

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

......

FEBRUARY/MARCH 2011

MEMORANDUM

MARKS: 150

SYMBOL	EXPLANATION
А	Accuracy
CA	Consistent accuracy
С	Conversion
J	Justification (Reason/Opinion)
М	Method
MA	Method with accuracy
Р	Penalty for no units, incorrect rounding off, etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Correct substitution in a formula
0	Own opinion

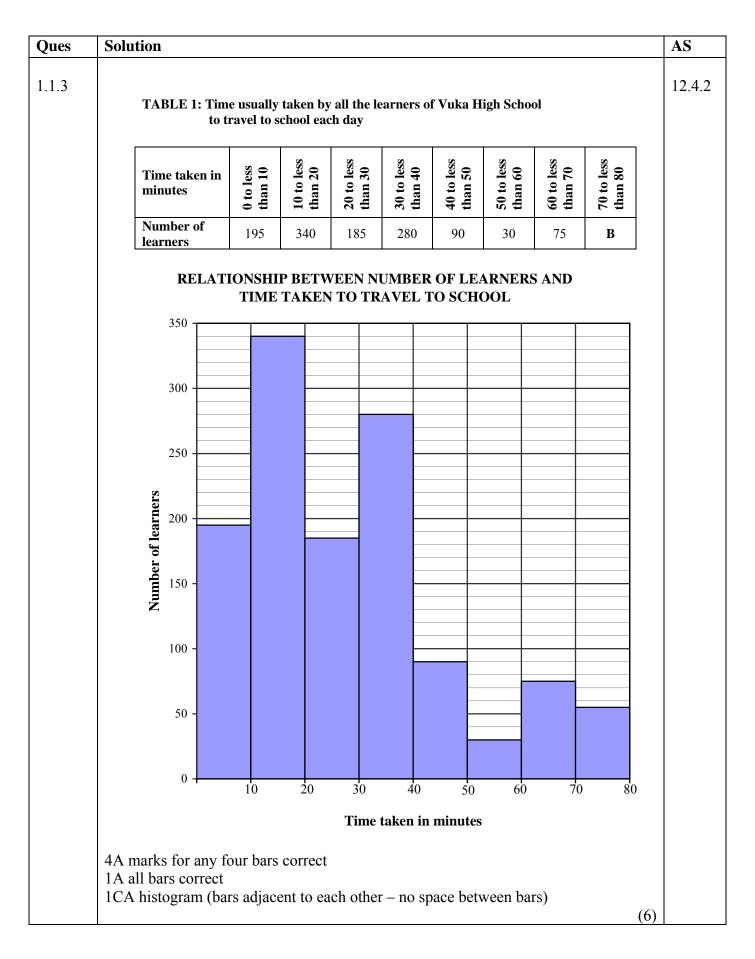
This memorandum consists of 22 pages.

Copyright reserved

Please turn over

	ON 1 [40 MARKS]		
Ques	Solution	Explanation	AS
1.1.1(a)	✓M A = 100% - (15,6 + 27,2 + 22,4 + 7,2 + 2,3 + 6,0 + 4,4)% = 14,8% ✓CA	1M subtracting from 100% 1CA value of A	12.4.4
	OR		
	Number of learners in school = $\frac{340}{27,2\%}$		
	= 1 250 ✓M	1MA number of learners at school	
	$A = \frac{185}{1250} \times 100\%$ = 14,8% $\checkmark CA$		
	= 14,8% ✓CA	1CA value of A (2)	
1.1.1(b)	Total number of learners = $\frac{195}{15,6\%}$ ÉcoleBooks		12.4.4 12.1.1
	= 1 250 × A	1A number of learners	
	$\frac{B}{1\ 250} \times 100\% = 4,4\% \checkmark M$	1M using 4,8%	
	$B = \frac{4,4\% \times 1250}{100\%}$		
	= 55 ✓CA	1CA value of B	
		(3)	

Download	more	resources	like	this	on	ECOLEBOOKS.COM
----------	------	-----------	------	------	----	----------------


