

basic education

Department: Basic Education **REPUBLIC OF SOUTH AFRICA**

NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: FITTING AND MACHINING

NOVEMBER 2018

..............

MARKING GUIDELINES

.................

MARKS: 200

These marking guidelines consist of 21 pages.

Please turn over

hining 2 NSC – Marking Guidelines

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

		TOTAL QUESTION 1:	[6]
1.6	A ✓		(1)
1.5	D✓		(1)
1.4	B✓		(1)
1.3	A ✓		(1)
1.2	C✓		(1)
1.1	A✓		(1)

Copyright reserved

Please turn over

Mechanical Technology: Fitting and Machining

hining 3 NSC – Marking Guidelines DBE/November 2018

QUESTION 2: SAFETY (GENERIC)

2.1	 Angle grinder: (Before using) The safety guard must be in place before starting. ✓ 	
	 Protective shields must be placed around the object being grinded 	
	to protect the people around. \checkmark	
	 Use the correct grinding disc for the job. ✓ 	
	 Make sure that there are no cracks in the disc before you start. 	
	 Protective clothing and eye protection are essential. 	
	 Check electrical outlets and cord/plugs for any damages. ✓ Ensure that lockable switch is disengaged. ✓ 	
	 Ensure that the disc and the nut are well secured. 	
	 Ensure that the removable handle is secured. ✓ 	
	(Any 2 x 1)	(2)
2.2	Welding goggles:	
	 To protect your eyes against sparks ✓ 	
	 To protect your eyes against heat ✓ 	
	 To be able to see where to weld ✓ 	
	 To protect your eyes from UV rays ✓ 	(0)
	(Any 2 x 1)	(2)
2.3	PPE for Hydraulic Press:	
	Overall ✓	
	Safety shoes / boots ÉcoleBooks	
	 Safety goggle ✓ 	
	 Leather gloves ✓ 	
	 Face shield ✓ (Any 2 x 1) 	(2)
	(Any 2 x 1)	(2)
2.4	Workshop layouts:	
	 Process layout ✓ 	
	 Product layout ✓ 	(2)
2.5	Employer's responsibility regarding first-aid:	
	 Provision of first-aid equipment 	
	 First aid training ✓ 	
	 First-aid services by qualified personnel Apy first aid procedures (treatment if Apy first aid procedures (treatment if 	
	 Any first aid procedures / treatment ✓ Display first aid safety signs ✓ 	
	 First aid personnel must be identified by means of arm bands or 	
	relevant personal signage ✓	
	(Any 2 x 1)	(2)

TOTAL QUESTION 2: [10]

QUESTION 3: MATERIALS (GENERIC)

3.1 Bending test:

- Ductility ✓ ✓
- Malleability √ √
- Brittleness √√
- Flexibility √ √

(Any 1 x 2) (2)

3.2 Heat-treatment:

3.2.1	Annealing:
	. To rolio

- To relieve internal stresses ✓
- To soften the steel \checkmark •
- To make the steel ductile ✓
- To refine the grain structure of the steel ✓
- To reduce the brittleness of the steel ✓

(2)(Any 2 x 1)

(2)

(3)

(3)

3.2.2 Case hardening:

- To require a wear resistant surface \checkmark and it must be tough enough internally \checkmark at the core to withstand the applied loads.
- Hard case \checkmark and tough core. \checkmark

ÉcoleBook	
	5/

3.3 Tempering process:

• To reduce \checkmark the brittleness \checkmark caused by the hardening process.

- Relieve ✓ strain ✓ caused during hardening process.
- Increase ✓ the toughness of the steel. ✓
- (Any 1 x 2) (2)

(Any 1 x 2)

- 3.4 Factors for heat-treatment processes:
 - Heating temperature / Carbon content ✓
 - Soaking (Time period at temperature) / Size of the work piece ✓
 - Cooling rate / Quenching rate ✓

3.5 Hardening of steel:

- Steel is heated to 30 50°C above the higher critical temperature. (AC₃) ✓
- It is then kept at that temperature to ensure (soaking) that the whole structure is Austenite. ✓
- The steel is then rapidly cooled by quenching it in clean water, brine or oil. ✓

TOTAL QUESTION 3: [14]

