

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

SENIOR CERTIFICATE EXAMINATIONS/ NATIONAL SENIOR CERTIFICATE EXAMINATIONS

MECHANICAL TECHNOLOGY: WELDING AND METALWORK

2021

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 18 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	B✓	(1)
1.2	A✓	(1)
1.3	C✓	(1)
1.4	C✓	(1)
1.5	D✓	(1)
1.6	A✓	(1) [6]

Copyright reserved

 Advantages of the product layout.	
 Handling of material is limited to a minimum. ✓ 	
 Time period of manufacturing cycle is less. ✓ 	
 Production control is almost automatic. ✓ 	
 Control over operations is easier. ✓ 	
 Greater use of unskilled labour is possible. ✓ 	
 Less total inspection is required. 	
• Less total floor space is needed per unit of production. ✓	
 Reduction in manufacturing costs. ✓ 	
U U	(Any 2 x 1)

2.4	Disadvantages of the process layout:	
	Due du etiens in met alumente acenticularia	1

- ÉcoleBooks

To prevent electric shock.

Isolation of electrode holder:

Apply cutting fluid if required. ✓

Drill press (Already been switched on):

Switch off the drill when leaving. \checkmark

Never leave the drill unattended while in motion. \checkmark

Use a brush or wooden rod to remove chips. \checkmark

Don't stop a revolving chuck with your hand. \checkmark

not get caught in the drill or drill chuck.

Don't open any guard while in motion. \checkmark

Keep hands away from action points. ✓

Do not force the drill bit into the material. \checkmark

Don't adjust the drill while working. ✓

- Production is not always continuous. ✓ •
- Transportation costs between process departments may be high. \checkmark •
- Additional time is spent in testing and sorting as the product moves to the . different departments. ✓

When reaching around a revolving drill, be careful that your clothes do

- Damage to fragile goods may result from extra handling.
- 2.5 Advantages of the product layout:

Copyright reserved

QUESTION 2: SAFETY (GENERIC)

First aid basic treatment: Examination \checkmark

Diagnosis ✓

Treatment ✓

2.1

2.2

2.3

•

•

.

•

•

•

•

•

٠

•

٠

(3)

(Any 2 x 1) (2)

(1)

(2)

(Any 2 x 1)

(2) [10]

(Any 3 x 1)

(Any 1 x 1)

(3)

(3)

(1)

(3)

QUESTION 3: MATERIALS (GENERIC)

3.1 Heat-treatment:

- Heat the metal slowly to a certain temperature. ✓
- Soak the metal for a certain period to ensure a uniform temperature. ✓
- Cool the metal at a certain rate to room temperature. ✓

3.2 **Quenching mediums:**

- Water ✓
- Brine ✓
- Liquid salts ✓
- Oil ✓
- Soluble oil and water ✓
- Sand ✓
- Molten lead ✓
- Air ✓
- Lime ✓

3.3 Annealing:

- To relieve internal stresses of the steel ✓
- Soften steel to make machining possible ✓
- Make steel ductile ✓ fileEcoleBooks
- Refine grain structure
- Reduce brittleness ✓

3.4 **Carbon steels:**

- Low carbon steel ✓
- Medium carbon steel ✓
- High carbon steel ✓

3.5 **Iron-carbon equilibrium diagram:**

- A Percentage carbon / carbon content ✓
- B Temperature in °C ✓
- C AC3 line / Higher critical temperature ✓
- D AC1 line / Lower critical temperature ✓

(4) **[14]**

Download more resources like this o	n ECOLEBOOKS.COM		
Mechanical Technology: Welding and Metalwork 5	DBE/2021		
SC/NSC – Marking Guidelines			

QUESTION 4: MULTIPLE-CHOICE (SPECIFIC)

4.1	D✓		(1)
4.2	В√		(1)
4.3	A✓		(1)
4.4	В√		(1)
4.5	D✓		(1)
4.6	В✓		(1)
4.7	D✓		(1)
4.8	C✓		(1)
4.9	A or B ✓		(1)
4.10	C✓		(1)
4.11	A or B ✓		(1)
4.12	В✓	ÉcoleBooks	(1)
4.13	A 🗸		(1)
4.14	C√		(1) [14]

