

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MARKS: 150

Symbol	Explanation
М	Method
M/A	Method with accuracy
CA	Consistent accuracy
А	Accuracy
С	Conversion
S	Simplification
RT/RG	Reading from a table/Reading from a graph
SF	Correct substitution in a formula
0	Opinion/Example
Р	Penalty, e.g. for no units, incorrect rounding off, etc.
R	Rounding off
NPR	No penalty for rounding

This memorandum consists of 14 pages.

Copyright reserved

Please turn over

Ques	TION 1 [37 MARKS] Solution	Explanation	Level
Ques			Laver L3
1.1	Rental: R 12 600 √ RT	1RT Correct rental amount	
	✓MA Salaries: R 9 715 + R 6 556 = R 16 271 $✓$ CA	1MA adding 1CA total salaries	
	Packaging $\checkmark M$ R 965,00 × 46,425% OR R 965,00 × (100% – 46,425%) = R 448,00 $\checkmark M$	1M multiplying %	
	$\therefore R965,00 - R448,00 = R517,00 \checkmark CA$	1CA decreased packaging cost	
	Telephone: R 240 × $\frac{\sqrt{MA}}{8}$ = R330 \sqrt{CA}	1M increase in given ratio 1CA telephone cost	
	Transport cost:		
	= R 34 238 - (R 16 271 + R 517 + R 330 + R 12 600)	1M subtracting 1MA adding values	
	= R 4 520 ✓CA	1CA transport cost (10)	
1.2	January: $\frac{46487}{142702} \times 100\% = 32,58\% \checkmark CA$	1MA Using correct values and calculating the mark up 1CA for calculating	L2
	February: $\frac{466663}{150349} \times 100\% = 31,04\% \checkmark CA$	January mark-up % 1CA for calculating February mark-up %	
	March: $\frac{59\ 046}{162\ 215} \times 100\% = 36,4\% \checkmark CA$	1CA for calculating March mark-up %	
	The highest average percentage mark-up was in March	10 Choice (5)	

Download more resources like this on ECOLEBOOKS.COM

Mathematical Literacy/P2

NSC – Memorandum

DBE/Feb.-Mar. 2015

Ques	Solution	Explanation	Level
1.3	Total net income for the first quarter = $R19 885 + R18 936 + R24 808$	1MA total net income	L4
	= R63 629 \checkmark MA Average net income per month = R63 629 \div 3	1CA ave. monthly income	
	$= R21 \ 209,67 \ \checkmark CA$ Projected amount = R21 209,67 × 12 = R254 516 \sqcap CA	1CA calculating estimated net income per year.	
	The projected amount is valid $\checkmark O$	10 validity	
	OR	OR	
	Total net income for the first quater = R19 885 + R18 936 + R24 808 = R63 629 \checkmark MA	1MA calculating total net income	
	Projected amount = R63 629 \times 4 \checkmark CA	1CA multiplying with 4	
	$= R254516 \qquad \checkmark CA$	1CA estimated net income	
	The projected amount is valid	10 validity (4)	
1.4.1	Handbags $\checkmark \checkmark A$	2A correct product (2)	L2
1.4.2	Width $\approx 5 \text{ cm}^{\checkmark} \text{A}$	1 A measurement	L3
	\therefore Actual width = 5 × 100 cm \checkmark M	1M using scale	
	$= 500 \text{ cm} \text{ or } 5 \text{ m} \checkmark \text{CA}$	1CA actual width	
		[Accept measurements from 4,8 cm to 5,2 cm] (3)	

3

Ques	Solution	Explanation	Level
1.5	Volume of a cylinder = $\pi \times (radius)^2 \times height$		L3
	$100 \text{ ml} = 3,142 \times (\text{radius})^2 \times 4 \text{ cm} \checkmark \text{SF}$	1SF substitution	
	$100 \text{ cm}^3 = 12,568 \text{ (radius)}^2$	1C converting to cm^3	
	$\frac{100}{12,568} = \frac{12,568(\text{radius})^2}{12,568} \checkmark \text{MA}$	1MA simplifying	
	$7,956715468 = (radius)^2$		
	$\sqrt{7,956715468} = \sqrt{(\text{radius})^2}$		
	$2,82076505 = radius \checkmark CA$	1CA radius	
	Diameter = $2,82076505 \times 2 \text{ cm}$ = $5,6415301 \text{ cm} \checkmark \text{CA}$	1CA diameter (5)	

