

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: AUTOMOTIVE

NOVEMBER 2018

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 18 pages.

Copyright reserved

Please turn over

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

		TOTAL QUESTION 1:	[6]
1.6	A✓		(1)
1.5	D✓		(1)
1.4	B✓		(1)
1.3	A✓		(1)
1.2	C✓		(1)
1.1	A✓		(1)

Copyright reserved

Please turn over

Download more resources like this on ECOLEBOOKS.COM

Mechanical Technology: Automotive

3 NSC – Marking Guidelines DBE/November 2018

(Any 2 x 1)

(Any 2 x 1)

(Any 2 x 1)

(2)

(2)

(2)

(2)

QUESTION 2: SAFETY (GENERIC)

2.1 Angle grinder: (Before using)

- The safety guard must be in place before starting. ✓
- Protective shields must be placed around the object being grinded to protect the people around.
- Use the correct grinding disc for the job. ✓
- Make sure that there are no cracks in the disc before you start. \checkmark
- Protective clothing and eye protection are essential. \checkmark
- Check electrical outlets and cord/plugs for any damages. ✓
- Ensure that lockable switch is disengaged. ✓
- Ensure that the disc and the nut are well secured. \checkmark
- Ensure that the removable handle is secured. \checkmark
- Remove all flammable material from the area. ✓
- Secure the work piece. ✓

2.2 Welding goggles:

- To protect your eyes against sparks ✓
- To protect your eyes against heat ✓
- To be able to see where to weld ✓
- To protect your eyes from UV rays / bright light ✓
- To protect your eyes from smoke ✓

2.3 **PPE for Hydraulic press:**

- Overall ✓
- Safety shoes ✓
- Safety goggle ✓
- Leather gloves ✓
- Leather apron ✓
- Face shield ✓

2.4 Workshop layouts:

- Process layout ✓
- Product layout ✓

2.5 **Employer's responsibility regarding first-aid:**

- Provision of first-aid equipment ✓
- First aid training ✓
- First-aid services by qualified personnel ✓
- Any first aid procedures ✓
- Display first aid safety signs ✓
- First aid personnel must be identified by means of arm bands or relevant personal signage ✓
 - (Any 2 x 1) (2)

TOTAL QUESTION 2: [10]

QUESTION 3: MATERIALS (GENERIC)

3.1 **Bending test:**

- Ductility ✓✓
- Malleability ✓✓
- Brittleness √ √
- Flexibility √√

(Any 1 x 2) (2)

3.2 **Heat-treatment:**

3.2.1 Annealing:

- To relieve internal stresses ✓
- To soften the steel ✓
- To make the steel ductile ✓
- To refine the grain structure of the steel ✓
- To reduce the brittleness of the steel \checkmark

(Any 2 x 1) (2)

(2)

(3)

(3)

3.2.2 **Case hardening:**

- To produce a wear resistant surface ✓ and it must be tough enough internally ✓ at the core to withstand the applied loads.
- Hard case ✓ and tough core. ✓

	(0	Éc	ol	e	Bo	ol	ks	
--	---	---	----	----	---	----	----	----	--

3.3 **Tempering process:**

- To reduce ✓ the brittleness ✓ caused by the hardening process.
- Relieve ✓ strain ✓ caused during hardening process.
- Increase ✓ the toughness ✓ of the steel.
- (Any 1 x 2) (2)

(Any 1 x 2)

- 3.4 **Factors for heat-treatment processes:**
 - Heating temperature / Carbon content ✓
 - Soaking (Time period at temperature) / Size of the work piece ✓
 - Cooling rate / Quenching rate ✓

3.5 Hardening of steel:

- Steel is heated to 30 50°C above the higher critical temperature. (AC₃) ✓
- It is then kept at that temperature to ensure (soaking) that the whole structure is Austenite. ✓
- The steel is then rapidly cooled by quenching it in clean water, brine or oil. ✓

TOTAL QUESTION 3: [14]

Downl	oad more resour	ces like	this	on	ECOLEBOOKS.COM	
Mechani	cal Technology: Automotive	5 NSC – Marking	g Guideline	S	DBE/November 2	2018
QUEST	TION 4: MULTIPLE-CHC	DICE QUESTIC	ONS (SPE		C)	
4.1	C✓					(1)
4.2	B✓					(1)
4.3	D✓					(1)
4.4	D✓					(1)
4.5	A 🗸					(1)
4.6	C✓					(1)
4.7	A 🗸					(1)
4.8	D✓					(1)
4.9	A / C ✓					(1)
4.10	A 🗸					(1)
4.11	D✓					(1)
4.12	D✓	(En Écol	eBooks			(1)
4.13	A✓	<u>eco</u>	CDUUKS			(1)
4.14	A✓					(1)
					TOTAL OUESTION A	F4 43

