

education

Department:
Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

MATHEMATICAL LITERACY P2

FEBRUARY/MARCH 2010

MEMORANDUM

MARKS: 150

TIME: 3 hours

SYMBOL	EXPLANATION
A	Accuracy
CA	Consistent accuracy
C	Conversion
J	Justification (Reason/Opinion)
M	Method
MA	Method with accuracy
P	Penalty, e.g. for no units, incorrect rounding off etc.
R	Rounding off
RT/RG	Reading from a table/Reading from a graph
S	Simplification
SF	Substitution in a formula

This memorandum consists of 15 pages.

NSC – Memorandum

Solution		_		Explanation	AS
					12.1
Column 1		Column 2	Column 3		12.1
Item		Working details	Cost in rand		12.2
Cost of manufacturing the required number of boxes of gloves	A	✓A ✓M 400 × R98,00	✓CA R39 200,00	1A No. of boxes 1M Multiplying 1CA Solution	
Profit of 25% on the cost price	В	0,25 × R39 200,00	✓CA R9 800,00	1A % as decimal 1CA Solution	
Sub-total	C=A+B	R39 200 + R9 800	✓CA R49 000,00	1CA Addition	
20% of the sub-total for transport and administration costs	D	✓A 0,2 × R49 000,00	✓CA R9 800,00	1A % as decimal 1CA Solution	
Sub-total	E=C+D	R49 000 + R9 800	✓CA R58 800,00	1CA Addition	
14% VAT (Value Added Tax)	F	0,14 × R58 800,00	✓ CA R8 232,00	1M Calculating % 1CA Solution	
TOTAL SELLING PRICE OF THE GLOVES (also called Pt, the value of the tender under consideration)	G=E+F	R58 800 + R8 232	PKS ✓CA R67 032,00	1CA Final answer (12)	

Mathematical Literacy/P2

 $\begin{array}{c} 3 \\ NSC-Memorandum \end{array}$

DoE/Feb. - March 2009

Ques	Solution	Explanation	AS
1.2	$P_{S} = 80 \left(1 - \frac{Pt - P \min}{P \min} \right) + 2,5$ $= 80 \left(1 - \frac{67 \ 032 - 56 \ 000}{56 \ 000} \right) + 2,5$ $= 80(0,803) + 2,5 \checkmark S$ $= 66,74 \checkmark CA$	1SF Correct substitution into formula 1S Simplifying inside brackets 1CA Points scored (3)	12.2.1
1.3	$P_{S} = 80 \left(1 - \frac{Pt - P\min}{P\min} \right)$		12.2.1 11.2.3
	$= 80 \left(1 - \frac{66\ 000 - 56\ 000}{56\ 000} \right) \checkmark SF$ $= 80(0.8214)$ $= 65.71 \checkmark CA \checkmark S$ High Five would get the bid because they have a higher score of $66.74.\checkmark \checkmark CA$	1SF Substitution into formula 1S Simplifying inside brackets 1CA Points scored 2CA Conclusion (5)	

Ques	Solution	Explanation	AS
OPTION 1			12.3.1
1.4.1	✓A 10 boxes are packed in the first layer in the box,	1A Ten boxes in each layer	
	Layout of bottom layer: 10 cm	2A Correct diagram (3)	
	✓CA	(3)	
1.4.2	Length of the container = $5 \times 8 \text{ cm} = 40 \text{ cm}$ $\checkmark \text{CA}$	1CA Length of container	
	Breadth of the container = $2 \times 10 \text{ cm} = 20 \text{ cm}$	1CA Breadth of container	
	The height of the container must be $4 \times$ height of one box.		
	Height of the container = $4 \times 20 = 80$ cm	1CA Height of the container (3)	
OPTION 2	ÉcoleBooks		
1.4.1	✓A 10 boxes are packed in the first layer in the box,	1A Ten boxes in each layer	
	Layout of bottom layer: 20 cm 20 cm 10 cm 10 cm 10 cm 10 cm 10 cm 10 cm	2A Correct diagram	
	To cin	(3)	
1.4.2	Length of the container = 5 × 10 cm ✓CA = 50 cm	1CA Length of container	
	Breadth of the container = $2 \times 20 \text{ cm} \checkmark \text{CA}$ = 40 cm	1CA Breadth of container	
	The height of the container must be 4 × height of one box. Height of the container = 4 × 8 ✓ CA = 32 cm	1CA Height of the container (3)	
	OTHER OPTIONS ARE POSSIBLE		

