

NSC

INSTRUCTIONS AND INFORMATION

- 1. This question paper consists of FIVE questions. Answer ALL the questions.
- 2.
- 2.1 Use the ANNEXURES in the ADDENDUM to answer the following questions.
 - ANNEXURE A for QUESTION 2.3 and 2.4
 - ANNEXURE B for QUESTION 4
- 3. Number the answers correctly according to the numbering system used in this question paper.
- 4. Start EACH question on a NEW page.
- 5. You may use an approved calculator (non-programmable and non-graphical), unless stated otherwise.
- 6. Show ALL calculations clearly.
- 7. Round off ALL final answers appropriately according to the given context, unless stated otherwise.
- 8. Indicate units of measurement, where applicable.
- 9. Maps and diagrams are not necessarily drawn to scale.
- 10. Write neatly and legibly.

Download more resources like this on ECOLEBOOKS.COM Mathen Rownload from Stanmorephysics.com

NSC

2020 June Common Test

QUESTION 1

1.1		Lindo wants to study Actuarial Science at the University of Capetown. The flight took 1 hour 06 minutes from King Shaka International Airport to Capetown.			
	1.1.1	How long (in minutes) did the flight take?	(2)		
	1.1.2	Determine Lindo's departure time if she arrived in Capetown at 11:08.	(2)		
1.2		The cab from Capetown International Airport to the University charges R2,83 per kilometr The distance from the airport to the University is 15,2 km.	e.		
	1.2.1	Calculate the total amount to be paid by Lindo for the cab (single trip).	(3)		
	1.2.2	If Lindo finds another student going to the University and decide that they share the cab fare, how much will each contribute?	(2)		
	1.2.3	If Lindo and friend pay by one R50,00 note, how much will their change be?	(2)		
1.0	1.2.4	Convert the distance from Capetown International Airport to the University to miles if 1,6 km= 1 mile.	(3)		
1.3		Lindo bought a suitcase to pack her clothes at R1 250,00 before 15% discount was offered.			
1 /	1.3.1	Determine the price of the suitcase after the discount was offered.	(3)		

1.4

Students were asked to record the minimum and maximum temperatures for Durban for one week. TABLE 1 below shows minimum and maximum temperatures for Durban for one week.

TABLE 1: Shows minimum and maximum temperatures for one week in Durhan.

	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday
Maximum	27 [°]	25°	25°	27°	29°	29°	31°
Minimum	22°	21°	20°	21°	22°	25°	23°

- 1.4.1 Determine the mode of the minimum temperatures.
- 1.4.2 Calculate the mean of maximum temperatures.

(2)

(3)

Mathe	ematical	nleaded from Stanmorephysics.com	2020 June Common Test
	1.4.3	Calculate the difference between the highest maximum temperature and minimum temperature.	the lowest (2)
	1.4.4	Temperatures below 20°C determine a cold day. Determine the chance of day in the week under observation above.	f having a cold (2)
1.5		Ms Luthuli teaches learners about maps and scale. She gives learners a 1: 300.	diagram with a scale of
	1.5.1	What type of scale is given on the diagram	(2)
	1.5.2	Explain the meaning of the scale on the diagram.	(2)

QUESTION 2

The Chief Executive Officer (CEO) of Greenside paper company bought a town house at Umhlanga in Durban which costs R1 080 150,00. He also bought a three piece Texas lounge suite which costs R55 999,00.

The company distributes boxes of papers to schools. To produce one box with 5 reams of papers cost R150,00. The fixed cost per month is R1 050,00. The selling price of one box with 5 reams of paper is R307,99. Photos of lounge suite and box of papers are shown in ANNEXURE A on the addendum.

Use the above information and ANNEXURE A to answer the questions that follow.

2.1	Write down the cost price of a house in words.	(2)
2.2	The transfer costs when buying a house are 9% of the selling price. Calculate the transfer costs that the CEO will pay.	(2)
2.3	The CEO paid R5 599,00 as a deposit of the Texas Lounge Suite. Calculate the percentage of the deposit.	(3)
2.4	Show how the total of R77 563,00 was calculated when buying the lounge suite on terms.	(2)
2.5	Write down the formula for calculating the cost of producing reams of paper in the form of: Production cost =+	(2)
2.6	Write down the formula for calculating the income in the form of: Income =	(2)

Copyright Reserved

Please Turn Over

[30]

Download more resources like this on ECOLEBOOKS.COM Mathen a Walkadad from Stanmorephysics.com 2020 June Common Test

NSC

No. of boxes 0 50 100 150 С 200 Cost of boxes in 23 550 Α 8 5 5 0 16 050 31 050 R38 550 Rands Income in Rands R46 198,50 61 596 76 997,50 0 B R30 799

TABLE 2: Showing Cost price and selling price of boxes of papers 2.7

Calculate the missing values **A**, **B** and **C**.