TOTAL QUESTION 4: [14]

QUESTION 5: TOOLS AND EQUIPMENT (SPECIFIC)

5.1 **Equipment:**

	5.1.1	Compression tester ✓	(1)
	5.1.2	 A – Flexible piping / hose / tubing ✓ B – Adaptor screw / Fitting / Attachment / Connector ✓ C – Gauge ✓ D – Pressure release valve ✓ 	(4)
	5.1.3	Compression Tester: It measures the pressure created, \checkmark when the piston is at top dead centre on power stroke. \checkmark	(2)
5.2		leakage: whether the engine leaks gases \checkmark from the cylinder during the ion stroke. \checkmark	(2)
5.3		yser: ensure ✓ an accurate reading. ✓ prevent ✓ a lean reading. ✓ (Any 1 x 2)	(2)
5.4	• Sca	of a computerized diagnostic scanner: ans all systems ✓ on the vehicle. orms what adjustments can be made after diagnosis ✓ (Any 1 x 1)	(1)
5.5	MoZerTal	auge camber procedure: ount the bubble gauge on to the straightened wheel ✓ ro the bubble gauge at the gauge zero scale ✓ ke the reading on the camber scale ✓ the same for the other wheel ✓	(4)
5.6	 The The The Close Define Matrix 	balance on wheels: e plane of imbalance \checkmark e extent of the unbalancing forces \checkmark e sense of direction of these forces (clockwise or counter- ckwise) \checkmark termine the location of weight placement \checkmark ignitude of the weights \checkmark e run-out of the tyre and wheel assembly \checkmark (Any 3 x 1)	(3)
5.7		of turn tables: it possible to turn \checkmark the front wheels in or out \checkmark to check \checkmark the gles. \checkmark	(4)

TOTAL QUESTION 5: [23]

Copyright reserved

Please turn over

7 NSC – Marking Guidelines

QUESTION 6: ENGINES (SPECIFIC)

6.1	Static balancing of the crankshaft: The crankshaft is in static when the mass in all directions \checkmark from the centre of rotation is equal while it is at rest. \checkmark	(2)
6.2	Cylinder layouts:	
	6.2.1 V - engine layout ✓	(1)
	6.2.2 In line (straight) engine layout ✓	(1)
6.3	 Firing order in an engine: By removing the tappet cover and determining which are intake valves and which are exhaust valves ✓ Rotating the engine in the direction in which it turns. ✓ Watch the order in which one set of valves, inlet or exhaust operates ✓ This will give the order in which the inlet stroke or exhaust stroke occurs ✓ The power strokes occur in the same order ✓ 	
	OR	
	 Cylinder 1 must be at TDC on power stroke ✓ Remove the distributor cap ✓ Ensure to turn the engine in the correct direction of rotation ✓ Determine the direction of rotation of the rotor ✓ Trace the firing order by the HT leads ✓ (Any 1 x 5) 	(5)
6.4	Firing order of engines:	
	 6.4.1 Four cylinder in-line engine: 1,3,4,2; or ✓ 1,2,4,3 ✓ (Any 1 x 1) 	(1)
	6.4.2 V6-cylinder engine: • $1,4,2,5,3,6 \checkmark$ • $1,2,3,4,5,6 \checkmark$ • $1,6,5,4,3,2 \checkmark$ • $1,4,5,6,3,2 \checkmark$	
	(Any 1 x 1)	(1)

DBE/November 2018

6.5 **Turbo charger:**

6.5.1 **Turbocharger:**

- A Compressor air inlet ✓
- B Turbine housing \checkmark
- C Turbine exhaust gas outlet ✓
- D Turbine wheel \checkmark
- E Turbine exhaust gas inlet \checkmark
- F Compressed air outlet ✓
- G Compressor wheel ✓

6.5.2 **Turbocharger advantages:**

- More power / speed / boost is obtained from an engine with the same capacity ✓
- There is no power loss as the turbocharger is driven by exhaust gasses ✓
- Improved fuel consumption ✓
- The effect of height above sea level is eliminated ✓
- Generally, cheaper than superchargers ✓