Copyright reserved

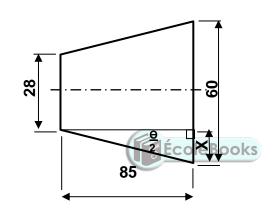
hining 5 NSC – Marking Guidelines DBE/November 2018

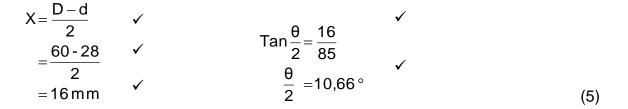
QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	C✓		(1)
4.2	A✓		(1)
4.3	D✓		(1)
4.4	A✓		(1)
4.5	B✓		(1)
4.6	A✓		(1)
4.7	B✓		(1)
4.8	B✓		(1)
4.9	D✓		(1)
4.10	C✓		(1)
4.11	B✓		(1)
4.12	D✓	ÉcoleBooks	(1)
4.13	D✓		(1)
4.14	C✓		(1)

TOTAL QUESTION 4: [14]

•


QUESTION 5: TERMINOLOGY (LATHE AND MILLING MACHINE) (SPECIFIC)


5.1 Advantages of using the tailstock to cut an external taper:

- Long an accurate taper can be cut. ✓
 - The automatic feed can be used which result in a good finish. \checkmark (2)

5.2 **Calculate the compound slide set-over:**

$$\operatorname{Tan} \frac{\theta}{2} = \frac{D-d}{2L} \qquad \checkmark$$
$$\operatorname{Tan} \frac{\theta}{2} = \frac{60 \cdot 28}{2 \times 85} \qquad \checkmark$$
$$= 0,188$$
$$\frac{\theta}{2} = 10,66^{\circ} \qquad \checkmark \checkmark$$

5.3 Centre gauge:

- To measure the form and angle of the screw cutting tool angle while grinding the tool ✓
- To set the screw cutting tool square/perpendicular to the axis of the work piece ✓

5.4 Parallel key:

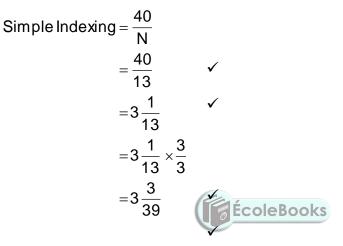
Length:

Length = $1,5 \times \text{diameter}$

(3)

(2)

Copyright reserved


Mechanical Technology: Fitting and Machining 7 DBE/November NSC – Marking Guidelines	2018
5.5 Advantages of up-cut milling:	
 Deeper cuts can be made as the cutting pressure on the cutter is lower than down cut milling. ✓ 	
 The process enables hard steel to be cut, because the total cutting pressure is absorbed by the material at the back of the edge. ✓ 	
 Metal with hard scale, such as castings or forgings, the cut is started under the scale where the material is softer which extends the life of the cutter. ✓ 	
 A quicker/course feed can be used. ✓ 	
 The strain on the cutter and arbour will be less. ✓ 	
 Vibration is limited ✓ 	
 Good finish ✓ 	
 Low noise level ✓ 	(2)
(Any 2 x 1)	(2)
5.6 Disadvantage of down-cut milling:	
• Vibration in the arbour is unavoidable. \checkmark	
 A fine feed must be used. ✓ 	
 When milling a material with hard scale the milling cutter will be damaged. ✓ 	
 Process takes time because of slower feed. ✓ 	
 Noisy process. ✓ 	
 Bad finish because of vibration. ✓ 	
(Any 2 x 1)	(2)
5.7 Methods of centring a milling cutter:	
 Square and ruler method. ✓ 	
 Set-over method by milling machine dial. ✓ Dial indicator method ✓ 	
 Using reference points on digital read out equipment	(2)
TOTAL QUESTION 5:	[18]

QUESTION 6: TERMINOLOGY (INDEXING) (SPECIFIC)

6.1 Spur gear:

Chordal tooth thickness:

