpose of the Buchholz relay in transformers.	(2)

4.7 A three-phase transformer with 1 500 primary turns is connected in delta-star to a supply voltage of 2,2 kV. The primary line current is 30 A and the secondary line voltage is 380 V with a power factor of 0,9.

Given:

NP	=	1 500 turns	
VP	=	2,2 kV	
I _{L(P)}	=	30 A	Cla :
V _{L(S)}	=	380 V	ÉcoleBooks
Cos θ	=	0,9 lagging	

Calculate the:

-	power to domestic and industrial loads.	(3) [30]
4.8.2	Describe why the transformer can be used for distributing electrical	
4.8.1	Determine whether the transformer is a step-down or a step-up transformer.	(1)
	phase transformer with a turns ratio of 30:1 is connected in delta- swer the questions that follow.	
4.7.3	Number of secondary turns	(3)
4.7.2	Transformation ratio	(3)
4.7.1	Secondary phase voltage	(3)

Copyright reserved

4.8

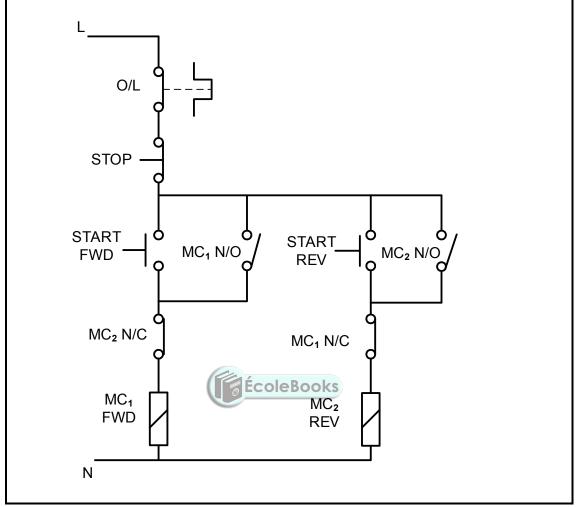
QUESTION 5: THREE-PHASE MOTORS AND STARTERS (SPECIFIC)

5.1 TABLE 5.1 below shows the name plate of a three-phase induction motor. Answer the questions that follow.

TABLE 5.1: NAME PLATE OF A THREE-PHASE INDUCTION MOTOR

MOTOR MANUFACTURER SPECIFICATION		
Phase	3	
Voltage	380 V	
Current	1,3 A	
Speed	1 500 r/min	
Power	7,5 kW	
Frequency	50 Hz	
Cos θ	0,8 lagging	
Frame No.	22SP27	

5.1.1	State the amount of current the motor will draw from the supply at full load.	(1)
		(')
5.1.2	Explain why the motor is suitable for use in South Africa.	(2)
5.1.3	State what the 7,5 kW on the name plate indicates.	(1)
5.1.4	Determine the total number of poles:	(5)
5.1.5	Calculate the efficiency of the motor at full load if the total loss is 1,2 kW.	(5)
Explain circuits.	the purpose of no-volt protection with reference to motor control	(3)
Explain changeo	how the direction of rotation of a three-phase induction motor can be I.	(2)
State TWO mechanical inspections that must be carried out on an induction motor before commissioning.		(2)


5.2

5.3

5.4

NSC

Refer to the control circuit diagram in FIGURE 5.5 and answer the following 5.5 questions.

FIGURE 5.5: CONTROL CIRCUIT

5.5.4	Describe the operation of the control circuit.	(5) [30]
5.5.3	State the purpose of the overload relay.	(2)
5.5.2	State ONE application of the control circuit.	(1)
5.5.1	Identify the control circuit in FIGURE 5.5.	

8

Download more resources	like this	on ECOLEBOOKS.COM
Electrical Technology: Power Systems	9 NSC	DBE/November 2018

QUESTION 6: PROGRAMMABLE LOGIC CONTROLLERS (PLCs) (SPECIFIC)

6.1	State THREE disadvantages of hard wiring.	(3)
6.2	Name the THREE steps that a PLC has to undergo to complete one programmed scan cycle.	(3)
6.3	Explain the term <i>scan time</i> with reference to the scan cycle of a PLC.	(2)