Any (2 x 1) (2)

(7)

(2)

(2)

6.6 **Terminology:**

6.6.1 **Boost:**

Refers to the increase in manifold pressure \checkmark that is generated by the turbocharger in the intake that exceeds the normal atmospheric pressure. \checkmark

6.6.2 **Turbo lag:**

- It is a delay ✓ between pushing on the accelerator and feeling turbo kick in. ✓ or
- The time ✓ it takes the turbo charger to reach operating speed. ✓

(Any 1 x 2) (2)

6.7 **Purpose of waste gate:**

It diverts exhaust gases \checkmark away from the turbine wheel to regulate the turbine speed \checkmark and consequently boost pressure. (2)

6.8 Oil cooler:

To cool (prevent overheating) the oil \checkmark that lubricates the turbocharger bearings and shaft. \checkmark

TOTAL QUESTION 6: [28]

9 NSC – Marking Guidelines

QUESTION 7: FORCES (SPECIFIC)

- 7.1 Torque:
 - Torque is the twisting effort ✓ transmitted by a rotating shaft or wheel. ✓
 - Turning force applied ✓ over a centre of a round object. ✓

(Any 1 x 2) (2)

7.2 **Clearance volume:**

This is the volume of the space \checkmark above the crown of the piston at TDC. \checkmark (2)

7.3 **Method to increase compression ratio:**

- Remove shims between the cylinder block and cylinder head. \checkmark
- Fit thinner cylinder head gasket. ✓
- Machine metal from cylinder head. ✓
- Skim metal from cylinder block. ✓
- Fit a piston with a higher crown. ✓
- Fit a crankshaft with a longer stroke. ✓
- Increase the bore of the cylinders. / bigger pistons. \checkmark

(Any 2 x 1) (2)

7.4 **Calculation of compression ratio:**

7.4.1 Swept Volume
$$= \frac{\pi D^2}{4} \times L$$

$$= \frac{\pi (7,5)^2}{4} \otimes 0 \quad \checkmark$$

$$= 353,43 \text{ cm}^3 \quad \checkmark \qquad (3)$$

7.4.2 Compression Ratio =
$$\frac{SV + CV}{CV}$$

 $CV = \frac{SV}{CR - 1}$ \checkmark
 $= \frac{353,43}{8,5-1}$ \checkmark
 $= \frac{353,43}{7,5}$
 $= 47,12 \text{ cm}^3$ \checkmark (3)

DBE/November 2018

7.4.3 **New compression ratio:**

Sweptvolume=
$$\frac{\pi D^2}{4} \times L$$

$$= \frac{\pi 7.8^2}{4} \times 8$$

$$= 382,27 \text{ cm}^3$$
New compression Ratio = $\frac{SV}{CV} + 1$

$$= \frac{382,27}{47,12} + 1$$

$$= 8,11 + 1:1$$

$$= 9.11:1$$

OR

New compression Ratio =
$$\frac{SV + CV}{CV}$$
 \checkmark
= $\frac{382.27 + 47.12}{47.12}$ \checkmark
(6)

11 NSC – Marking Guidelines DBE/November 2018

7.5 **Calculations: Power:**

$$A = \frac{\pi D^2}{4} \checkmark$$

= $\frac{\pi 0, 10^2}{4}$
= 7,85 x 10⁻³ m²

$$N = \frac{3600}{60 \times 2} \qquad \checkmark$$
$$= 30 \text{ r/s} \qquad \checkmark$$

Indicated Power = P×L×A ×N×n
$$\checkmark$$

= $(1400 \times 10^3) \times 0.11 \times (7.85 \times 10^{-3}) \times 30 \times 4 \checkmark$
= 145068 W
= 145,07 kW \checkmark (8)

 \checkmark

7.5.2
$$T = F \times r$$

 $= (75 \times 10) \times 0.45$
 $= 337,5 N.m$ \checkmark
Brake power= $2\pi \times N \times T$ \checkmark
 $= 2\pi \times 60 \times 337,5$
 $= 127234,5 W$
 $= 127,23 \text{ kW}$ \checkmark (4)

7.5.3 Mechanicalefficiency=
$$\frac{BP}{IP}$$
 100%
= $\frac{127,23}{145,07} \times 100$ % \checkmark
= 87,70% \checkmark (2)

