

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

_ _ _ _ _ _ _ _ _

FEBRUARY/MARCH 2012

MEMORANDUM

MARKS: 150

SYMBOL	EXPLANATION
А	Accuracy
CA	Consistent accuracy
С	Conversion
J	Justification (Reason/Opinion)
М	Method
MA	Method with accuracy
Р	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Correct substitution in a formula
0	Own opinion/Example

This memorandum consists of 13 pages.

Copyright reserved

Please turn over

QUESTION 1 [28 MARKS]			
Ques	Solution	Explanation	AS
1.1.1	45 mm = 4,5 cm OR $265 cm = 2650 mm$	1C converting	12.3.1
	Scale: 4,5 cm : 265 cm \checkmark OR 450 mm : 2 650 mm	1M ratio in correct order	
	= 1: 58,888 = 1: 58,888		
	$= 1:58,89$ \checkmark CA $= 1:58,89$	1CA simplification (3)	
	√ 0		12.1.3
1.1.2	<u>6 m wide plastic:</u> He would have to buy 3 m (and would have lots left over).	1 O recognising that only 6 m is suitable	12.3.1
	$Cost = 3 \text{ m} \times \text{R44,99/m} \\ = \text{R134,97} \checkmark \text{CA}$	1A length of the 6 m wide plastic 1CA cost of plastic	12.3.2
	$\frac{\text{Cut to order plastic:}}{\text{Area} = 380 \text{ cm} \times 265 \text{ cm}}$ $= 3,80 \text{ m} \times 2,65 \text{ m} \checkmark \text{C}$ $= 10,07 \text{ m}^2 \checkmark \text{CA}$ $\text{Cost (ex. VAT)} = 10,07 \text{ m}^2 \times \text{R12,24/m}^2$ $= \text{R123.26} \checkmark \text{CA}$	1C conversion 1CA area of plastic	
	Cost including VAT:		
	$\begin{vmatrix} 100\% + 14\% = 114\% \\ \checkmark M \\ \therefore Cost = \frac{114}{14} \times B123.26 \end{vmatrix}$ VAT = $\frac{14}{100} \times B123.26 \checkmark M$ = B17,26	1M calculating increased %	
	$\begin{array}{c} 100 \\ = R140,52 \checkmark CA \end{array} \qquad \begin{array}{c} Cost = R123,26 + R17,26 \\ = R140,52 \checkmark CA \end{array}$	1CA cost including VAT	
	The most economical way of buying the ground sheet is to buy the 6 m wide plastic . \checkmark O	10 opinion (9)	

Mathematical Literacy/P2

Solution

Ques

3 NSC – Memorandum DBE/Feb.-Mar. 2012

AS

12.4.4

Explanation

(Accept answers with

9 hours $\checkmark RG$ 1.2.1 ± 15 min.) 2RG reading from graph (2)(Accept answers from 12.4.4 7 °C 1.2.2 ✓RG 6,5° to 7°) ✓RG 15:00 1RG temperature 1RG time (2)12.4.4 ✓RG ✓RG 1.2.3 Between 00:00 and 09:00 2RG reading from graph (2)12.4.3 1.2.4 DAY 1 1 RG correct values 12.4.4 Range $\approx 15 \,^{\circ}\text{C} - (-4 \,^{\circ}\text{C}) \,\checkmark \text{RG}$ 1 CA range ≈ 19 °C ✓CA DAY 2 Accept difference of Range $\approx 7 \,^{\circ}\text{C} - (-1, 6 \,^{\circ}\text{C})$ $\pm 0,1$ ≈ 8,6 °C ✓CA ÉcoleBooks 1CA range **√**0 He should go on DAY 1. Although the night-time 10 opinion temperatures are colder than on Day 2, the day-time temperatures are higher and the temperature range is larger. √R[−] √R 2R reason OR **√**0 He should go on DAY 2. Although the day-time temperatures are colder than DAY 1, the night-time $\checkmark R \checkmark R'$ 10 opinion temperatures are warmer. 2R reason (6)1243 1.3.1 1 513 912 1513 1 003 1 052 ✓A 1A identifying the values 5 √A 1A the value Answer only: full marks (2)12.4.3 ✓A✓A Median 2A median 1.3.2 (2)