Mathematical Literacy/P2

3 NSC – Memorandum

Ques	Solution	Explanation	AS
1.1.2	Percentage = $7,2\% + 2,4\% + 6\% + 4,4\% \checkmark M$ = $20\% \checkmark CA$	1M adding 1CA percentage	12.4.4
	OR		
	Percentage = $\frac{90 + 30 + 75 + 55}{1\ 250} \times 100\%$ \checkmark M	1M finding percentage	
	$=\frac{250}{1\ 250}\times 100\%$		
	$=20\%$ \checkmark CA	1CA percentage	
			2)

4 NSC – Memorandum

Copyright reserved

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Mathematical Literacy/P2

5 NSC – Memorandum

Ques	Solution	Explanation	AS
1.2.1(a)	Average speed = $\frac{\text{distance}}{\text{time}} \checkmark M$	1M rearranging the formula	12.2.1
	$= \frac{12 \mathrm{km}}{60 \mathrm{min}} \checkmark \mathrm{SF}$	1SF substitution	
	$=\frac{12\ 000\ \mathrm{m}}{60\ \mathrm{min}}\checkmark\mathrm{C}$	1C conversion	
	= 200 metres per minute \checkmark CA	1CA solution	
	OR Distance = average speed × time	OR	
	12 km = average speed \times 60 minutes \checkmark SF	1SF substitution	
	12 000 m = average speed \times 60 minutes \checkmark C	1C conversion	
	$\frac{12\ 000\ \text{m}}{60\ \text{min}} = \text{average speed} \qquad \checkmark M \qquad \qquad \texttt{ÉcoleBooks}$	1M rearranging the formula	
	Average speed = 200 metres per minute \checkmark CA	1CA solution (4)	
1.2.1(b)	200 m/minute is too fast for walking and too slow for travelling by car or by taxi. $\checkmark O$ Thus, the learner was cycling/running/travelling in a donkey cart. $\checkmark \checkmark J$		12.1.2
	OR ✓ ✓J		
	Any other sensible reason	(3)	
1.2.2	The statement of the newspaper was NOT correct. $\checkmark O$ $\checkmark J$ The sample chosen was too small (not representative of the whole country) so cannot be used to make conclusions about the whole country. $\checkmark J$	10 conclusion of the newspaper 2J representivity of the sample (3)	12.4.6

Ques	Solution	Explanation	AS
Ques 1.3	Solution Area needed for 1 bicycle = $(1,8 \text{ m} \times 0,45 \text{ m}) + 0,5 \text{ m}^2$ MA $\checkmark CA$ $= 0,81 \text{ m}^2 + 0,5 \text{ m}^2$ $= 1,31 \text{ m}^2 \checkmark CA$ So, area needed for 124 bicycles = $124 \times 1,31 \text{ m}^2 \checkmark A$ $\checkmark CA$ $= 162,44 \text{ m}^2 \checkmark CA$ OR Area needed for 1 bicycle $\checkmark MA \qquad \checkmark C \qquad \checkmark A$ $= (180 \text{ cm} \times 45 \text{ cm}) + 0,5 \times 10\ 000\ \text{ cm}^2$ $= 8\ 100\ \text{ cm}^2 + 5\ 000\ \text{m}^2$ $= 13\ 100\ \text{ cm}^2 \qquad \checkmark CA$ So, area needed for 124 bicycles = $124 \times 13\ 100\ \text{ cm}^2$	1C conversion to m 1MA area for a bicycle 1CA additional space 1A total area for a bicycle 1A multiplication by 124 1CA Solution 1CA correct unit 1C conversion to cm ² 1MA area for a bicycle 1A additional space 1CA total area for a bicycle 1A additional space 1CA multiplication	AS 12.3.1 12.3.1
	$= 162,44 \text{ m}^2 \checkmark \text{A}$	by 124 1CA Solution	
		1A correct unit (7)	