TOTAL QUESTION 7: [32]

Copyright reserved

Please turn over

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Download r	nore resour	ces like	this on	ECOLEBOOKS.COM	
	ology: Automotive	13 NSC – Marking		DBE/November 20	018
QUESTION 8:	MAINTENANCE	(SPECIFIC)			
8.1 Gas a	nalyser: Exhaust gasses CO gasses ✓ CO ₂ gasses ✓ SO ₂ gasses ✓ NO <i>x</i> gasses ✓ HC gasses ✓ O ₂ gasses ✓	✓		(Any 1 x 1)	(1)
8.2 Speci • • • •	fication for gas a % Hydrocarbon / % Carbon monox % Carbon dioxide % Nitrogen oxide % Sulphur dioxid	′ HC ✓ kide / CO ✓ e / CO₂ ✓ e / NOx ✓		(Any 3 x 1)	(3)
8.3 Cyline • • • •	der leakage test: Hissing noise at Hissing noise at Hissing noise in o Hissing noise un Bubbles in radiat Hissing noise at	air intake ✓ exhaust pipe ✓ dipstick hole ✓ der tappet cove or water ✓	Bøoks	(Any 2 x 1)	(2)
•	der Leakage test Worn cylinders ✓ Worn piston ✓ Worn piston rings Leaking inlet valv Leaking exhaust Leaking cylinder Cracked cylinder	s ✓ /e ✓ valve ✓ head gasket ✓		(Any 2 x 1)	(2)
8.5 Comp	Record and com	o normal operat uel supply and i lugs. ✓ ion tester ✓ ttle and crank t pare the pressu	ignition syster he engine a fo ure reading fo	ure. ✓	
	manufacturers sp				(6)

8.6

Reasons for low oil pressure:

- Worn oil pump ✓
- Blocked oil pump screen/filter/strainer in the sump ✓
- Worn main, big-end and camshaft bearings ✓
- Blocked or restricted oil filter ✓
- Dirty or contaminated oil ✓
- Oil leaks ✓
- Too little oil in engine \checkmark
- Incorrect grade (viscosity) of oil \checkmark
- Pressure relief valve spring too weak or damaged \checkmark
- Plunger / Ball stuck in open position ✓
- Dirt stuck between ball and seat \checkmark
- (Any 2 x 1)

(2)

8.7 **Cooling system pressure test:**

- Start engine and allow to heat up. Fit radiator pressure tester to radiator. ✓
- Pressurize the cooling system according to manufacture's specification. ✓
- Watch the pressure for a while, if it drops there is a leak. \checkmark
- Make a visual check for leaks. ✓
- Install radiator cap to tester and pump tester, the cap should release air at its rated pressure. ✓
- Check the rubber seal for cracks and damage. \checkmark
- Check the vacuum valve for free movement and operation. ✓ (7)

TOTAL QUESTION 8: [23]

15 NSC – Marking Guidelines

QUESTION 9: SYSTEMS AND CONTROL (AUTOMATIC GEARBOX) (SPECIFIC)

9.1 **Differences between an automatic and manual gearbox:**

- There is no clutch pedal in a motor vehicle with an automatic gearbox. / There is a clutch pedal in a motor vehicle with a manual gearbox. ✓
- There is no need to change gears, the shifting of the gears happens automatically. ✓
- Automatic transmission uses thin oil while manual gearbox uses thicker oil. ✓
- Automatic transmission uses torque converter while manual gearbox uses clutch assembly. ✓

(Any 2 x 1) (2)

DBE/November 2018

9.2 Advantages of automatic gearbox:

- It reduces driver fatigue ✓
- It ensures great reduction of wheel spin under bad road conditions ✓
- The vehicle can be stopped suddenly without the engine stalling \checkmark
- The system dampens all engine torsional vibrations ✓
- Easier to drive (e.g. Disabled person with one leg) ✓

9.3 **Torque converter:**

9.3.1 Torque converter function:

- Transfers engine torque to the transmission. ✓
- It multiplies the engine torque to the transmission. ✓
- Provides a direct-drive, or mechanical link from the engine to the transmission. ✓
- The torque converter dampens all engine torsional vibrations. ✓
- The torque converter acts as a flywheel. \checkmark

(Any 2 x 1) (2)

(5)