6.2 **Calculate simple indexing:**

3 full turns and 3 holes in a 39 hole circle

(4)

	re resources like this on ECOLEBOOKS.COM	
Mechanical Technolog	y: Fitting and Machining 9 DBE/November 201 NSC – Marking Guidelines	8
6.3 Different	al indexing:	
6.3.1	Indexing required:	
	Indexing $=\frac{40}{n}=\frac{40}{127}$	
	$= \frac{40}{A} = \frac{40}{125} \div \frac{5}{5}$	
	$=\frac{8}{25}$	
	Indexing =8 holes on the 25 hole circle \checkmark	(3)
6.3.2	Change gears required: $ \frac{Dr}{Dn} = \frac{A \cdot n}{A} \times \frac{40}{1} \qquad \checkmark $ $ = \frac{125 \cdot 127}{125} \times \frac{40}{1} \qquad \checkmark $ $ = \frac{2}{125} \times \frac{40}{1} $ $ = \frac{-80}{125} \div \frac{5}{5} \qquad \checkmark $ $ = \frac{-16}{25} \times \frac{4}{4} $ $ -64 \qquad \qquad$	
	$=\frac{1}{100}$	(5)
6.3.3	Direction of rotation of index plate: The index plate will turn the opposite ✓ direction as the index crank handle.	(1)

hining 10 NSC – Marking Guidelines

6.4 **Calculate distance "x" between rollers:**

"x"=150+2(AB)-2(CD)-2r

$$\tan \theta = \frac{BC}{AB}$$

$$AB = \frac{BC}{\tan \theta}$$

$$= \frac{35}{\tan 60^{\circ}} \checkmark$$

$$= 20,207 \text{ mm} \checkmark$$

$$= 20,217 \text{ mm}$$

$$= 25,987 \text{ mm}$$

$$= 150 + 2(AB) - 2(CD) - 2r \checkmark$$

$$= 150 + 2(AB) - 2(CD) - 2r \checkmark$$

$$= 150 + 2(20,21) - 2(25,98) - 2(15)$$

$$= 150 + 40,42 - 51,96 - 30 \checkmark$$

$$= 108,454 \text{ mm}$$

$$= 108,454 \text{ mm}$$

$$= 108,45 \text{ mm}$$

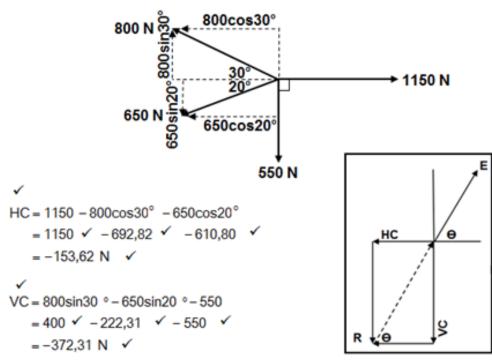
• To prevent the spindle from bending \checkmark

(Any 2 x 1) (2)

(9)

TOTAL QUESTION 6: [28]

Copyright reserved


6.5

Mechanic	cal Technology: Fitting and Machining 11 NSC – Marking Guidelines	DBE/November 20)18		
QUEST	QUESTION 7: TOOLS AND EQUIPMENT (SPECIFIC)				
7.1	 Hardness testers: Brinell-hardness tester ✓ Rockwell-hardness tester ✓ Vickers ✓ 	(Any 2 x 1)	(2)		
		() () () () () () () () () () () () () ((2)		
7.2	Moment tester: To determine the reactions \checkmark on either side of a simply loaded	J beam. ✓	(2)		
7.3	Tensile test: A piece of material is subjected to an increasing axial measuring \checkmark the corresponding elongation \checkmark of the material.	oad 🗸 while	(3)		
7.4	Depth micro-meter: $$ $$ $Reading = 100 + 11,00 + 0,50 + 0,09$				
	= 111,59 mm		(5)		
7.5	Measure depth: Vernier calliper ✓		(1)		
	TOTAL C	QUESTION 7:	[13]		

hining 12 NSC – Marking Guidelines

QUESTION 8: FORCES (SPECIFIC)

8.1 Forces:

Horizontal components ✓	Magnitudes	Vertical components ✓	Magnitudes
1150	1150 N 🗸	800Sin30°	400 N ✓
-800Cos30°	-692,82 N ✓	-650Sin20°	- 222,31 N ✓
-650Cos20°	-610,80 N ✓	-550	-550 N 🖌
TOTAL	-153,62 N ✓	TOTAL	-372,31 N 🗸

$$E^{2} = HC^{2} + VC^{2} \qquad \checkmark$$

$$\sqrt{E^{2}} = \sqrt{153,62^{2} + 372,31^{2}}$$

$$E = 402,76N \qquad \checkmark$$

$$Tan \theta = \frac{VC}{HC} \qquad \checkmark$$

$$= \frac{372,31}{153,62}$$

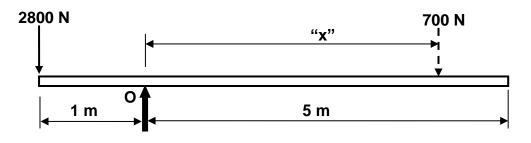
$$\theta = 67,58^{\circ} \qquad \checkmark$$