Please turn over

QUESTI	QUESTION 2 [18 MARKS]			
Ques	Solution	Explanation	AS	
2.1.1	The profits for the years 2008 and 2010 were not plotted in graph B.	1A mentioning profits 1A not plotting 2008 and 2010 (2)	12.4.6	
2.1.2	Graph B \checkmark A Graph B conceals the years where the annual profit went down or where it remained the same, thus creating an impression that profits only went up every year. $\checkmark R \checkmark R$	1A choice of graph 2R reasons	12.4.6	
2.2.1	Volume = 3,14 × (10 cm) ² × 35 cm ✓SF = 10 990 cm ³ = 10 990 m ℓ ✓S	1SF substitution 1A correct radius 1S simplification	12.1.1 12.3.1	
	Total volume of juice = $9 \times 1200 \text{ m} \ell \checkmark \text{A}$ = 10 800 m $\ell \checkmark \text{CA}$	1A using dilution 1CA total volume		
	The container is big enough to mix the juice in.	1C conclusion (6)		
2.2.2	40 servings of 200 m ℓ = 40 × 200 m ℓ Books = 8 000 m ℓ \checkmark A \checkmark M Juice left after 40 servings = 10 800 m ℓ – 8 000 m ℓ \checkmark CA	1A correct servings 1M subtraction 1CA simplification	12.1.1 12.3.1 12.3.2	
	$= 2 800 \text{ m} \ell$	1M dividing		
	Number of 140 m ℓ servings = $\frac{2800 \text{ m}\ell}{140 \text{ m}\ell} \checkmark \text{M}$ = 20 $\checkmark \text{CA}$	1CA simplification (5)		
2.2.3	Number of 140 m ℓ servings = $\frac{10\ 800\ -\ 200\ \times\ x}{140\ \checkmark A}$ $\checkmark A$	1A numerator 1A denominator	12.2.1	
	OR			
	Number of 140 m ℓ servings = $\frac{540 - 10 \times x}{7} \checkmark A$	1A numerator		
		(2)		

Mathematical Literacy/P2

5 NSC – Memorandum

QUESTIC	ON 3 [30 MARKS]		
Ques	Solution	Explanation	AS
3.1.1	Theft, using vulgar language, etc. $\checkmark R \checkmark R$	2R any valid reason	12.4.4
		(2)	
3.1.2	Percentage copying in Gr $10 = \frac{156}{559} \times 100\% \checkmark M$	1M calculating %	12.1.2 12.4.4
	= 27,91% ✓A 187	1A percentage in Gr 10	
	Percentage copying in Gr 11 = $\frac{107}{559} \times 100\%$ = 33,45% \checkmark A	1A % in Gr 11	
	Percentage copying in Gr $12 = \frac{216}{559} \times 100\%$ = 38,64% \checkmark A	1A % in Gr 12	
	Increase from Gr 10 to Gr $11 = 33,45\% - 27,91\%$ = 5,54% \checkmark CA	1CA % increase Gr 10 to 11	
	Increase from Gr 11 to Gr 12 = $38,64\% - 33,45\%$ 5,19%	1CA % increase Gr 11 to 12	
	 Mr Khan was correct; the percentage does increase by more than 5 % in each grade. ✓J The reasons could be: Senior learners are more stressed about the marks for 	1J verify Mr Khan's statement	
	assignments, test and examinations and fall in the trap of copying. $\checkmark R$	1R one valid reason	
	 The increase in copying could be attributed to the higher academic demands in Grades 11 and 12. ✓R (Any other relevant reason) 	1R second valid reason (9)	

Ques	Solution	Explanation	AS
3.1.3	\checkmark A In most types of offences there has been a decrease/decline in the number of offences from Grade 10 to Grade 12,	1A correct trend	12.4.4
	 The decline could be as a result of learners getting more mature as they grow. 	1R reason for decline	
	 Most prefects/team captains are in senior classes and they behave better as they are in leadership roles. In Grade 10 they do not know each other in their chosen subjects and they are not as tolerant of each 		
	 other. The increase in copying could be attributed to the higher academic demands in Grades 11 and 12. ✓R 	1R reason for increase in copying	
	(Any other relevant reason)	(3)	
3.1.4	\checkmark O He could have used a compound bar graph to represent the data. It would clearly show the comparison between the	10 correct graph	12.4.2
	different offences and between the different grades. $\checkmark R$	1R valid reason	
	OR	OR	
	He could have used three pie charts. Each pie chart will represent each grade and a comparison of the sectors of the pie charts can be done. $\checkmark R$	10 correct graph 1R valid reason (2)	
3.2	% of learners arriving late daily (12A)		12.2.1
	$= \frac{115}{50 \times 28} \times 100\% \approx 8,21\% \checkmark A$	1A simplification	
	% of learners arriving late daily (12B)		
	$= \frac{172}{50 \times 42} \times 100\% \approx 8,19\% $ $\checkmark A$	1A simplification	
	\checkmark A Mr Abel's claim is invalid as the number of learners arriving late daily is approximately the same for both classes.	1A conclusion	
	Mr Abel probably based his claim on the fact that more learners from 12B arrived late than from 12A. There are more learners in 12B than in 12A, so we could expect more absentees in 12B than in 12A. $\checkmark R$	1R reason (4)	