Mathematical Literacy/P2

7 NSC – Memorandum

Ques	Solution	Explanation	AS
1.4.1	Mean $= \frac{2+4+6+3+4+5+6+5+7+5+16+9+5+C+17+9}{16}$ $= \frac{103+C}{16} \checkmark S$	1MA finding the mean 1S simplification	12.4.3 12.4.4
	Mean = 7 $\therefore \frac{103 + C}{16} = 7 \checkmark M$ $103 + C = 7 \times 16$ C = 112 - 103	1M equating to 6	
	$=9 \checkmark CA$	1CA value of C (4)	
1.4.2	Responses in ascending order are: 2; 3; 4; 4; 5; 5; 5; 6; 6; 7; 9; 9; 9; 16; 17	1CA ascending order	12.4.3
	The median = $\frac{5+6}{2} \checkmark M$ = 5,5 people $\checkmark CA$	1M finding the median 1CA median (3)	
1.4.3	Mrs James should use the median rather than the mean \checkmark O	10 correct measure	12.4.3
	The mean (i.e. 7 people) is not a good measure to use as 10 of the 16 households have less than 7 people. The mean is affected by large numbers. $\checkmark J$	1J rejecting the mean	
	More than 50% of the households have 5 people or less thus making the median (i.e. 5,5 people) a more accurate measure.	1J accepting the median (3)	

QUESTI	QUESTION 2 [33 MARKS]					
Ques	Solution		Explanation	AS		
2.1.1(a)	$P = \frac{4}{2} \checkmark M$ $= 2 \checkmark CA$		1 M method 1CA value of P	12.2.1		
			(2)			
2.1.1(b)	$1 = \frac{5}{Q} \checkmark M$		1 M method	12.2.1		
	$1 = \frac{5}{Q} \checkmark M$ $Q = \frac{5}{1}$ $= 5 \checkmark CA$		1CA value of Q			
	OR					
	$0,8 = \frac{4}{Q} \checkmark M$ $Q = \frac{4}{0,8}$ $= 5 \checkmark CA$		1 M method			
	$Q = \frac{1}{0.8}$ $= 5 \checkmark CA$	ÉcoleBooks	1CA value of Q (2)			

Download more resources like this on ECOLEBOOKS.COM Mathematical Literacy/P2 9

NSC - Memorandum

2.1.2	No. of workers	1	2	4	5	8	$\left \right $		12.2.2
	Time taken (in hours) for TYPE A	4	2	1	0,8	0,5			
	Time taken (in hours) for TYPE B	5	2,5	1,25	1	0,625			
	TIME TAK ON	EN PER IE PAIR				E			
	Time taken per person (in hours)	/CA	✓A					Type A Sandal 2A all points plotted 1CA correct graph 1A label Type B Sandal 2A all points plotted 1CA correct	
		3			7	8 9	A A	graph 1A label	
		Nur	nber of wo	orkers					
								(8)	
2.1.3	Inverse proportion or	Indirect	proport	ion 🗸 🗸	CA			2CA type of proportion (2)	12.2.1

Ques	Solution	Explanation	AS
2.2.1	Jabu's wages = R11,25/hour × 40 hours $\checkmark M$ = R450,00 $\checkmark CA$ $\checkmark M$ $\checkmark CA$ Each worker earns 80% of R450,00 = R360,00 Total paid = R450,00 + 3 × R360 $\checkmark M$ = R1 530,00 $\checkmark CA$	1M calculating Jabu's wages 1CA Jabu's wages 1M calculating worker's wages 1CA worker's wages 1M adding all wages 1CA total wages	12.1.3 12.2.1
	OR Jabu's wages = R11,25/hour × 40 hours $\checkmark M$ = R450,00 $\checkmark CA$ $\checkmark M$ Each worker earns 80% of R11,25 = R9,00 $\checkmark CA$ Total paid = R450,00 + 3 × R9,00/hour × 40 hours $\checkmark M$ = R1 530,00 $\checkmark CA$	1M calculating Jabu's wages 1CA Jabu's wages 1M calculating worker's wages 1A worker's hourly wage 1M adding all wages 1CA total wages (6)	
2.2.2	Overtime pay per hour = $1.5 \times R11.25 \checkmark M$ = R16.875 $\approx R16.88 \checkmark CA$	1M calculating overtime rate 1CA overtime rate	12.1.3
	Jabu's earning = R450,00 + R16,88/hour × 8 hours $\checkmark M$ = R450,00 + R135,04 $\checkmark CA$ = R585,04 $\checkmark CA$ OR $\checkmark A$ $\checkmark A$ Jabu's earning = R450,00 + 8 × (1,5 × R11,25) $\checkmark M$ = R450,00 + R135,00 $\checkmark CA$ = R585,00 $\checkmark CA$	1M calculating Jabu's wages 1CA overtime pay 1CA total earnings1A number of hours overtime 1A multiplying by overtime rate 1M calculating Jabu's wages 1CA overtime pay 1CA total earnings	