Mathematical Literacy/P2

NSC – Memorandum

DoE/Feb. - March 2009

	ON 2 [36]	El4	A 0
Ques	Solution	Explanation	AS
2.1.1	Other ingredients like salt, water are also in the chips. These make up the missing grams. ✓ J ✓ J OR	2J Justification	12.2.3 12.4.4
	Any other plausible explanation	(2)	
2.1.2 (a)	Child should be eating $44.5 \times 0.8 \text{ g}$ $\checkmark \text{M}$	1M Multiplying	12.1.1 12.4.4
	= 35, 6 g protein \checkmark A	1A Solution (2)	
2.1.2 (b)		(2)	
()	Energy provided by chips	1M Calculating %	12.1.1 12.4.4
	$= \frac{2110}{9572} \times 100 \% \checkmark M$	1M Denominator	
	= 22,0434%	1CA Percentage	
	≈ 22,04 % ✓R	1R Rounding off (4)	
2.1.3	V KI	1RT Identifying mass of fat from the cheese and onion chips	12.1.1 12.4.4
	36.0 g of fat ≈ $36.0 \times 38 \text{ kJ}$ = 1 368 kJ	1M Multiplying 1A Amount of energy (3)	
2.1.4	100g Salt and vinegar chips Carbohydrate and protein content		12.1.1 12.2.3 12.4.4
	$= 54.3 \text{ g} + 5.2 \text{g} = 59.5 \text{g}$ $\checkmark \text{RT}$	2RT Reading from table	
	Fat content = $28,6g \sim RT$		
	100g Cheese and onion chips		
	Carbohydrate and protein content		
	=48.7 g + 6.8 g = 55.5 g		
	Fat content = 36,0 g ✓RT	1RT Reading from table	
	The salt and vinegar chips satisfy these conditions as they contains more protein and carbohydrates	20 Over orinias	
	and less fat than the cheese and onion chips ✓✓O	2O Own opinion (5)	

Ques Solution	Explanation AS
2.2.1 Cost in rand = R150 + 0.3 × (800 – 500) \checkmark M = R150 + R90 \checkmark A = R240	1M Substitution 1A Simplification (2)
2.2.2 (a) Cost in rand $ \checkmark A \checkmark M \qquad \checkmark A \\ = R220 + 0.3 \times \text{(number of megabytes used } -1 000) $	1A Constant value 1M Addition 1A Final equation (3)
2.2.2 (b) $A = R 220,00 + R 0,30 \times 100^{\checkmark}M$ = R 250 \checkmark CA	1M Substitution 1CA Value of A (2)
350 A	Option 1 1

Mathematical Literacy/P2

7 NSC – Memorandum DoE/Feb. - March 2009

Ques	Solution	Explanation	AS
2.2.4	Option 1 will give her 1 000 MB for R 300 ✓RG ✓RG	1RG Number of MBs for 1GB	12.2.3
	Option 2 will give her approximately 1 270 MB for R 300 (actually = 1 266, 6 MB)	1RG Number of MBs for 500 MB	
	She should choose Option 2. Option 2 gives her the larger number of MB for her money.	2J Advice (4)	