2.8 Complete the graph of income on the attached ANSWER SHEET and label it accordingly.	(5)
---	-----

[25]

(7)

QUESTION 3

Ms Thompson owns a day care centre. She uses bright coloured square boxes to decorate the classrooms. Each square box has six sides, five of which has square openings except the bottom one. The dimensions of the square box are shown below.

150 mm

PHOTO OF A SQUARE BOX

Source : www.shapes.com

45 cm

- 3.1 Calculate the area in (cm^2) of the openings in one box. You may use the following formula: Area of a square opening = side × side
- 3.2 The box will be covered on the outside on all six sides with the bright coloured wall paper except the openings (no overlapping). Calculate the total surface area to be covered. (3)
 3.3 Use the surface area to be covered calculated in 3.2 to calculate the length of the wall paper if the width is 36,75 cm. You may use the following formula: Area = length × width (3)
 3.4 Ms Thompson will cover 6 boxes with orange wall paper, 8 boxes with blue wall paper and 4
- boxes with yellow wall paper. Determine the probability (as a decimal) of choosing orange or yellow covered box. (3)
- 3.5 One box weighs 50 grams. Convert the weight to ounces (oz) if 1 ounce = 28 grams. Round the answer to one decimal place.. (3)
 - [17]

(5)

Copyright Reserved

Download more resources like this on ECOLEBOOKS.COMMathen a Will a down from Stanmore physics.com2020 June Common TestNSCNSC

NSC

QUESTION 4

Mr Sakie is a tourism educator. He plans an educational excursion for learners. They will visit Kruger National Park in Mpumalanga province. The map of Kruger national park is shown in ANNEXURE B in the addendum.

Use the information above and ANNEXURE B to answer the following questions.

4.1	Give the name of the gate found on R525.	(2)
4.2	How many lookout points are shown on the map?	(2)
4.3	Give the general direction of Babalala picnic spot from Tshanga lookout point.	(2)
4.4	Use the bar scale and a ruler to calculate the actual distance in kilometres from Makhadzi to Tshanga.	(3)
4.5	If they travel along H 1-7 from Shingwedzi towards the North, where will they find the first lookout point?	(2) [11]

QUESTION 5

The researcher from the Department of Health collects data about AIDS related deaths to check the effect of the ARVs as years pass by.

Births and deaths	Number of	Number of	Number of	Percentage
for the period	births	deaths	AIDS related	of AIDS related
2010 - 2019			deaths	deaths
2010	1 204 340	574 718	176 946	30,8
2011	1 192 472	551 597	153 284	27,8
2012	1 184 855	550 702	148 374	26,9
2013	1 180 634	535 958	137 542	25,7
2014	1 178 657	538 866	131 908	24,5
2015	1 177 000	532 761	133 951	25,1
2016	1 179 465	526 226	130 434	24,8
2017	1 178 754	530 210	132 544	Α
2018	1 175 282	535 401	129 677	24,2
2019	1 171 219	541 493	126 805	23,4

Table 3: below shows AIDS related deaths from 2010 to 2019.

Source : www.statssa gov .za

Use the information above to answer the following questions

5.7	Round the 2018 number of births to the nearest thousand.	(2) [17]
5.6	Arrange the number of AIDS related deaths from 2015 to 2019 in descending order.	(2)
5.5	Determine the range of number of births from 2010 to 2019.	(2)
5.4	Calculate the mean number of deaths from 2015 to 2019.	(3)
5.3	Determine the number of non-AIDS related deaths in 2016.	(3)
5.2	Which year shows the least number if Aids related deaths.	(2)
5.1	Calculate the percentage (correct to one decimal place) of AIDS related deaths in 2017.	(3)

TOTAL: 100

Copyright Reserved

Please Turn Over

Copyright Reserved

PLEASE TEAR ON DOTTED LINE

Downloaded from Stanmorephysics.com education Department: Education PROVINCE OF KWAZULU-NATAL NATIONAL SENIOR CERTIFICATE **GRADE 12 MATHEMATICAL LITERACY P1 COMMON TEST ADDENDUM** I. **JUNE 2020** _ _ _ _ _ _ _

This Addendum consists of 2 Annexures (3 pages).