QUES	TION 5: TERMINOLOGY (TEMPLATES) (SPECIFIC)		
5.1	 Template loft: To save time in marking out. ✓ Promotes accuracy. ✓ 	(Any 1 x 1)	(1)
5.2	 Purlins: To support roof covering. ✓ ✓ To link the roof trusses. ✓ ✓ Makes the roof structure stronger. ✓ ✓ 	(Any 1 x 2)	(2)
5.3	Roof truss: A – Rafter \checkmark B – Cleat \checkmark C – Purlin \checkmark D – Gusset plate \checkmark E – Tie beam/Main tie \checkmark		(5)
5.4	Material calculation: Mean \emptyset = Inside \emptyset + Thickness = 230 + 16 EcoleBooks = 246 mm \checkmark		
	Mean circumferance = $\pi \times$ Mean Ø		

/letalwork 6 SC/NSC – Marking Guidelines

$$= \pi \times 246 \checkmark$$

= 772,83 mm \checkmark
= Round off to 773 mm \checkmark (6)

5.5 Welding symbols:

- A. Tail ✓
- B. Weld symbol / Fillet weld on the other side / Weld symbol on the other side / Fillet weld ✓
- C. Pitch of weld ✓

Mechanical Technology: Welding and Metalwork

- D. Site weld ✓
- E. Arrow ✓
- F. Weld all round ✓

5.6

(3) **[23]**

(6)

Copyright reserved

Please turn over

DBE/2021

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

6.1 Plasma cutter:

- Creating an electrical channel of ionised gas (plasma), ✓ from the plasma cutter itself through the work piece that is being cut.
- It forms a completed electric circuit ✓ via a grounding clamp.
- Compressed air is blown toward the work piece through a focused nozzle at high speed. ✓
- A high frequency, electrical arc is then formed within the gas between an electrode near or integrated into the gas nozzle and the work piece itself. ✓

6.2 Hydraulic press:

6.3

- For removing bearings or bushes. ✓
- Fitting of bearings or bushes. ✓

Internal thread cutting process:

- To shape material. ✓
- Testing of welded joints ✓

Drill the required core diameter. ✓
Use the three taps in order – taper / intermediate / plug. ✓
Check thread with thread pitch gauge/bolt when complete. ✓
6.4 Power saw: To cut sections of metal / material. ✓
6.5 Gas welding:
6.5.1 Oxygen regulator / Acetylene regulator / regulator ✓
6.5.2 A. Gauge ✓
Durtlet (

- B. Outlet \checkmark C. Inlet \checkmark D. Pressure adjusting knob \checkmark (4) 6.6 Acetylene gas cylinder: Red / maroon \checkmark (1) 6.7 Flashback arrestor:
 - To prevent \checkmark back feeding / flashback of flame \checkmark (2) [18]

DBE/2021

(Any 2 x 1)

(4)

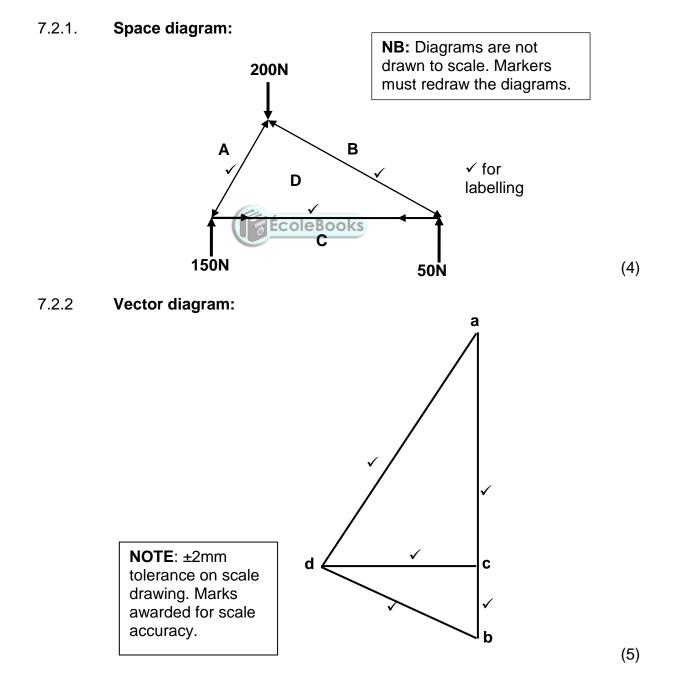
(2)