Please turn over

Mathematical Literacy/P2

5 NSC – Memorandum DBE/Feb.-Mar. 2015

Ques Solution/Explanation Level L3 Total car rental cost for a maximum of 2 000 km 1.6.1 4 0 0 0 A **Opel** Corsa 3 0 0 0 **Cost in Rand** A 2 000 1 000 0 600 800 1200 1400 1600 1800 2000 200 400 1000 Distance travelled in km Key 1A the start of graph with open circleToyota Yaris 1A the straight line from 0 to 500 -----Ford Figo 1A for straight line from 500 to 2 000 1A for any correct point plotted between 500 and 2 000 (4)

Ques	Solution	Explanation	Level
1.6.2	Approximately 540 km ✓✓ RG	2RG values between 520 km and 575 km (2)	L3
1.6.3	Toyota Yaris: Approx R2 390 ✓ RG ✓ O	1RG reading correct value 10 for choice	L3
	The Toyota Yaris will be the cheapest when travelling a distance of 1 850 km	(2)	

Please turn over

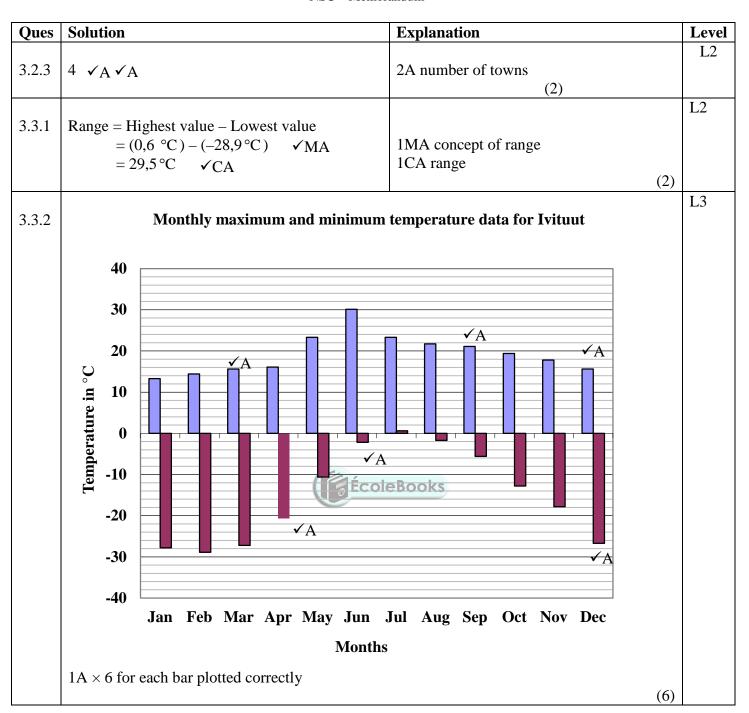
Download more resources like this on ECOLEBOOKS.COM

Mathematical Literacy/P2

7 NSC – Memorandum DBE/Feb.-Mar. 2015

QUESTION 2 [31 MARKS] Ques Solution Explanation Level L2 ✓ ✓ A 2.1.1 South West 2A direction (2)L2 2.1.2 Aqua scene ✓ A 1A for each of the Darwin Entertainment Centre 🗸 A places of interest (2)L2 ✓ A 2.1.3 Turn left into McMinn Street continue till reaching Stuart HWY. 1A left into McMinn Street ✓ A Turn right onto Stuart HWY continue till you reach Bagot Rd. 1A right Stuart 1A left Bagot ✓ A ✓A Turn left onto Bagot Rd continue north and at Rapid Creek, turn left 1A left Trower onto Trower Rd. Proceed on this road till you see the shopping centre on your left hand side. (4)L4 2.1.4 Distance = average speed \times time 12,4 km = average speed \times 18 min \checkmark SF **1SF** substitution 12,4 km = average speed $\times \frac{18}{60}$ hours 1C conversion ÉcoleBooks 12,4 km Average Speed = 18 hour 60 1CA average speed = 41,3 km/h \checkmark CA ✓ O The travel time is due to slow traffic flow since an average speed of 10 justification 60 km/h is normal in built up areas. (4)