Copyright Reserved

Please Turn Over

Download more resources like this on ECOLEBOOKS.COM Matheman Maleadad from Stanmorephysics.com 2020 June Common Test NSC - Addendum

ANNEXURE A

QUESTIONS 2.3 to 2.4

Photo of a Texas lounge suite

Source	: www.loungesuites.com	
Cash price: R55 999.00	Deposit: R5 599,00	Term: 36 months

ANNEXURE B

QUESTION 4

Part of the map of Kruger National Park

NSC - Addendum

Source: www.krugerpark.com

Copyright Reserved

MARKS: 100

SYMBOL	EXPLANATION
М	Method
MA	Method with accuracy
CA	Consistent accuracy
MCA	method with consistent accuracy
А	Accuracy
С	Conversion
S	Simplification
RT/RG/RD/RM	Reading from a table/ graph/ diagram/Map
SF	Correct substitution in a formula
0	Opinion/ reason/deduction/example/Explanation
J	Justification
R	Rounding off
F	deriving a formula
AO	Answer only full marks
Р	Penalty e.g. for units, incorrect rounding off etc.
NPR	No penalty for rounding / units

This marking guideline consists of 7 pages.

Copyright Reserved

Please Turn Over

Mathemaawnlaadad from Stanmorephysics.com

NSC – Marking Guideline

QUESTION 1[30 MARKS]					
Ques.	Solution	Explanation	T&		
No			L		
1.1.1	Time taken by flight = 1 hour 06 minutes				
	$= 60 \text{ minutes} + 06 \text{ minutes} \checkmark C$	1C conversion	Μ		
	= 66 minutes \checkmark A	1A correct time	L1		
		\mathbf{AO} (2)			
112	Departure time = $11.08 - 66$ minutes $\checkmark M$	1M subtraction			
1.1.2	$= 10.02 \checkmark A$	1A departure time	М		
	- 10.02 * 11	$\mathbf{AO} \tag{2}$	I I		
121	Total amount – $P2.83 \times 15.2 \text{ km} \sqrt{M}$	1M multiplication (2)			
1.2.1	$-\mathbf{P}_{43} 016 \checkmark \Lambda$	1 A amount	F		
	$- R43,010 \cdot A$	1A amount 1B rounding	T 1		
	\approx K45,02 V K	TK Tounding	LI		
1.0.0	D 40.00	(3)			
1.2.2	Amount from each passenger = $\frac{R43,02}{\sqrt{M}}$		Б		
	2	1M dividing by 2	F		
	= R21,51 ✓CA	ICA amount	LI		
		AO (2)			
1.2.3	Change = $R50,00 - R43,02 \checkmark M$	CA from 1.2.1			
	= R6,98	1M subtraction	F		
	≈R6,90	1CA change	L1		
		(2)			
1.2.4	1,6 km = 1 mile				
	15,2 km = mile	1M multiplication			
	15,2 km×1mile	1M dividing	Μ		
	$=$ $\frac{1.6 \text{ km}}{1.00 \text{ M}}$		L1		
		1A miles			
	$= 9,5$ miles \checkmark A	(3)			
1.3.1	15				
	Discount = $\frac{10}{100}$ × R1 250,00 ✓ M	1M multiplication			
	- D197 50				
	$= \mathbf{N}\mathbf{107, 30}$	1M subtraction			
	Price after discoult – KT $250,00 - KT07,50 \vee W$	1A price	F		
	$= \mathbf{R}\mathbf{I} \ 062, 50 \mathbf{\vee} \mathbf{A}$	OR	I I 1		
	UK	2M subtraction and			
	$\sim M \sim M$	multiplication			
	Price after discount = R1 250,00 – $(15\% \times R1 250,00)$				
	$= R1 062,50 \checkmark A$	IA price			
	OR	$\frac{\mathbf{OR}}{\mathbf{IM}} = \frac{150}{\mathrm{from}} \frac{1000}{\mathrm{from}}$			
	Price after discount = $\frac{854}{M} \times R125000 \sqrt{M}$	1 M multiplication			
	$\frac{100}{100}$	1 vi multiplication			
	$=$ R1 062,50 \checkmark A	1A price			
1.1.5		(3)	DII		
1.4.1	Mode = $21 \checkmark A$ and $22 \checkmark A$	2A two modes	DH		
		(2)	L1		
1.4.2	$mean = \frac{27 + 25 + 25 + 27 + 29 + 29 + 31}{27 + 29 + 29 + 31}$	1M adding all values			
	7		DH		
	$=\frac{193}{M}$	1M dividing by 14	L1		
	7 ✓M				