QUES	TION 3 [31]		
Ques	Solution	Explanation	AS
3.1	Bloemfontein; Johannesburg; Kimberley; Mafikeng; Nelspruit; Pretoria and Polokwane	All 7 correct 3 marks Only 5 correct 2 marks Only 3 correct 1 mark (3)	12.4.3
3.2.1	Mean $ 25,6 = \frac{23 + 22 + A + 21 + 24 + 23 + 40 + 22 + 22 + 22}{10} $ $ 256 = A + 219 \checkmark M $ $ A = 37 \checkmark CA $	1M Understanding mean 1A Number of scores 1M Simplification 1CA Value of A (4)	12.4.3
3.2.2	21; 22; 22; 22; 23; 23; 24; 37; 40 \checkmark CA Median = $\frac{22+23}{2}$ \checkmark M = 22,5 °C \checkmark CA	1CA Arranging in order (using value calculated in 3.1.1) 1M Finding median 1CA Median	12.4.3
3.2.3	50 % of the cities and towns have temperatures greater than the median.	2A Correct interpretation (2)	12.4.3
3.3	The mean is affected by the two high temperatures. (Durban 37°C and Musina 40°C). Eight of the ten towns and cities have maximum temperatures less than the mean. The median represents the maximum temperatures	2CA Rejecting the mean 1J Conclusion for best representation	12.4.4
	best. ✓ J	(3)	

Mathematical Literacy/P2

NSC – Memorandum

DoE/Feb. - March 2009

Ques	Solution	Explanation	AS
3.4.1	TEMPERATURES FOR 10 CITIES AND TOWNS IN S.A. ON 13/05/09 45 40 35 30 MIN TEMP MAX TEMP MAX TEMP Towns and cities	2A Any two cities plotted correctly 1M Using bars 1M Bars drawn adjacent 1A correct graph (5)	12.4.2
3.4.2	Difference in temperature of a town/city = Maximum temp – minimum temp M Durban: 37 °C – 15 °C = 22 °C Musina: 40 °C – 20 °C = 20 °C ✓ A Durban has the greatest difference of 22 °C. ✓ CA	1M Concept 2A Substitutions 1CA City with greatest difference (4)	12.1.1 12.4.4
3.5.1	Area of living room = $4 \text{ m} \times 5,25 \text{ m}$ $= 21 \text{ m}^2. \checkmark A$ Output capacity = $21 \times 125 \text{ W} \checkmark M$ $= 2.625 \text{ W}$ $= 2,625 \text{ kW} \checkmark CA$	1M Calculating area 1A Area of living room 1M Calculating capacity 1CA Solution (4)	12.3.1 12.3.2
3.5.2	$2 \text{ kW} = 2 000 \text{ W} \checkmark \text{C}$ Size of room = $\frac{2000 \text{ W}}{125 \text{ W per m}^2} \checkmark \text{M}$ $= 16 \text{ m}^2 \checkmark \text{A}$	1C Converting 1M Dividing 1A Area (3)	12.3.2

QUES	TION 4 [31]		
Ques	Solution	Explanation	AS
4.1.1	\checkmark RT \checkmark RT $48 534,06 = 1 140,00 + 42 × (B + 57,00) \checkmarkCA \checkmarkCA$	1RT Total amount paid 1RT Number of instalments 1CA Subtracting 1 140,00	12.2.1
	$1\ 128,43 = A + 57,00 \checkmark M$	1M Dividing by 42	
	$1071,43 = A \checkmark CA$	1CA Value of B (5)	
4.1.2	Loan cost her R 48 534,06 – R 25 000 RT	1RT Reading from table	12.1.3 12.2.1
	= R 23 534,06 ✓CA	1CA Cost of loan (2)	
4.1.3	$A = R1 \ 562,50 \times 24 = R37 \ 500 \checkmark A$ $P = R25 \ 000$ $i =$ $n = 24$	1A Value of A	12.1.3
		1M Substitution	
	$1 + i = \sqrt[24]{1,5} \qquad \checkmark A$	1A Simplification	
	$1 + i = 1,017 \dots \checkmark A$	1A Simplification	
	$i = 0.017 \dots \text{ per month } \checkmark \text{CA}$	1CA Value of <i>i</i> per month	
	$\therefore i = 0.017 \dots \times 12 \text{ per annum}$		
	= 0,204 per annum ✓CA	1CA Value of <i>i</i> per month	
	= 0,204× 100%		
	= 20,445 %		
	≈ 20,45% ✓ CA	1CA % (7)	