(3)

(1)

(1)

QUESTION 7: FORCES (SPECIFIC)


7.1 **Define:**

7.1.1 **Stress:**

The internal resistance \checkmark in a body to an external force or load. \checkmark (2)

7.1.2 Hooke's law: Strain is directly proportional to the stress it causes; ✓ provided the limit of elasticity is not exceeded. ✓ (2)

7.2 Frameworks:

Copyright reserved

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

SC/NSC – Marking Guidelines

7.2.3 Magnitude and nature of members:

MEMBER	MAGNITUDE	NATURE
AD	172 N – 176 N ✓	Strut ✓
BD	100 N – 104 N ✓	Strut ✓
CD	87 N – 91 N ✓	Tie ✓

7.3 Beam:

7.3.1 Calculate RL:

Taking moment about right reaction (RR)

RL×10 = (25×2)+(30×6,5)+(15×8) ✓
= 50+195+120
=
$$\frac{365}{10}$$
 ✓
RL = 36,5 N ✓

Calculate RR:

Taking moment about left reaction (RL)

$$RR \times 10 = (15 \times 2) + (30 \times 3,5) + (25 \times 8) \checkmark$$

= 30 + 105 + 200 (6)
= $\frac{335}{10} \checkmark$
RR = 33,5 N \checkmark

7.3.2 Shear forces at point A, B and C:

$$SF_{A} = 36,5 - 15 \checkmark$$

= 21,5 N \scalering
$$SF_{B} = 36,5 - 15 - 30 \checkmark$$

= -8,5 N \scalering
$$SF_{C} = 36,5 - 15 - 30 - 25 \checkmark$$

= -33,5 N \scalering

(6)

DBE/2021

(6)

C Α В \checkmark RL RR 36,5 N 21,5 N ✓ 0 0 -8,5 N -33,5 N NB: Diagram is not according to scale. Markers must redraw the diagram

7.3.3 Shear force diagram:

Copyright reserved

(6)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

7.4 **Stress and strain:**

7.4.1 **Stress:**

Stress =
$$\frac{\text{Load}}{\text{Area}}$$
 But Area = $\frac{\pi D^2}{4}$
Area = $\frac{\pi D^2}{4}$
= $\frac{\pi (0.03)^2}{4} \checkmark$
= 0.71×10⁻³ m² or 7.07 × 10⁻⁴ m² \checkmark

Stress =
$$\frac{\text{Force}}{\text{Area}}$$

= $\frac{80 \times 10^3 \text{ N}}{0,71 \times 10^{-3} \text{ m}^2} \checkmark$
= 112,68 × 10⁶ Pa ✓
= 112,68 MPa ✓

OR
Stress =
$$\frac{\text{Force}}{\text{Area}}$$

= $\frac{80 \times 10^3 \text{ N}}{7,07 \times 10^{-4} \text{ m}^2} \checkmark$
= 1131541726 Pa \checkmark
= 113,15 MPa \checkmark

7.4.2 **Strain:**

Strain =
$$\frac{\Delta L}{OL}$$

= $\frac{0.06}{3000}$ \checkmark
= 0.02×10^{-3} \checkmark

(If any unit indicated, then NO mark awarded for final answer)

(2) **[45]**

(6)

QUESTION 8: JOINING METHODS (INSPECTION OF WELDS) (SPECIFIC)

8.1 Welding defects (Causes):

8.1.1 Slag inclusion:

- Included angle too narrow. ✓
- Rapid chilling. ✓
- Welding temperature to low / current too low. ✓
- High viscosity of molten metal.✓
- Slag not removed from previous weld run. ✓
- Incorrect welding technique. ✓
- Surface contamination.
- Too big weaving action. ✓
- Too slow speed along the weld joint. ✓
- Too short arc length. ✓