Mathematical Literacy/P2

7 NSC – Memorandum

Ques	Solution	Explanation	AS
3.3.1	School starts at 07:35 Time for assembly and period $1 = 5$ minutes $+ 45$ minutes $= 50$ minutes $\checkmark M$	1M adding	12.3.3
	Time up to start of period $2 = 7$ hours $35 \text{ min.} + 50 \text{ min.}$ = 8 hours 25 min. \therefore Tom arrived at 08:25. $\checkmark \text{A}$	1A time of arrival (2)	
3.3.2	Tom did not come to school. $\checkmark R \checkmark R$		12.4.4
	OR		
	Tom arrived at school after Mr Abel had left the school to attend a workshop. $\checkmark R \checkmark R$	2R reason	
	OR		
	Mr Abel was teaching another class. $\checkmark R \checkmark R$	(2)	
3.3.3	Zara arrived late at school seven times. $\checkmark A \checkmark A$ Total = 33 + 16 + 4 + 21 + 7 + 27 + 11 minutes = 119 minutes $\checkmark CA$	2A correct number of minutes 1M adding correct numbers 1CA total	12.4.3
	Zara's mean = $\frac{119}{7}$ minutes \checkmark M	1M finding mean	
	= 17 minutes \checkmark CA	1CA simplification	
		(6)	

QUESTIC	DN 4 [32 MARKS]		
Ques	Solution	Explanation	AS
4.1.1	Time to leave home = 08 hours 15 min. $-2\frac{1}{2}$ hours = 5 hours 45 min. \therefore Latest time to leave home is 05:45 \checkmark CA	1M subtracting time 1CA simplification (2)	12.4.3 12.3.2
4.1.2	Cost of petrol = $R650 \times 4 \checkmark A$ = $R2\ 600 \checkmark M$ Maintenance costs = $2 \times 65 \text{ km} \times 22 \times R0,35/\text{km}$ = $R1\ 001 \checkmark A$	1A petrol cost 1M correct values used 1A maintenance cost	12.1.3
	Colleague's contribution = $4 \times R330$ = R1 320 \checkmark A	1A colleague's contribution	
	Total expenses = $R2\ 600\ +\ R1\ 001\ -\ R1\ 320$ VM = $R2\ 281$ ÉcoleBooks	IM addition and subtraction 1CA transport cost	
	OR Total expenses $\checkmark M \checkmark A \checkmark A \checkmark M$ $= R650 \times 4 + 65 \times 22 \times 2 \times R0,35 - 4 \times R330$ $= R2\ 600 + R1\ 001 - R1\ 320 \checkmark CA$ $= R2\ 281 \checkmark CA$	1M multiplication 1M subtraction 2A correct values used 1CA simplification	
		(6)	
4.2	Time taken = 42 minutes = $\frac{42}{60}$ h = 0,7 h \checkmark C	1C conversion	12.2.1 12.3.2
	Average speed = $\frac{\text{Distance}}{\text{Time}}$ 85,8 km/h = $\frac{\text{Distance}}{0,7 \text{ h}}$ $\checkmark M$	1M substitution	
	Distance = $85,8 \text{ km/h} \times 0,7 \text{ h}$	1CA multiplication	
	= 60,06 km \checkmark CA	1CA simplification	
		(4)	