Ques	Solution	Explanation	Level
2.2.1	ATM cash withdrawal fee for $R500 = R \ 3,50 + 1,1\%$ of value = $R \ 3,50 + 1,1\% \times R500 \checkmark SF$ = $R \ 9,00 \checkmark CA$	1 SF Using correct fee and substitution 1CA Amount	L4
	Four ATM cash withdrawals of R500 each = $4 \times R9,00 = R36,00$	1CA Calculating fee	
	Five debit orders = $5 \times R12,00 = R60,00$ \checkmark CA	1CA Calculating fee	
	Seven debit card purchases = $7 \times R0,00 = R0,00$ \checkmark A	1A no fee for debit	
	Cash Deposit fee (in branch) = R 11,00 + 1,35% of value = R 11,00 + 1,35% × R4 500 \checkmark SF = R 71,75 \checkmark CA	1SF correct formula 1CA amount	
	Monthly fee = $R36,00 + R60,00 + R0,00 + R71,75$ \checkmark MA = $R167,75$ \checkmark CA	1MA adding values 1 CA monthly fee (9)	
2.2.2	Number of times more = $\frac{R167,75}{R53}$ MA = 3,165 ≈ 3	1MA calculating the number of times 1CA the rounded value	L4
	More than three times the minimum monthly fee Elizabeth was correct.	10 verification	
	OR	OR	
	✓ M $3 \times R53 = R159$ ✓ CA R167,75 is more than three times the minimum monthly fee	1M multiplying 1CA the amount	
	Elizabeth was correct $\checkmark O$	10 verification (3)	
2.2.3	Fixed monthly option = R 104,00 Four ATM cash withdrawals of R500,00 each = R0,00 Five debit orders = R0,00 \checkmark A		L2
	Seven debit card purchases $= R0,00 \checkmark A$ One cash deposit of R 4 500,00 each $= R0,00$	2ACost of transactions	
	Monthly fee = $R104,00 \checkmark A$	1A for fee of R104,00 (3)	
2.2.4	$\checkmark \checkmark O$ She can use her bank/debit card to pay for these goods and services.	2 O reason	L4
	Once-off withdrawal equivalent to four times the weekly amount spend to deduct each month.	2 O reason	
	•	(4)	


DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Mathematical Literacy/P2

9 NSC – Memorandum DBE/Feb.-Mar. 2015

QUESTION 3 [25 MARKS] Oues | Solution **Explanation** Level L3 3.1.1 2 655 km : 1 650 miles OR 2 655 km : 1 650 miles $\frac{2655 \,\mathrm{km}}{2655}$: $\frac{1650 \,\mathrm{miles}}{2655} \checkmark \mathrm{MA}$ 2655km_1650miles 1MA dividing 1650 [·] 1650 ✓ MA 1 km = 0.6214689266 miles1,6090909 km = 1 mile**1S** simplification $1 \text{ km} \approx 0.6215 \text{ miles} \checkmark \text{ S}$ $1,6 \text{ km} \approx 1 \text{ mile} \checkmark S$ (2)L4 Greenland is an irregular shape, $\checkmark \checkmark \circ$ 3.1.2 20 explanation and it is not a rectangle. (2)✓A L3 ✓ A April 6 days + May 31 days + June 30 days + July 31 days + 3.1.3 1A 6 days in April 1A 18 days in August ✓A 1A rest of the months August 18 days = 116 days $\checkmark C A$ 1CA total days The midnight sun lasts 116 days (4)L3 3.2.1 Total number of persons living on the island **Population density =** ice-free area $(in km^2)$ 56 370 persons $\frac{1}{2\,166\,086\times19\%\,\mathrm{km}^2}\,\checkmark\,\mathrm{A}$ ✓SF **1SF** substituting 1A 19 % $=\frac{56370 \text{ persons}}{411\,556,34 \text{ km}^2} \quad \checkmark \text{CA}$ 1CA ice-free area = 0,1369678815 persons/km² **√**CA 1CA population \approx 0,1 persons/ km² density (4) L3 3.2.2 Number of indigenous persons living in Nuuk in 2003 1A 75 % ✓A $=75\% \times 9\ 000$ VRG 1RG number of inhabitants = 6750 \checkmark CA [accept values from 8 000 but less that 10 [000] 1CA number of indigenous persons (3)