Copyright Reserved

Please Turn Over

Download more resources like this on ECOLEBOOKS.COMMathema@wnload.com2020 June CNSC – Marking Guideline2020 June C

2020 June Common Test

	TOC Marking Guideline			
	= 27,57 ✓CA	1CA mean	(3)	
1.4.3	Difference = $31^{\circ} - 20^{\circ} \checkmark M$	1M subtraction		
	$= 11^{\circ} \checkmark A$	1A difference		DH
			(2)	L1
1 1 1	$Chance = 0$ $\sqrt{\sqrt{\lambda}}$	2A correct answer	(2)	
1.4.4	Chance $= 0$ \lor \lor A	2A confect answer	(0)	D
			(2)	P
				L1
1.5.1	Number scale $\checkmark \checkmark A$	2A correct answer		
	OR	OR		MP
	Ratio scale ✓✓A	2A correct answer		L1
			(2)	
1.5.2	1:300 It means that one unit on paper represents three hundred		~ /	
1.0.2	units in real life $\sqrt{\sqrt{F}}$	2F explanation		
				MD
		UK		
	1:300 It means that one unit on paper is three nundred times			
	bigger in real life. ✓ ✓ A	2E explanation		
			(2)	
			[30]	
QUES	TION 2 [25 MARKS]			
Ques.	Solution	Explanation		T&
No				L
21	One million and eighty thousand one hundred and fifty rands	2A correct words		F
2.1	Since minimum and enginery mousting one manarod and mary rando. $\sqrt{4}$		(2)	T 1
2.2	$T_{reprotor costs} = 00 \times D10001500000000000000000000000000000000$	1MA multiplication	(2)	
2.2	Trailster costs $= 9\% \times \text{K1} 080 130,00 \text{VMACOLEBOOKS}$			Г
	= R9/213,50 V A	1A transfer costs		F
			(2)	L1
2.3	Percentage = $\frac{R5599,00}{100} \times 100\%$ VMA			
	R55999,00	1MA % concept		F
	$= 9.998 \checkmark A$	1A percentage		L1
	$\sim 10\% \sqrt{B}$	1R rounding		
	~ 1070 · K	8	(3)	
2.4	Total amount – Deposit + $P10000 \times 36 \sqrt{M}$	1M multiplying by 36	(5)	
2.4	- D5 500 00 + D71 064 ./M	1 Madding deposit		Б
	$= K_{3} 399,00 + K/1 904 \vee M$	The adding deposit		
	= R// 563		(2)	LI
2.5	Production cost = $R1 050,00 + R150,00 \times number of$	2F formula		F
	boxes✓✓F		(2)	L2
2.6	Income = R307,99 × number of boxes sold $\checkmark \checkmark F$	2F formula		F
			(2)	L2
2.7	$A = R1 050,00 \checkmark \checkmark A$	2A fixed cost		
	$B = 50 \times R307.99 \checkmark M$	1M multiplication		
	$= R15 399 50 \checkmark A$	1A value of B		
	- 11.0 077,00 * 11			F
		1 M Identifying both cor	rect	L2
	$C = R/6.997,50 \div R307,99 \checkmark \checkmark M$	values		
	$= 250 \checkmark A$	1M dividing by R307,99)	
		1A value of C		
	OR	OR		

Matheman Manager from Stanmorephysics.com

Download more resources like this on ECOLEBOOKS.COMMathematicwnload and from Stanmorephysics.com2020 June CoNSC – Marking Guideline2020 June Co