Mathematical Literacy/P2

 $\begin{array}{c} 11\\ NSC-Memorandum \end{array}$

DoE/Feb. – March 2009

Ques	Solution	Explanation	AS
4.2.1	Deposit = 10% of R 25 000,00 \checkmark M	1M Calculating 10%	12.1.1
	= R 2 500,00	1A Value of deposit (2)	
4.2.2	$P = \text{Balance} = \text{R } 25\ 000,00 - \text{R } 2\ 500,00$		12.1.3
	= R 22 500,00	1CA Balance after deposit	
	i = 33% per annum		
	= 0,33 per annum		
	$= \frac{0.33}{12} \text{ per month}$		
	= 0,0275 per month ✓A	1A Value of <i>i</i>	
	$n = 24 \text{ months} \checkmark A$	1A Value of <i>n</i>	
	Amount owing = $A = P(1 + i \times n)$		
	$= R 22 500(1 + 0.0275 \times 24)$	ISF Substituting value of P	
	= R 37 350,00	1CA Amount to be paid	
	OR		
	n = 24 months = 2 years	1C Converting 24 months to 2 yrs and 33% as 0,33	
	Amount owing = $A = P(1 + i \times n)$		
	$= R 22 500(1 + 0.33 \times 2)$	1SF Substitution into formula	
	= R 37 350,00 ✓CA	1CA Amount to be paid	
	Monthly repayment = $\frac{R37350}{24}$ \checkmark M $= R1556,25$	1M Finding monthly repayment 1CA Monthly repayment	
		(5)	12 1 1
4.2.3	Total cost = R 2 500,00 + R 37 350,00 \checkmark M	1M Adding	12.1.1
	= R 39 850,00 ✓CA	1CA Total to be paid (2)	

Ques	Solution	Explanation	AS
4.3	The total amount re-paid using the loan option is R 40 008,00.		12.2.1
	The total amount repaid using the hire purchase option is R 39 850		
	Mosima should take the hire purchase option because she would pay R 158 less than the loan	1CA Most economical option	
	option. $\checkmark\checkmark$ J	2J Justification of option	
	OR ✓CA Mosima would take the loan option because, although monthly repayments are higher, the	1CA Most economical option	
	initiation fee of R 1 140 is lower than the deposit of R 2 500.	2J Justification of option	3)
4.4	Length of box = $60 \text{ cm} + 1 \text{ cm} = 61 \text{ cm}^2 \text{ M}$	1M Finding dimensions	12.3.1
	Height of box = $2 \text{ cm} + 5 \text{ cm} + 45 \text{ cm} + 1 \text{ cm}$		
	= 53 cm ✓A	LA Correct dimensions	
	Width of box = $20 \text{ cm} + 1 \text{ cm} = 21 \text{ cm} \checkmark A$	1A Correct dimensions	
	Volume of box = $61 \text{ cm} \times 53 \text{ cm} \times 21 \text{ cm}^{\prime} \text{M}$ $\checkmark \text{CA}$	1M Substitution	
	$= 67.893 \text{ cm}^3$	1CA Volume	5)