Equilibrant = 402,76 N en 67,58° North from East ✓

(15)

Horizontal Components 🍰	Magnitudes	Vertical Components 寿	Magnitudes
1150cos0°	1150N 🆂	1150sin0°	ON
800cos150°	-692,82N 🆂	800sin150°	400N 🍰
650cos200°	-610,80N 🆂	650sin200°	-222,31N 🍰
550cos270°	ON	550sin270°	-550N 🆂
TOTAL:	-153,62N 🍰	TOTAL:	-372,31N 🍰

Copyright reserved


Please turn over

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

DBE/November 2018

NSC – Marking Guidelines

8.2 Moments:

Calculate "x": Take moments about O.

$$\sum \text{RHM} = \sum \text{LHM}$$

$$700 \times "x" = 2800 \times 1$$

$$700 \times "x" = 2800$$

$$"x" = \frac{2800}{700}$$

$$"x" = 4 \text{ m}$$

(1)

8.3 Stress and Strain:

8.3.1 **Type of stress:** Compressive stress

,

8.3.2 **Stress:**

$$A = \frac{\pi (D^{2} - d^{2})}{4}$$
$$= \frac{\pi (0,04^{2} - 0,03^{2})}{4}$$
$$A = 0,55 \times 10^{-3} \text{ m}^{2}$$

$$\sigma = \frac{F}{A} \qquad \checkmark$$
$$= \frac{50 \times 10^3}{0,55 \times 10^{-3}} \qquad \checkmark$$
$$\sigma = 90,91 \times 10^6 \text{ Pa}$$
$$\sigma = 90,91 \text{ MPa} \qquad \checkmark$$

(NO UNIT – NO MARK) (5)

8.3.3 Change in length:

$$E = \frac{\sigma}{\epsilon}$$

$$\varepsilon = \frac{\sigma}{E}$$

$$= \frac{90,91 \times 10^{6}}{90 \times 10^{9}}$$

$$= 1,01 \times 10^{-3}$$

(IF ANY UNIT IS GIVEN - NO MARK)

$$\varepsilon = \frac{\Delta L}{L} \qquad \checkmark$$

$$\Delta L = \varepsilon \times L \qquad \checkmark$$

$$= (1,01 \times 10^{-3}) \times (80) \qquad \checkmark$$

$$= 0,08 \text{ mm} \qquad \checkmark \qquad (5)$$

8.3.4 Safety factor:

	TOTAL QUESTION 8:	[33]
=150 MPa	v	(3)
= 150 × 10 ⁶ Pa		
$=\frac{600\times10}{4}$	\checkmark	
Safety factor 600 × 10 ⁶		
Safe workingstress=		
Salety lactor = $\frac{1}{\text{Safe workingstress}}$	\checkmark	
Safety factor = Break stress	/	

Copyright reserved

	NSC – Marking Guidelines	010
QUEST	ION 9: MAINTENANCE (SPECIFIC)	
9.1	 Lack of preventative maintenance: Risk of injury or death. ✓ Financial loss due to damage suffered as a result of part failure and the waste of material. ✓ Loss of valuable production time. ✓ 	(3)
9.2	 Causes for the malfunctioning of chain drive systems: Lack of or incorrect lubrication ✓ Lack of maintenance ✓ Overloading ✓ Misalignment of sprockets ✓ Incorrect chain tension ✓ Contamination of chain drive system such as dust or sand ✓ (Any 2 x 1) 	(2)
9.3	 Procedures to reduce the physical wear on a belt drive system: Check the belt alignment. ✓ Checking the belt tension. ✓ Prevent overloading of the system. ✓ Keep the pulleys and belt clean. ✓ Check that all covers are secure. ✓ 	(2)
9.4	 Procedures to replace the belt on a belt drive system: Ensure that the machine is switched off ✓ Release the tension on the belt ✓ Remove the belt from the pulleys ✓ Fit the correct size replacement belt onto the pulleys ✓ Check the pulley alignment ✓ Apply adequate tension according to specification and lock the system ✓ 	