2020 June Common Test

QUESTION 3 [17 MARKS]					
Ques.	Solution	Explanation	T& L		
3.1	Area of a square opening = side × side = $(150 \text{ mm} \div 10) \times (150 \text{ mm} \div 10) \checkmark C$ = $15 \text{ cm} \times 15 \text{ cm} \checkmark SF$ = $225 \text{ cm}^2 \checkmark CA$	1C conversion 1SF correct substitution 1CA area			
	Total area of square openings = $225 \text{ cm}^2 \times 5 \checkmark \text{M}$ = $1 \ 125 \text{cm}^2 \checkmark \text{CA}$ OR	1M multiplying by 5 1CA total area OR			
	Area of a square opening = 150 mm × 150 mm × SF = 22 500 mm ² × A Total area of square openings = 22 500 mm ² × 5 × M = 112 500 mm ² ÷ 100 × C = 1.125 cm ² × CA	1SF correct substitution 1A area 1M multiplying by 5 1C conversion			
	- 1 125 cm · CA	(5)			
3.2	Surface area to be covered = $(45 \text{ cm} \times 45 \text{ cm} \times 6)$ – area of $\checkmark A$ openings $\checkmark M$ = $12 \ 150 \text{ cm}^2 - 1 \ 125 \text{ cm}^2$ = $11 \ 025 \text{ cm}^2 \checkmark CA$	CA from 3.1.1 1M subtracting area of openings	M L2		
		1CA surface area (3)			
3.3	Area = length × width $11\ 025\ cm^2$ = length × 36,75 cm \checkmark SF	CA from 3.2 1SF correct substitution			
	$length = \frac{11025 \text{ cm}^2}{36,75 \text{ cm}} \checkmark M$ $= 300 \text{ cm} \checkmark A$	1M dividing by 36.75 1A length (3)	M L2		
3.4	P(yellow or orange box) = $\frac{10}{18} \checkmark A$ = 0,555 $\checkmark CA$	1A numerator 1A denominator 1CA decimal (3)	P L2		
3.5	Weight 1 ounce = 28 g ounce = 50 g = $\frac{50}{28} \checkmark M$ = 1,7857 $\checkmark A$ ≈ 1.8 ounce $\checkmark A$	1M dividing by 28 1A weight 1A one decimal place	M L1		
		(3) [17]			

Mathemacownloaded from Stanmorephysics.com

NSC – Marking Guideline

QUESTION 4 [11 MARKS]				
Ques.	Solution	Explanation		Т&
No				L
4.1	Pafuri gate ✓✓A	2A correct answer		MP
	C C		(2)	L1
4.2	8 ✓ ✓ A	2A correct answer		
			(2)	MP
				L1
4.3	North $\checkmark \checkmark A$	2A direction		
			(2)	MP
				L1
4.4	2,8 cm: 16 km			
	8,5 cm: km	1M multiplying by 8,5		
	$km = 16 \times 8,5 \checkmark A$	1M dividing by 2,8		
	$\operatorname{KIII} = \frac{1}{2,8} \checkmark \mathrm{A}$			
	= 48,57142			MP
	≈48,57 km ✓A	1A no. of km		L2
	OR	OR		
	28 mm: 16 km			
	85 mm: km	1M multiplying by 85		
	$km = \frac{16 \times 85}{4} \checkmark A$	1M dividing by 28		
	$\operatorname{Km} = \frac{1}{28} \sqrt{A}$			
	= 48,57142			
	≈48,57 km ✓A	1A no. of km		
		Accept 8,6 cm or 8,4 cm	(3)	
4.5	Dzundzwini ✓✓A	2A correct place		
			(2)	MP
				L1
			[11]	

QUESTION 5 [17 MARKS]					
Ques.	Solution	Explanation	T&		
No		-	L		
5.1	$Percentage = \frac{132544}{100\%}$	1MA both correct values	DH		
	$1 \text{ encentage} = \frac{1}{530210} \times 100\%$		L1		
	= 24,998	1A percentage			
	= 25,0%	1A rounding			
		(3)			
5.2	2019 ✓✓A	2A correct year	DH		
		(2)	L1		
5.3	✓MA ✓M	1MA identifying correct values	DH		
	Non AIDS related deaths = $526\ 226\ -\ 130\ 434$	1M subtraction	L1		
	= 395 792 ✓CA	1CA answer			
		(3)			
5.4	$Mean = \frac{532761 + 526226 + 530210 + 535401 + 541493}{M}$	1M adding values			
	5				

Copyright Reserved

Please Turn Over

Download more resources like this on ECOLEBOOKS.COMMathema@Willeadadfrom Stanmorephysics.com2020 June CNSC – Marking Guideline

2020 June Common Test

	_ 2667091	1M dividing by 5	DH		
	$ 5 \checkmark A$		L2		
	$= 533 418,20 \checkmark CA$	1CA mean			
		(3)			
5.5	Range = $1\ 204\ 340 - 1\ 171\ 219 \checkmark M$	1M subtraction			
	$= 33\ 121 \checkmark A$	1A range	DH		
		(2)	L1		
5.6	133 951 ; 132 544 ; 130 434 ; 129 677 ; 126 805 ✓ ✓ A	2A correct order	DH		
		(2)	L1		
5.7	$1\ 175\ 282 \approx 1\ 175\ 000 \checkmark \checkmark A$	2A correct rounding	DH		
		(2)	L1		
		[17]			
	TOTAL	100			

Copyright Reserved