Mathematical Literacy/P2

 $\begin{array}{c} 13 \\ NSC-Memorandum \end{array}$

DoE/Feb. - March 2009

QUESTION 5 [26]					
Ques	Solution	Explanation	AS		
5.1.1	Number of houses surveyed = 723+219+534+427+298+291 ✓A	1A Addition 1CA Solution	12.1.1		
	= 2 492 ✓CA	(2)			
5.1.2 (a)	P(2 or fewer people)		12.4.5		
	$= \frac{\text{number of houses occupied by 2 or fewer people}}{\text{number of houses surveyed}}$				
	$= \frac{723 + 219 + 534}{2492} \checkmark S$	1S Substitution			
	$= \frac{1476}{2492} \frac{\checkmark A}{\checkmark A} = \frac{369}{623}$	1A Addition			
	2492 ✓ A 623	1A Denominator (3)	12.4.5		
5.1.2 (b)	P(more than 2 people) = $1 - \frac{1476}{2492}$ MoleBooks	1 M Method	12.4.5		
	$= \frac{1016}{2492} = \frac{254}{623}$	1S Simplifying fraction			
	P(2 or fewer people) > P(more than 2 people) \checkmark CA	1CA Explanation			
	So, a greater probability is of choosing a house with 2 or fewer staying in it \sqrt{J}	1J Justification			
	OR	OR			
	P(more than 2 people) = $\frac{427 + 298 + 291}{2492}$ \checkmark M	1 M Method			
	$= \frac{1016^{\checkmark} A}{2492} = \frac{254}{623}$	1A Addition			
	P(2 or fewer people) > P(more than 2 people) ✓CA	1CA Explanation			
	So, a greater probability is of choosing a house with 2 or fewer staying in it \checkmark J	1J Justification (4)			

	17
NSC -	Memorandum

Ques	Solution	Explanation	AS
5.2.1	Length of patio = $7 \text{ m} - (1.5 \text{ m} + 3 \text{ m}) = 2.5 \text{ m}$	1A Length of patio	12.3.1
	Breath of patio = $6 \text{ m} - 4 \text{ m} = 2 \text{ m} \checkmark A$	1A Breadth of patio	
	Area of patio = length × breadth		
	$= 2,5m \times 2m$ $= 5 m^2 \checkmark CA$	1CA Solution	
	Volume of rectangular prism = area of base \times height		
	$0.375 \text{ m}^3 = 5 \text{ m}^2 \times \text{thickness}$	1SF Substitution in the formula	
	thickness = $\frac{0,375 m^3}{5 m^2}$		
	= 0,075 m ✓A	1A Thickness	
	= 75 mm ✓ C	1C Conversion to mm (6)	

Mathematical Literacy/P2

15 NSC – Memorandum DoE/Feb. - March 2009

Ques	Solution	Explanation	AS
5.2.2	Length of part of kitchen containing the L-shaped cupboard		12.3.1
	= 1,5 m ✓A	1A Length of first part of kitchen	
	Area of kitchen containing the L-shaped cupboard ✓ A ✓ A	1A Length to be tiled	
	$= (1.5 \text{ m} - 0.45 \text{ m}) \times (2 \text{ m} - 0.45 \text{ m})$ $= 1.05 \text{ m} \times 1.55 \text{ m}$	1A Breadth to be tiled	
	= 1,05 m × 1,55 m = 1,6275 m ² \checkmark CA	1CA Area	
	Length of part of the kitchen containing the stove and sink		
	= 1,5 m ✓A	1A Length of second party of kitchen	
	Area of kitchen containing the stove and sink $ \checkmark M \qquad \checkmark M $ $ = (2 \text{ m} \times 1,5 \text{ m}) - 0,45 \text{ m}^2 - (0,45 \text{ m} \times 1 \text{ m}) $	1M Area of kitchen containing the stove and sink	
	$= 3 \text{ m}^2 - 0.45 \text{ m}^2 - 0.45 \text{ m}^2$	1M Area of sink	
	= 2,1 m ² ✓CA	1CA Area	
	Area to be tiled		
	= $(4 \text{ m} \times 4 \text{ m}) + 1,6275 \text{ m}^2 + 2,1 \text{ m}^2$		
	$= 16 \text{ m}^2 + 1,6275 \text{ m}^2 + 2,1 \text{ m}^2$	1A Area of living room	
	\checkmark CA = 19,7275 m ²	1CA Area	
	\checkmark R $\approx 19,73 \text{ m}^2$	1R Rounding off	
	, , , , , , , , , , , , , , , , , , ,	(11)	

TOTAL: 150