9.3.2 **Parts:**

- A One-way clutch / Turbine ✓
- B Turbine / Impeller ✓
- C Pump ✓
- D Turbine shaft ✓
- E Gearbox housing ✓

9.4 **Single epicyclic gear train**:

- Overdrive forward ✓
- Overdrive reverse ✓
- Gear reduction forward ✓
- Gear reduction reverse ✓
- Direct drive ✓
- Neutral ✓

(Any 5 x 1) (5)

9.5 **Purpose of gear ratio in the gearbox:**

- It is used in order to utilise the usable torque ✓ developed in a relatively limited speed range of the engine over a greater road speed range. ✓
- Allows different speeds ✓ depending on the different loads. ✓

(Any 1 x 2) (2)

TOTAL QUESTION 9: [18]

Copyright reserved

Please turn over

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

17 NSC – Marking Guidelines

QUESTION 10: SYSTEMS AND CONTROL (AXLES, STEERING GEOMETRY AND ELECTRONICS) (SPECIFIC)

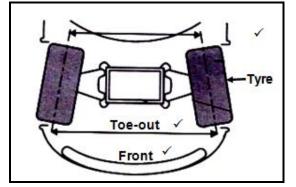
10.1 **Preliminary wheel alignment checks:**

- Kerb mass (tank full of petrol, spare wheel and tools) against the manufacturer's specifications. ✓
- Uneven wear on the tyre. \checkmark
- Tyre pressure. ✓
- Run-out on the wheels; check wheel nuts with torque wrench. ✓
- Correct preload on the wheel (hub) bearings. ✓
- Kingpins and bushes. ✓
- Suspension ball joints for wear, locking and lifting. ✓
- Suspension bushes for excessive free movement. ✓
- Steering box play and whether secure on chassis. ✓
- Tie-rod ends. ✓
- Sagged springs, this includes riding height. ✓
- Ineffective shock absorbers. ✓
- Spring U-bolts. ✓
- Chassis for possible cracks and loose cross-members. \checkmark
- Wheels must be balanced \checkmark
- Wheel alignment specifications ✓
- Drive shafts / CV-joints ✓

Caster

10.2.1 Negative ✓ Caster ✓

10.2.2 **Parts:**


- A Contact point of king pin centre line \checkmark
- B King pin ✓
- C Perpendicular line / vertical line / normal line ✓

ÉcoleBooks

- D Negative caster angle ✓
- E Centre line of king pin ✓
- F Front of vehicle / Direction of wheel motion \checkmark
- G Point of wheel contact / Wheel \checkmark
- 10.2.3 Negative caster angle is the forward tilt \checkmark of the kingpin at the top, \checkmark viewed from the side. \checkmark

10.3 **Toe-out:**

10.2

(Any 5 x 1) (5)

DBE/November 2018

(2)

(2)

(7)

(3)

	 rounding a corner without any driver effort. ✓ Reduce ✓ the scrub radius. ✓ (Any 1 x 2) 	(2)
		(2)
10.5	 Catalytic converter: Oxidation ✓ Reduction ✓ 	
	(Any 1 x 1)	(1)
10.6	Purpose of the speed control system: The purpose of the speed control system is to control the throttle opening \checkmark and to keep the vehicle speed constant. \checkmark	(2)
10.7	 Advantage of speed control: Driver fatigue is reduced. ✓ The set speed is controlled constantly. ✓ Improved fuel consumption. ✓ 	
	 A consistently controlled speed helps to prevent speeding fines. (Any 2 x 1) 	(2)
10.8	Fuel pressure regulator:	
	 Fuel pressure regulator regulates the fuel pressure in relation to the manifold pressure. 	(1)
10.9	 Output frequency of an alternator: Increase the turns of wire on the stationary coil. ✓ Increase the magnetic fields. ✓ 	
	 Increase the rotational frequency at which the magnet rotates. ✓ (Any 2 x 1) 	(2)
10.10	 Stator and stator windings: To provide a core which concentrates the magnetic lines of force onto the stator windings ✓ 	
	• To provide a coil into which a voltage is induced which is used to	
	charge the battery. ✓ (Any 1 x 1)	(1)
10.11	 Function of rotor assembly: Is to provide a rotating electro-magnet. ✓ 	(1)
	TOTAL QUESTION 10:	[32]
	TOTAL:	200

Purpose of the king pin inclination:

10.4

18 NSC – Marking Guidelines

• To bring the front wheels back to the straight-ahead position ✓ after