6.4 Refer to FIGURE 6.4 below and answer the questions that follow.

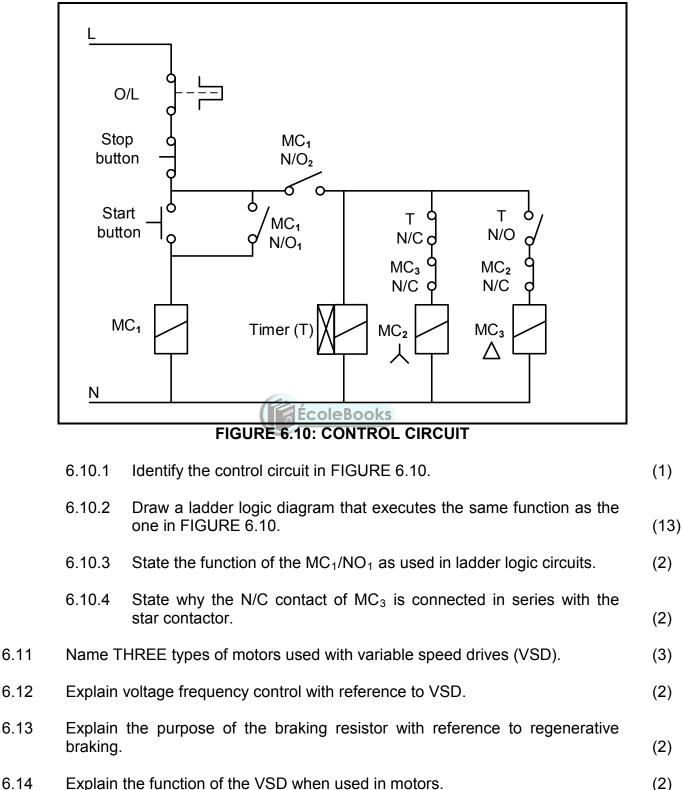


FIGURE 6.4: NAND gate

	6.4.1	Draw the ladder logic diagram.	(3)
	6.4.2	Draw the truth table for the NAND gate.	(4)
6.5	Describe	how a PLC achieves its function.	(3)
6.6	With reference to analogue and digital inputs:		
	6.6.1	Give THREE examples of analogue input devices.	(3)
	6.6.2	Explain why an analogue input may be converted to a digital input.	(4)
6.7	Describe	how a PLC uses a relay to drive a motor.	(3)
6.8	State the purpose of the timer function. (2)		(2)
6.9	Explain the <i>latching concept</i> with reference to retaining circuits.		(3)

10 NSC

6.10 Refer to FIGURE 6.10 below and answer the questions that follow.

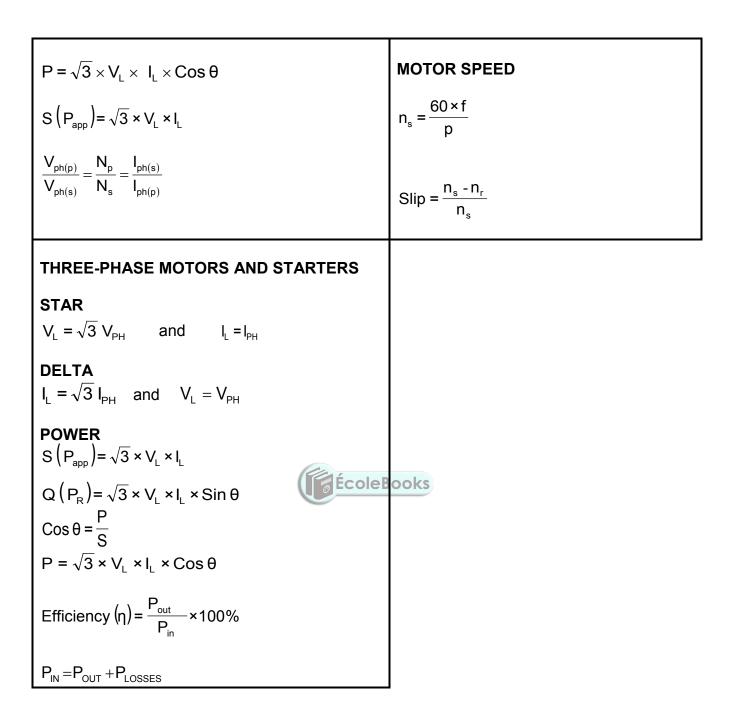
- 6.14 Explain the function of the VSD when used in motors.
- TOTAL: 200

[60]