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Mathematical Literacy/P2

9 NSC – Memorandum

Ques	Solution	Explanation	AS
4.3.1	A 35-day-pass would cost her R1 435,00 for 22 trips.	1A cost of 35-day-pass	12.1.2
	Cost of using Pay-As-You-Go system		
	✓M ✓A	1M multiplication	
	$= 22 \text{ days} \times 2 \times \text{R41,00/day}$	IA reading from table	
	$=$ R1 804,00 \checkmark CA	1CA simplification	
	Savings = R1 804,00 − R1 435,00 ✓M	1M subtraction	
	= R369,00 ✓CA	1CA simplification	
		(6)	
4.3.2	✓RT First destination is Rosebank	1RT reading from table	12.1.3 12.2.1
	Cost of the ticket to the second destination	14 17 7	
	$= R70.00 - R43.00 = R27.00 \checkmark A$	IA subtraction	
		1CA second destination	
	Second destination is Rhodesfield VCA	(3)	
	EcoleBooks		12.1.2
4.3.3	Total cost of travelling by Gautrain $\checkmark M$	1M correct formula used	
	= cost of ticket + cost of parking + cost of petrol		
	$+ \cos t o f b us$	4A correct values used	
	$= R1 435,00 + 22 \times R10,00 + R150,00 + 22 \times 2 \times R6,00$		
	= R1 435 00 + R220 00 + R150 00 + R264 00		
	R1+55,00 + R220,00 + R150,00 + R204,00	1CA simplification	
	$=$ R2 069,00 \checkmark CA		
	Cost of travelling by car (from 4.1.2) = R2 281,00	1M subtraction	
	Savings = $R2 281,00 - R2 069,00$	1CA simplification	
	= R212,00 ✓CA	(8)	
4.3.4	Yes ✓O	10 opinion	12.1.2
	She would save R212,00 per month. \checkmark R	1R saving costs	
	She would save the wear and tear on her car. $\checkmark R$	1R saving car repairs	
		(3)	

QUESTI	ON 5 [42 MARKS]		
Ques	Solution	Explanation	AS
5.1.1 (a)	$\checkmark M$ 75% of expenses = R520 + R390 + R140 = R1 050 \screw A	1M 75% of weekly expense 1A adding	12.1.1
	Weekly expenses OR 25% of expenses $\checkmark M$ = $\frac{R1050}{75\%}$ $\checkmark M$ = $\frac{R1050}{3}$ = R310 $\checkmark CA$	1M dividing by 75%	
	$= \frac{R1050}{0.75} \checkmark CA$ Weekly expenses = R1 050 + R310	1CA correct values used	
	$= R1 400 \checkmark CA = R1 400 \checkmark CA$	1CA simplification	
		(5)	
5.1.1(b)	$\checkmark M \checkmark A$ Total cost (in rand) per week = 1 400 + 4× x OR	1M for R1 400 1A correct cost per sandwich	12.2.1
	Total costs (in rand) per week $\checkmark M \qquad \checkmark A$ = 1 400 + 4 × (number of sandwiches produced)	1M for R1 400 1A correct cost per sandwich (2)	
5.1.1(c)	✓A ✓SF R2 400 = R1 400 + (R4× number of sandwiches produced) R1 000 = R4× number of sandwiches produced	1A correct values used 1SF substitution	12.2.1
	$\frac{R1\ 000}{R4} = \text{number of sandwiches produced } \checkmark M$	1M dividing	
	250 = number of sandwiches produced \checkmark CA	1CA simplification (4)	

Mathematical Literacy/P2

11

DBE/Feb.-Mar. 2012

NSC – Memorandum

Ques	Solution	Explanation	AS
5.1.2	$\checkmark A \qquad \checkmark J$ A will have no value since 0 sandwiches are made	1A no value 1J explanation	12.2.1
	OR	OR	
	$\mathbf{A} = \frac{\mathrm{R1}\ 400}{\mathrm{R4}} + \mathrm{R4} \checkmark \mathrm{SF}$	1SE substitution	
	$= \text{ not possible} \qquad \mathbf{OR} \text{ cannot divide by } 0 \checkmark J$	1.1 explanation	
	✓A		
	B cannot have an answer since the ingredients for 1 sandwich is R4 \therefore Total costs cannot be less than cost for 1	IA no answer	
	sandwich. $\checkmark J \checkmark J$ OR Cannot have a negative number of sandwiches produced	2J explanation	
	OR $R2 = \frac{R1 \ 400}{B} + R4 \checkmark SF$ $-R2 = \frac{R1 \ 400}{B}$ $R1 \ 400$	1 SF substitution	
	$B = \frac{R1400}{-R2}$	1CA such as fD	
	A = -700 VCA	ICA value of B	
	\therefore not a realistic answer \sqrt{J}	1J explanation (5)	
5.1.3	RELATIONSHIP BETWEEN THE TOTAL COST OF PRODUCING ONE SANDWICH AND THE NUMBER OF SANDWICHES PRODUCED PER WEEK		12.2.2
	20	1 A (100 ; R18,00)	
		1 A (200 ; R11,00)	
		1 A (400 ; R7,50)	
		1 A (700 ; R6,00)	
		Or any other correctly	
		calculated and plotted	
		points	
		1 A smooth curve	
	0 100 200 300 400 500 600 700 800		
	Number of sandwiches produced per week	(5)	
1		(5)	