10 NSC – Memorandum

Copyright reserved

Download more resources like this on ECOLEBOOKS.COM

Mathematical Literacy/P2

11 NSC – Memorandum DBE/Feb.-Mar. 2015

	n 4 (27 marks) Solution	Explanation	Level
Ques			Level L3
4.1.1	342 171 ✓ A	1 A total light vahiala	LS
4.1.1	$P = \frac{342.171}{1300.771} \checkmark A$	1A total light vehicle	
	13007/1 ✓ A	learner licenses	
	≈ 0,263 ✓ CA	1A total number of learner	
		licences	
		1CA probability in decimal	
		form	
		(3)	
4.1.2	Gauteng:		L3
4.1.2	102 101 202 004		
	$102 191 : 293 094 \checkmark A$	1A working with the	
	$1:\frac{293094}{100000}$ (11)	correct values	
	102191 ✓ MA	1MA dividing to find unit	
	∴ 1 : 2,868	ratio	
	✓ CA	1CA simplification	
	Limpopo:		
	8 234 : 98 151		
	98 151		
	$1: \frac{98151}{8234}$		
	∴ 1 : 11,925 ✓ CA	1CA simplification	
	\checkmark O The ratio for Limpopo is higher than for Gauteng	10 comparison	
	The fatto for Empopolis figher that for Gauteng	(5)	
	415818 1000		L2(2)
4.1.3	Gauteng: $\frac{415818}{1300771} \times 100\%$		L4(2)
	$\approx 32\%$ \checkmark CA	1CA percentage	
	Limpopo: $\frac{107702}{1200771} \times 100\%$		
	Limpopo: $\frac{10002}{1300771} \times 100\%$		
	1500771		
	≈8,3% ✓ CA		
	√√ J	1CA percentage	
	The population of Limpopo is less than that of Gauteng.		
	OR		
	The main mode of transport in Gauteng is cars.	2J reason	
	OR		
	Any other valid reason		
		(4)	
4 1 4			L4
4.1.4	She needs to compare the number of learners who passed		
	the Light Motor vehicle licence to the total number of		
	learners who wrote the test for light motor vehicle licence.	3J reason	
	OR		
	Table 4 data cannot be used to calculate the probability of		
	passing		
	OR		
	Incorrect data/wrong data was used	(3)	

12 NSC – Memorandum

Ques	Solution	Explanation	Level
Ques	Solution		Level L4
4.2.1	Drivers have very little driving experience. $\checkmark \checkmark O$	20 explanation	L4
		(2)	
4.2.2 (a)	 Amount to be paid by Keitumetse ✓ A - compulsory excess payment of R2 000. - payment of R 1 000 for being under 25 years old. ✓ A - payment of R2 000 for drivers' licence of less than 2 years. 	1A for R2 000 1A for other 2 amounts	L3
	Total excess to be paid = $R5\ 000$ \checkmark CA	1CA the total amount	
	Percentage of claim amount = $\frac{5000}{13400,50} \times 100\%$ \checkmark M $\approx 37,31\%$ \checkmark CA	1M calculating percentage 1CA percentage of his claim (5)	
4.2.2 (b)	Amount to be paid by Keitumetse's father - Payment of R2 000 for the compulsory excess. RT	1RT the amount	L4
	Insurance compensation = value of damage - excess value = R13 400,50 - R2 000 = R11 400,50 \checkmark MA $\frac{11400,50}{13400,50} \times 100\% = 85\% \qquad \checkmark$ CA He is correct; it is more than 80%.	1MA the total payable 1M percentage calculating 1CA percentage 1O verification (5)	