Mathematical Literacy/P2

11 NSC – Memorandum

Ques	Solution	Explanation	AS
2.3.1(a)	Percentage = $25\% \checkmark \checkmark A$	2A percentage	12.4.3
	OR		
		1A number of days	
	Percentage = $\frac{3}{12} \times 100\%$ \checkmark A	1CA percentage	
	= 25% ✓CA	(2)
2.3.1(b)	Percentage = $50\% \checkmark \checkmark A$	2A percentage	12.4.3
	OR		
	Percentage = $\frac{6}{12} \times 100\%$ \checkmark A	1A number of days	
	$= 50\% \checkmark CA$		
	Car	1CA percentage (2	
2.3.2(a)	$P(3 \text{ Type B}) = \frac{2 \checkmark A}{12 \checkmark A}$	1A number of days 1A total number of days	12.4.5
	$= \frac{1}{6}$ = 0,1666		
	≈ 0,167	(2	
			/
2.3.2(b)	P(more than 4 Type A) = $\frac{6}{12} \checkmark A$	1A number of days	12.4.5
	,	1A total number of	
	$=\frac{1}{2}$	days	
	= 0,25	(2)

QUESTION 3 [25 MARKS]						
Ques	Solution	Explanation	AS			
3.1.1	Distance around the pencil = $6 \times 3 \text{ mm}$ $\checkmark M$	1M multiplying by 6	12.3.1			
	$= 18 \text{ mm} \checkmark \text{A}$	1A distance				
	Length of pencil covered by beads = $\frac{1}{3} \times 180 \text{ mm} \checkmark C$	1C conversion				
	= 60 mm ✓ A	1A length				
	Surface area of pencil covered by beads					
	= $18 \text{ mm} \times 60 \text{ mm} \checkmark \text{MA}$	1MA use of area formula				
	$= 1.080 \text{ mm}^2 \checkmark \text{CA}$	1CA area of beaded section				
	OR					
	Area of one of the beaded sides of the pencil = $3 \text{ mm} \times (\frac{1}{3} \times 180 \text{ mm}) \checkmark \text{MA} \checkmark \text{C}$ $\checkmark \text{CA}$ = $3 \text{ mm} \times 60 \text{ mm}$	1MA use of area formula 1C conversion 1CA width				
	$= 180 \text{ mm}^2 \checkmark \text{CA}$	1CA area of one beaded side				
	$\therefore \text{ Surface area of the pencil covered by beads} = 6 \times 180 \text{ mm}^2 \checkmark \text{CA}$	1CA multiplying by 6				
	$= 1\ 080\ \mathrm{mm}^2 \checkmark \mathrm{CA}$	1CA area of beaded section (6)				

Mathematical Literacy/P2

13 NSC – Memorandum

Ques	Solution	Explanation	AS
3.1.2	Distance around the pencil = 18 mm \therefore The number of beads = $18 \text{ mm} \div 1,5 \text{ mm}$ = $12 \checkmark \text{CA}$	1M dividing 1CA number of beads	12.3.1 12.1.1
	Length of beaded area = $60 \text{ mm}_{\checkmark M}$ The number of beads = $60 \text{ mm} \div 1,5 \text{ mm}$ = $40 \checkmark CA$	1M dividing 1CA number of beads	
	So the number of beads needed = $12 \times 40 \checkmark M$ = $480 \checkmark CA$	1M multiplying 1CA solution	
	OR		
	Width of one side of pencil = 3 mm Number of beads needed for width = 3 mm \div 1,5 mm = 2 Length of pencil to be beaded = 60 mm Number of beads needed for length = 60 mm \div 1,5 mm = 40 Number of beads needed for one side of pencil = 2 × 40 = 80 beads	1M dividing 1A number on width 1M dividing 1A number on length 1CA number on side	
	Number of beads needed for six sides of pencil = 6×80 = $480 \checkmark CA$	1CA number on six sides (6)	