Ques	Solution	Explanation	AS
5.1.4 (a)	700 sandwiches ✓ RG	1 RG reading from graph/table (1)	12.2.3
5.1.4 (b)	$29 = \frac{1400}{x} + 4$ \checkmark SF	1SF substitution	12.2.3
	$29 - 4 = \frac{R1 \ 400}{x}$ $25 = \frac{R1 \ 400}{x} \checkmark A$ $x = \frac{R1 \ 400}{25}$	1A simplification	
	$= 56 \checkmark CA$	1CA value of x (3)	
5.2.1 (a)	$d = \sqrt{2} \times s$ = $\sqrt{2} \times 110 \text{ mm}^{\text{SF}}$	1SF substitution	12.1.1 12.3.1
	= 155,56 mm		
	\approx 16 cm ✓R	1R rounding (2)	
5.2.1 (b)	Diagonal of box = 105% of 16 cm = 1.05×16 cm		12.1.1 12.3.1
	$= 16.8 \text{ cm} \checkmark \text{A}$	1A length (accept 163,3 mm)	
	$\therefore \text{ length of sticker} = \frac{2}{3} \times 16,8 \text{ cm}$	1 M using ratio	
	= 11,2 cm \checkmark CA	1 CA answer	
	OR		
	2:3 = x:16,8 ∴ $x = \frac{2 \times 16,8}{3}$ cm = 11,2 cm \checkmark M	1 M using proportion	
	\therefore length of sticker = 11,2 cm \checkmark CA	1 CA answer	
		(3)	

Mathematical Literacy/P2

13 NS

Ques	Solution	Explanation	AS
5.2.2	Thickness of Δ box = 60 × $\frac{105}{100}$ mm = 60 × 1,05 mm \checkmark A	1 A thickness	12.1.1 12.3.1
	= 63 mm Side of Δ box = 110 × $\frac{105}{100}$ mm = 110 × 1,05 mm \checkmark A = 115,5 mm	1 A side	12.3.2
	Sandwiches can be packed along the width or the length of the box		
	Top view of the carton		
	With sandwiches packed like this along the breadth of the carton Number of sandwiches length-wise = $\frac{946 \text{ mm}}{115,5 \text{ mm}} \approx 8$ \checkmark CA Number of sandwiches beadth-wise = $\frac{580 \text{ mm}}{2000 \text{ mm}} \approx 9$	1 CA number length- wise 1 CA number width- wise 1 CA number in bottom layor	
	The number in the bottom layer of the carton = $8 \times 9 \times 2 = 144$ sandwiches $\checkmark CA$	1CA number of layers 1 CA number in one carton	
	The number of layers = $\frac{360 \text{ mm}}{115,5 \text{ mm}}$ Écolo Book CA		
	Number of sandwiches in a carton = $144 \times 3 = 432$ \checkmark CA		
	With sandwiches packed like this along the length of the carton $\frac{\text{Top view of the carton}}{\text{breadth}}$		
	Number of sandwiches length-wise = $\frac{946 \text{ mm}}{63 \text{ mm}} \approx 15$ \checkmark CA	1 CA number width-/ length-wise	
	Number of sandwiches width-wise = $\frac{580 \text{ mm}}{115,5 \text{ mm}} \approx 5$		
	The number in the bottom layer of the carton = $15 \times 5 \times 2 = 150$ sandwiches The number of layers = $\frac{360 \text{ mm}}{115,5 \text{ mm}} \approx 3$ \checkmark CA	1CA number in bottom layer 1 CA number of layers 1 CA number in one	
	Number of sandwiches in a carton = $150 \times 3 = 450$ \checkmark CA	1C conclusion	
	The maximum number of sandwiches would be 450. \checkmark C	(12)	