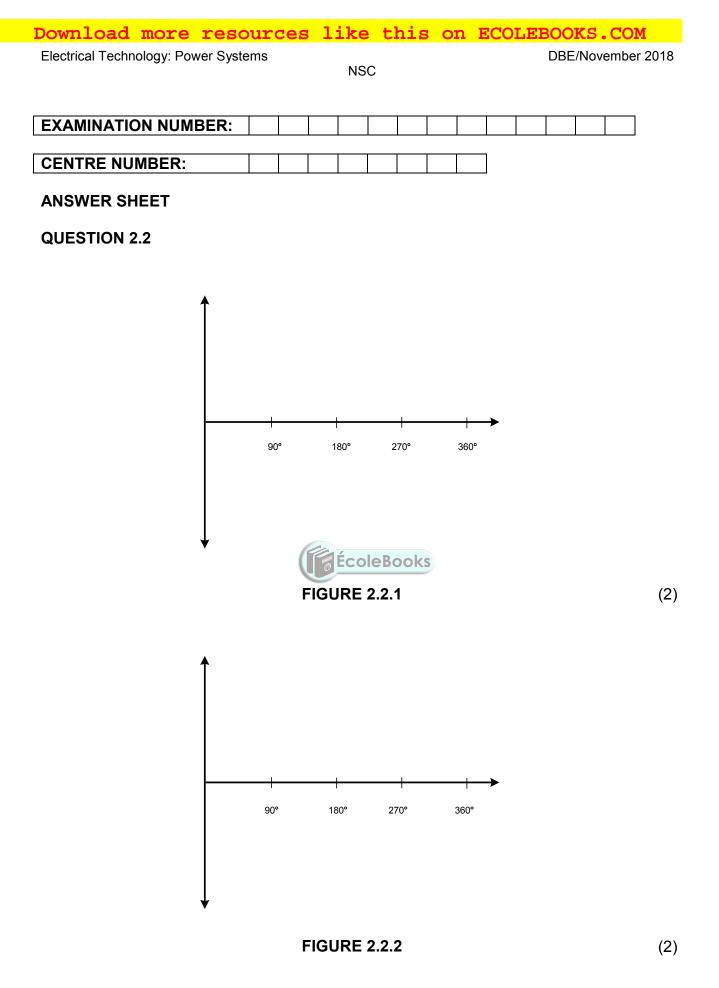
Copyright reserved

6.11

6.13


Electrical Technology: Power Systems

NSC


DBE/November 2018

FORMULA SHEET

THREE-PHASE AC GENERATION	RLC CIRCUIT
STAR	$X_{L} = 2\pi fL$ and $X_{c} = \frac{1}{2\pi fC}$
$V_{L} = \sqrt{3} V_{PH}$ and $V_{PH} = I_{PH} \times Z_{PH}$ $I_{L} = I_{PH}$	$f_r = \frac{1}{2\pi\sqrt{LC}}$
DELTA $V_1 = V_{PH}$ and $I_1 = \sqrt{3} \times I_{PH}$	SERIES I _T = I _R = I _C = I _L
$V_{PH} = I_{PH} \times Z_{PH}$	$Z = \sqrt{R^{2} + (X_{L} - X_{C})^{2}}$
POWER	$V_L = I X_L$ and $V_C = I X_C$
$S(P_{app}) = \sqrt{3} \times V_{L} \times I_{L}$	$V_T = IZ$ and $V_T = \sqrt{V_R^2 + (V_L - V_C)^2}$
$Q(P_{R}) = \sqrt{3} \times V_{L} \times I_{L} \times Sin \theta$	$I_T = \frac{V_T}{Z}$
$\cos \theta = \frac{P}{S}$	$\cos \theta = \frac{R}{Z}$
$P = \sqrt{3} \times V_{L} \times I_{L} \times \cos \theta$	$\cos \theta = \frac{V_R}{V_S}$
TWO-WATTMETER METHOD $P_T = P_1 + P_2$	$\cos \theta = \frac{V_R}{V_S}$
	$Q = \frac{X_L}{Z} = \frac{X_C}{Z} = \frac{V_L}{V_S} = \frac{V_C}{V_S} = \frac{1}{R}\sqrt{\frac{L}{C}}$
THREE-PHASE TRANSFORMERS	
STAR $V_{L} = \sqrt{3} V_{PH}$ and $I_{L} = I_{PH}$	PARALLEL $V_s = V_R = V_C = V_L$
	$I_{R} = \frac{V_{R}}{R}$ and $I_{C} = \frac{V_{C}}{X_{C}}$
DELTA $I_{L} = \sqrt{3} I_{PH}$ and $V_{L} = V_{PH}$	PARALLEL $V_{\rm S} = V_{\rm R} = V_{\rm C} = V_{\rm L}$ $I_{\rm R} = \frac{V_{\rm R}}{R}$ and $I_{\rm C} = \frac{V_{\rm C}}{X_{\rm C}}$ $I_{\rm L} = \frac{V_{\rm L}}{X_{\rm L}}$ $I_{\rm T} = \sqrt{I_{\rm R}^2 + (I_{\rm L} - I_{\rm C})^2}$ $\cos\theta = \frac{I_{\rm R}}{I_{\rm T}}$ $Q = \frac{X_{\rm L}}{Z} = \frac{X_{\rm C}}{Z} = \frac{V_{\rm L}}{V_{\rm S}} = \frac{V_{\rm C}}{V_{\rm S}} = \frac{1}{R} \sqrt{\frac{L}{C}}$
POWER	$I_{T} = \sqrt{I_{R}^{2} + (I_{L} - I_{C})^{2}}$
$S(P_{app}) = \sqrt{3} \times V_{L} \times I_{L}$	$\cos\theta = \frac{I_R}{I_T}$
$Q(P_{R}) = \sqrt{3} \times V_{L} \times I_{L} \times Sin \theta$	$Q = \frac{X_L}{Z} = \frac{X_C}{Z} = \frac{V_L}{V_S} = \frac{V_C}{V_S} = \frac{1}{R}\sqrt{\frac{L}{C}}$

Copyright reserved