Ques	Solution	Explanation	AS
3.2.1	$\checkmark MA$ Cost of labour (for beading) = $\frac{5}{60} \times R15,50$ = $R1,29 \checkmark CA$ Cost of beads = $\frac{480}{1000} \times R8,00 \checkmark MA$ = $R3,84 \checkmark CA$	1MA fraction and multiplication 1CA cost of labour 1MA fraction and multiplication 1CA cost of beads	12.1.1
	Cost of pencil = $\frac{R30,00}{12}$ \checkmark MA = R2,50 \checkmark CA Total cost price of the beaded pencil	1MA dividing by 12 1CA cost of one pencil	
	= $R1,29+R3,84+R2,50$ = $R7,63 \checkmark CA$ % Selling price = $100\% + 35\% = 135\%$	1CA total cost of a pencil	
	Selling price $= \frac{135}{100} \times R7,63$ $= 1,35 \times R7,63$ $= R10,30 \checkmark CA$	1M calculating increase % 1CA cost of pencil	

Mathematical Literacy/P2

15 NSC – Memorandum

Ques	Solution	Explanation	AS
3.2.2	Price of pencil = $R10,30$		12.1.1
	R1 = ARS 0,54895		
	$R10,30 = ARS 0,54895 \times 10,30$ $\checkmark A$	1A using the	
	= ARS 5,654185	exchange rate	
	Price of one pencil = ARS 5,654185 \checkmark CA	1CA price of pencil in Argentinean peso	
	Number of pencils = $\frac{ARS \ 100}{ARS \ 5,654185}$ $\checkmark M$	1M finding number of pencils	
	= 17,686		
	≈ 17 ✓CA	1CA number of	
		pencils	
		(4)	

Ques	Solution	Explanation	AS	
4.1.1	METHOD 1	METHOD 2		12.1.3
	Discount = 5% of R139 900 ^M	Price after discount $\checkmark M \qquad \checkmark M$ = 95% of R139 900	1M calculating % 1A calculating 5%	
	$=\frac{5}{100}$ × R139 900	$=\frac{95}{100}$ × R139 900	1CA cash price (ex VAT)	
	$= 0.05 \times R139\ 900$	= 0,95 × R139 900	OR	
	= R6 995,00 \checkmark A	= R132 905 ✓CA	1M subtracting from 100%	
	Price after discount		1M calculating	
	$= R139\ 900 - R6\ 995,00$		percentage	
	= R132 905 ✓CA		1CA discounted price	
	VAT	Total cost including VAT	1M adding 14%	
	= 14% of R132 905	= 114% of R132 905 × M	1CA price including	
	$=\frac{14}{100} \times R132905$	$=\frac{114}{100}$ × R132 905	VAT	
	$ \begin{bmatrix} 100 \\ = R18\ 606, 70 \checkmark CA $	$100 = 1.14 \times P132.005$	OR	
	- K18 000,70	= $1,14 \times R132\ 905$ = R151 511,70 \checkmark CA	1CA calculating VAT	
	Total cost including VAT		1CA cash miss (incl	
	$= R132\ 905\ +R18\ 606,70$		1CA cash price (incl.	
	= R151 511,70 CA		VAT)	
	•	5% of R151 511,70 5 ✓M		
	$=\frac{0,72}{100}$	$5 \times R151511,70 \checkmark M$	1M calculating %	
	= 0,00	75 × R151 511,70		
	= R 1	136,34 ✓CA	1CA delivery cost	
	Full purchase cash price			
	$= R151\ 511,70 + R\ 1\ 136,$	34 + R1 400,00 + R4 950,00		
	= R158 998,04 ✓CA		1CA purchase price	