(Any 2 x 1) (2)

8.1.2 **Incomplete penetration:**

- Speed too fast. ✓
- Poor welding technique. ✓
- Electrode too large. ✓
- Current too low. ✓
- Joint preparation not prepared correctly. ✓
- Weldability of parent metal not good. ✓

(Any 2 x 1) (2)

8.2 Welding defects (Prevention):

8.2.1 **Porosity:**

- Use correct current. ✓
- Hold a longer arc. ✓
- Use correct electrodes. ✓
- Check for impurities. ✓
- Ensure adequate shielding gas. ✓
- Correct welding technique. ✓
- Check that electrode/ filler metal did not rust.✓

(Any 2 x 1) (2)

8.2.2 Lack of fusion:

- Use correct included angle. ✓
- Use the correct size of electrode. ✓
- Use the correct current setting. ✓
- Prepare the plate bevel/V-groove accordingly. ✓

(Any 2 x 1) (2)

Copyright reserved

8.3 **Destructive and non-destructive tests:**

8.3.1 Free-bend:

- Used to determine the percentage of elongation of the welded metal. ✓
- To determine the ductility of the weld metal and heat affected area. ✓
 (Any 1 x 1)

- X-ray test:
 To determine whether there has been full depth penetration. ✓
- Determine if correct fusion between welded pieces took place. ✓
- To detect internal defects like pin holes, slag inclusions, cracks etc. ✓

(Any 1 x 1)

(1)

(1)

8.4 Welding cracks:

8.3.2

- Heat affected zone (HAZ) cracks. ✓
- Centre line / longitude cracks. ✓
- Crater cracks. ✓
- Transverse cracks. ✓
- ÉcoleBooks

8.5 **Oxy-acetylene welding process:**

- Correct flame for the work on hand. \checkmark
- Correct angle of nozzle. ✓
- Correct angle of rod. ✓
- Depth of fusion. ✓
- The amount of penetration. ✓
- The rate of progress along the joint. \checkmark
- 8.6 Nick-break test:
 - Each side of the weld is slotted by means of a saw. ✓
 - Place the specimen on two steel supports / In a bench vice.
 - Break the specimen ✓ by striking it with a hammer. ✓
 - Inspect the weld metal for exposed defects. ✓

8.7 Non-destructive tests:

- It does not involve the destruction/damage of the test piece \checkmark
- The test piece can still be used after test is done. ✓

(Any 1 x 1) (1)

8.8 Machinability test:

- To determine the ease of machining ✓
- To determine the quality of the finish ✓

(Any 3 x 1) (3)

(Any 2 x 1)

(5)

(2)

[23]

(2)

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

9.1	MeltIts cThe	 The amount of cold work ✓ 	
9.2	Shrinka	ge in a welded joint:	
	9.2.1	Electrode type: Thermal properties have a greater potential to cause deformation.	(1)
	9.2.2	Electrode size: The larger the electrode diameter the higher the current the greater the deformation. \checkmark	(1)
	9.2.3	Welding current: The higher welding current the higher the welding temperature the higher the deformation. <	(1)
9.3	SizeWelThe	that determine the cooling rate: e of work piece ✓ d thickness ✓ ÉcoleBooks rmal conductive properties of parent metal ✓ (Any 2 x 1)	(2)
9.4	Definitio	on:	
	9.4.1	Distortion: Weld distortion is the warping of the base metal \checkmark caused by heat from the welding arc/flame. \checkmark	(2)
	9.4.2	Shrinkage: Weld shrinkage is a form of plastic deformation ✓ where the metal has deformed as a result of contraction on cooling. ✓	(2)
9.5	 Whe occu Whe If ap 	affecting distortion and residual stress: en the metal is <u>heated and expansion is resisted</u> then deformation will our. \checkmark en <u>cooling occurs and contraction is resisted</u> , then stress will occur. \checkmark oplied stress causes movement, the distortion occurs. \checkmark	