Download more resources like this on ECOLEBOOKS

Mathematical Literacy/P2

13 NSC – Memorandum DBE/Feb.-Mar. 2015

Ques	UESTION 5 [30 MARKS]1esSolutionL			
Ques	Solution	Explanation	Level	
5.1.1	Median = $\frac{P+55}{2} = 55$ \checkmark M	1M concept of median	13	
	$\therefore \mathbf{P} = 55 \qquad \checkmark \mathbf{A}$	1A value of P		
	Mean = $\frac{\text{sum of the marks}}{\text{total number of students}}$ 49,25 = $\frac{1124 + Q}{24}$ \checkmark CA	1CA the sum 1124		
	$49,23 - \frac{24}{24}$ 1182 = 1124 + Q \checkmark S	1S the total 1182		
	$\therefore Q = 58$ $\checkmark CA$	1CA value of Q (5)		
5.1.2	$P_{(less than 80\%)} = \frac{21}{24} \checkmark CA$	1CA probability	L2	
	$=\frac{7}{8}$ OR 0,875 OR 87,5% \checkmark S	1S simplification		
		(2)		
5.1.3	Group A: \checkmark RG Quartile 1 = 28 OR $23 + 33$ $23 \approx 28$ 28 28 28 28 28 28 28	1RG estimate the value Q1	L3(5) L4(2)	
	Quartile $3 = 75 \checkmark RG$	1RG estimate the value Q3		
	Inter quartile range = $75 - 28$ = $47 \checkmark CA$	1CA the IQR		
	Group B: Inter quartile range = $70 - 30$ = $40 \checkmark A$ \therefore Group B has a lower inter quartile range $\checkmark O$	1A group B IQR 1O comparing IQRs		
	✓ A ∴ Group B performed better because they have a higher median and a smaller inter quartile range. ✓ O	1A comparing the median percentages 1O explaining group B did better (7)		

Ques	Solution	Explanation	Level
5.2.1(a)	Both the bath room door and Bedroom 2 door must open to the inside and not the outside as on the plan. $\checkmark O$ If the doors open to the outside the open doors covers the	1A identifying the doors 1O explanation 1O explanation	L4
	entrance to Bedroom 1 and the master bedroom	(3)	
5.2.1(b)	\checkmark O The toilet pans are positioned against the interior walls which make the sewer pipes to run in the walls or under the foundation, which is against building regulation.	10 identifying the position of the toilet pans	L4
	\checkmark O The toilet pans must be positioned next to exterior walls for the sewer pipes to go through the wall. \checkmark O	2O alternative position	
	The master bedroom toilet pan must be moved to the exterior wall next to the window.	(3)	
5.2.2	✓✓ O Family Room and Kitchen	20 identifying the rooms (2)	L4
5.2.3	Actual length = $33 \text{ mm} \times 125$ = $4 \ 125 \text{ mm}$ = $412,5 \text{ cm} \checkmark \text{CA}$	1A using scale	L4
	Actual breadth = $28 \text{ mm} \times 125$ = $3500 \text{ mm} = 350 \text{ cm} \checkmark \text{CA}$	1CA length 1CA breadth 1C converting	
	Floor area of the room in $cm^2 = length \times breadth$ = 412,5 × 350 = 144 375 \checkmark CA	1CA area of room	
	$\therefore \text{ minimum area of the window in cm}^2 = 144\ 375 \times 11,5\% = 16\ 603,125 \checkmark \text{ CA}$	1CA area of the window	
	Area of the window in $cm^2 = width \times height$ 16 603,125 = 220 × height		
	:. height in cm = $\frac{16603,125}{220} \checkmark M$ = 75,46875	1M finding the height	
	≈ 75 ✓ CA	1CA rounding off	
		(8)	