Copyright reserved

Please turn over

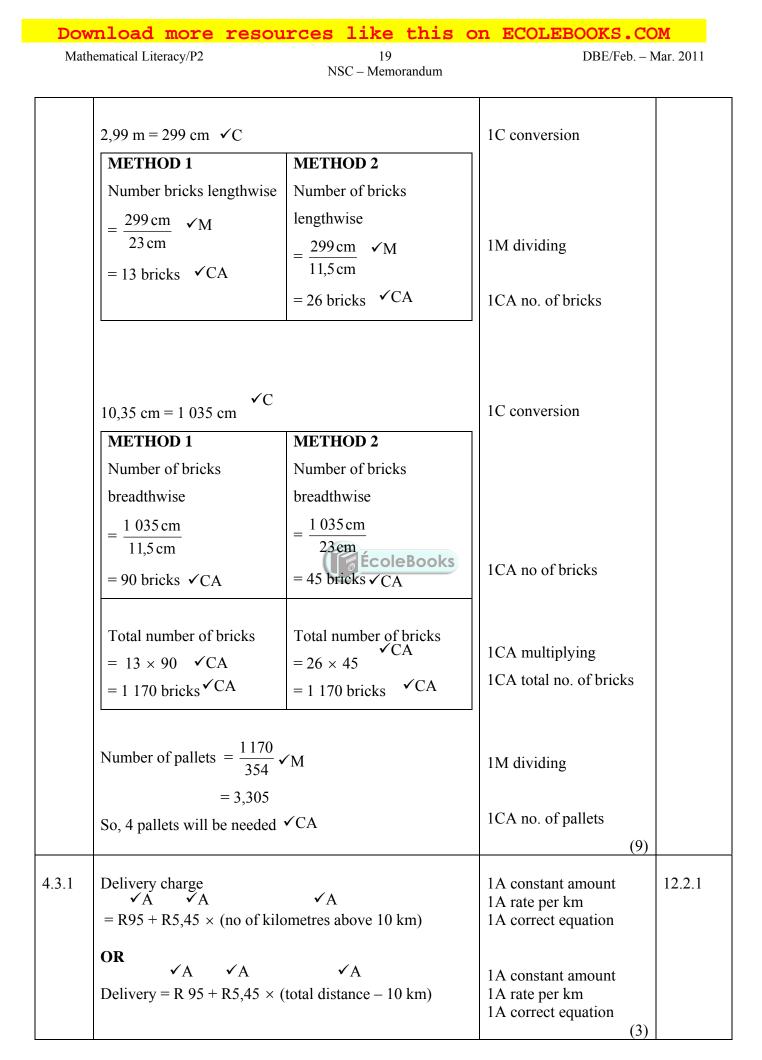
DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Mathematical Literacy/P2

17 NSC – Memorandum DBE/Feb. - Mar. 2011

Ques Solution **Explanation** AS 4.1.2 Deposit = 20% of R158 998,04 12.1.3 ✓CA = R31 799,61 1CA deposit amount Amount to be financed = $R158 998,04 - R31 799,61 \checkmark M$ 1M subtracting ✓CA = R127 198,43 1CA amount financed OR % to be financed = 100% - 20%= 80% ✓CA 1CA correct % Amount to be financed = $\frac{80}{100} \times R158998,04$ 1M calculating % ٧M 1CA amount financed $= 0.8 \times R158 998.04$ = R127 198,43√CA $\mathbf{A} = \mathbf{P}(1 + i \times n)$ ✓SF ✓A 1SF substituting P $= R127 198,43 (1 + 0,12 \times 5)$ ÉcoleBooks 1A value of *i* = R203 517,49 ✓CA 1CA amount to be repaid **METHOD 1** METHOD 2 ✓М 1M multiplying by 60 Monthly instalment R3 399.00 × 60 **OR** 1M dividing by 60 = R203 940,00 \checkmark CA R203 517,49 ✓М 60 = R3 391,95816.. The monthly instalment is 1CA monthly instalment ✓CA ≈ R3 391,96 over by R422,51 over the **OR** 1CA total paid 60 months. \checkmark J

1J conclusion


Copyright reserved

The monthly instalment is

over by R7,04 ✓J

(9)