• If applied stress does not cause movement then there will be residual stress in the welded joint. ✓

(Any 3 x 1) (3)

Copyright reserved

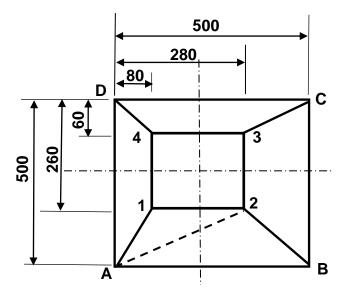
9.6 **Causes of residual stress:**

- During welding, the welds and Heat Affected Zone (HAZ) are heated to temperatures well above those of the surrounding material. ✓
- The weld and HAZ deform plastically because their thermal expansion is restricted by the surrounding material. \checkmark
- As the weld cools and contracts, tensile stresses develop elastically. ✓
- Welds develop tensile stresses that approach yield stress. \checkmark

(Any 2 x 1)

(2) [18]

QUESTION 10: MAINTENANCE (SPECIFIC)

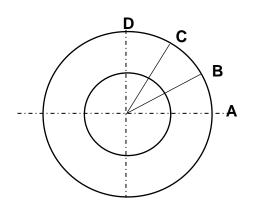

10.1	Overload	ling:		
	10.1.1	 Shearing machines: Dulling or breaking blades. ✓ Putting strain on the motor and drive mechanism. ✓ 	(Any 1 x 1)	(1)
	10.1.2	 Drill press: Damage / breakage to the drill bit. ✓ It puts strain on the drive components. ✓ 	(Any 1 x 1)	(1)
10.2	Friction:			
	10.2.1	Guillotine: Excessive wear / damage to moving parts. ✓		(1)
	10.2.2	 Horizontal band saw: Overheating of the cutting blade. ✓ Damage to the cutting blade. ✓ Excessive wear to moving parts. ✓ 	(Any 1 x 1)	(1)
10.3	 Check Check Check Check Check Check Check Check 	Ance of a power saw: k the mains electrical switches. ✓ k the wiring and conduits for cracks. ✓ k for broken control mechanisms. ✓ k electrical connections. ✓ k for loose electrical components. ✓ k that cutting fluid does not come in contact with electricates. ✓	al wiring and (Any 2 x 1)	(2)
10.4	 Apply Apply Preve Ensur Ensur 	to reduce friction: ring cutting fluid. \checkmark ring oil. \checkmark ent excessive pressure / Apply adequate pressure. \checkmark re that the drill bit is sharp. \checkmark re to use correct speed for the size of drill bit. \checkmark he correct drill bit. \checkmark		
			(Any 2 x 1)	(2)

SC/NSC – Marking Guidelines

DBE/2021

QUESTION 11: TERMINOLOGY (DEVELOPMENT) (SPECIFIC)

Square to square off centre hopper: 11.1


True length of A-2: 11.1.1

True length
$$(A - 2) = \sqrt{240^2 + 280^2 + 400^2}$$

= $\sqrt{57600 + 78400 + 160000}$
= $\sqrt{296000}$
= 544,06 mm $\checkmark \approx 544$ mm \checkmark (5)

True length of C-3: 11.1.2

True length
$$(C-3) = \sqrt{220^2 + 60^2 + 400^2}$$

= $\sqrt{48400 + 3600 + 160000}$
= $\sqrt{212000}$
= $460,43 \,\text{mm} \checkmark \approx 460 \,\text{mm} \checkmark$ (5)

11.2 Truncated cone:

- 11.2.1 True length of A-B: True length (A – B) = $\frac{\pi D}{12} \checkmark$ = $\frac{\pi \times 600}{12} \checkmark$ = $\frac{1884,96}{12} \checkmark$ = 157,08 mm $\checkmark \approx 157$ mm \checkmark (5) 11.2.2 Circumference of the top circle: Circumference of the top circle: = $\pi \times 100 \checkmark$ = $\pi \times 400 \checkmark$ = 1256,64 mm $\checkmark \approx 1257$ mm \checkmark (4)
- 11.2.3 600 ✓ mm. ✓

(2) [**21**]

TOTAL: 200