Ques	Solution	Explanation	AS
4.2	Area to be paved = 2,99 m \times 10,35 m \checkmark MA	1MA using area formula	12.3.1
	$= 30,9465 \text{ m}^2 \checkmark \text{CA}$	1CA paving area	
	✓MA Area of the top face of a brick = 23 cm × 11,5 cm = 264,5 cm ² ✓A = 0,02645 m ² ✓C	1MA using area formula 1A area of each brick 1C converting	
	Number of bricks = $\frac{30,9465 \text{ m}^2}{0,02645 \text{ m}^2} \checkmark \text{M}$ = 1 170 bricks $\checkmark \text{CA}$	1M dividing 1CA number of bricks	
	Number of pallets $=\frac{1170}{354}$ \checkmark M	1M dividing by 160	
	$= 3,305$ So, 4 pallets will be needed \checkmark CA	1CA number of pallets	
	OR		

4.3.2	Delivery charge by ABC Transport		12.2.1
	$= R95 + R5,45 \times (35 \text{ km} - 10 \text{ km}) \checkmark \text{SF}$ $= R95 + R5,45 \times 25 \text{ km}$	1SF substitution	
	= R 231,25	1A delivery charge	
	Friend's charge = R250,00		
	✓CA Ravi should use ABC transport because he would save ✓✓J R18,75	1CA choice 2J justification (5)	

Copyright reserved

Please turn over

Dermiler al			1 2 1	and the state of the		TOOT TROOMS CON
Downtoad	more	resources	like	CNIS	on	ECOLEBOOKS.COM

Mathematical Literacy/P2

21 NSC – Memorandum

	Question 5 [18 MARKS]				
Ques	Solution	Explanation	AS		
	$\int SF = 25 m \times 25 m \times 2m$				
5.1.1	Capacity – 2,5 m \times 2,5 m \times 2 m	1SF substitution	12.3.1		
	$= 12,5 \text{ m}^3 \checkmark \text{CA}$	1CA computation	12.3.2		
	$= 12,5 \mathrm{k} \ell \checkmark \mathrm{C}$	1C converting to $k \ell$			
		(3)			
5.1.2	65% of capacity = 0,65 of 12,5 k ℓ		12.1.1		
	$= 8,125 \text{ k} \ell \checkmark \text{A}$	1A 65% of tank	12.2.1		
	0,120 K + 1		12.3.2		
	Full output = 3,6 k ℓ /hour		12.3.2		
		1M multiplication			
	$\frac{2}{3}$ of output = $\frac{2}{3} \times 3,6 \mathrm{k} \ell$ /hour $\checkmark \mathrm{M}$	1M multiplication			
	= 2,4 k ℓ /hour \checkmark CA	1CA operating output rate			
	Time taken to fill 65% = $\frac{8,125 \text{k}\ell}{2,4 \text{k}\ell/\text{hour}}$ MoleBooks	1M finding time			
	= 3,385… hours ✓CA	1CA time in hours			
	$= 3 \text{ hours} + 0,385 \times 60 \text{ min}$				
	= 3 hours + 23,125 minutes				
	$= 3 h 24 min \checkmark CA$	1CA time in minutes and			
		hours			
		(6)			
5.2.1	Daily water consumption		12.2.1		
	✓M ✓M		12.3.1		
	$= 40 \times 90 \ell + 20 \times 50 \ell + 30 \times 50 \ell + 50 \times 5 \ell$	2M substitution	12.3.2		
	$= 6350 \ell^{-1} CA$	1CA simplification			
	$= 6,350 \mathrm{k\ell} \checkmark \mathrm{C}$	1C conversion			
		(4)			

Ques	Solution	Explanation	AS
5.2.2	Water needed for ten days = $6,35 \text{ kl} \times 10$ $\checkmark \text{M}$	1M multiplication	12.1.1
	$= 63.5 \mathrm{k\ell}$		12.2.1
	$= 63.5 \text{ m}^3 \checkmark \text{C}$	1C conversion	12.3.2
	$3,14 \times (radius)^2 \times 2 m = 63,5 m^3 \checkmark SF$	1SF substitution	
	$(radius)^2 = \frac{63.5 \mathrm{m}^3}{3.14 \times 2 \mathrm{m}}$		
	$(radius)^2 = 10,111m^2 \checkmark CA$	1CA simplification	
	radius = $\sqrt{10,111m^2}$		
	radius = 3,17985m	1CA solution	
	radius = $3,18 \text{ m}$ \checkmark CA		(5)

TOTAL: 150

Copyright reserved