15

Mechanical Technology: Fitting and Machining

(Any 5 x 1) (5)

DBE/November 2018

Mechanic	al Technology: Fitting and Machining 16 NSC – Marking Guidelines	DBE/November 207	18
9.5	Properties of materials:		
	 9.5.1 Poly vinyl chloride (PVC): Flexible ✓ Rubber-like substance ✓ Makes a dull sound when dropped ✓ Tough ✓ Act as an insulator ✓ It is durable ✓ Highly resistant to oxidative material ✓ Oil, water and chemical resistant ✓ 	(Any 1 x 1)	(1)
	 9.5.2 Carbon fibre: Strong ✓ Tough ✓ Light weight ✓ Good electrical conductor ✓ 	(Any 1 x 1)	(1)
9.6	Difference between "Thermoplastic" and "Thermo (thermosetting)" composites: Thermoplastics can be reheated and deformed. / Recyclable ✓ Thermo hardened cannot be reheated. / Non-recyclable ✓	hardened	(2)
9.7	 Examples of thermo hardened composites: Carbon fibre or (Any application) ✓ Glass fibre or (Any application) ✓ Bakelite or (Any application) ✓ Teflon or (Any application) ✓ 	(Apy 2 × 4)	(2)
	τοται ο	(Any 2 x 1) UESTION 9:	(2) [18]
			[]

NSC – Marking Guidelines

QUESTION 10: JOINING METHODS (SPECIFIC)

10.1 Square thread:

10.1.1 The lead of the thread: $Lead = pitch \times no of starts$ $=5 \times 2$ = 10 mm

10.1.2 The helix angle of the thread:

lead Helix angle $tan\theta =$ pitchcercumfrence 10 $\pi \times \left(\text{outside dia} - \frac{1}{2} \text{pitch} \right)$ 10 $\pi \times (82 - 2, 5)$ = 0,0400 $\theta = 2,29^{\circ}/2^{\circ}17'24''$

Helix angle tan
$$\theta = \frac{10}{\text{pitchdiameter}}$$

 $\theta = 7,17^{\circ}/7^{\circ}10'12''$

10.1.3 The leading tool angle:

Leadingtoolangle = 90° – (helixangle + clearanceangle) \checkmark $=90^{\circ}-(2,29^{\circ}+3^{\circ})$ \checkmark =84,71°/84°42'36"

OR

Leadingtoolangle =
$$90^{\circ}$$
 - (helixangle + clearanceangle) \checkmark
= 90° - (7,17° + 3°)
= 79,83°/79°49'48" \checkmark (2)

DBE/November 2018

(5)

(2)

NSC – Marking Guidelines

10.1.4 **The following tool angle:**

Following toolangle =
$$90^\circ$$
 + (helix angle - clearanceangle) \checkmark
= 90° + (2,29^\circ - 3^\circ)
= $89,29^\circ/89^\circ17'24"$

OR

Following toolangle =
$$90^{\circ}$$
 + (helix angle - clearanceangle) \checkmark
= 90° + (7,17^{\circ} - 3^{\circ})
= $94,17^{\circ}/94^{\circ}10'12''$ \checkmark (2)

10.2 Measurements of a screw thread :

10.2.1	Metric screw thread ✓	(1)
10.2.2	Crest / Major / External / Basic / Nominal / Outside diameter 🗸	(1)
10.2.3	Pitch ✓	(1)
A – Helix B – Clea	of a square thread cutting tool: angle ✓ rance angle ✓	

C – Leading tool angle ✓ D – Following tool angle ✓ ÉcoleBooks

TOTAL QUESTION 10: [18]

10.3

NSC – Marking Guidelines

QUESTION 11: SYSTEMS AND CONTROL (DRIVE SYSTEMS) (SPECIFIC)

11.1 Advantages of a belt drive system compared to a chain drive system:

- Silent operation ✓ •
- Less expensive ✓
- Drive can take place over a longer distance ✓
- No lubrication needed ✓ •

Fluid pressure:

(Any 2 x 1) (2)

11.2 Hydraulics:

11.2.1

 $A_A = \frac{\pi d^2}{4}$ \checkmark $=\frac{\pi(0,032)^2}{4}$ $= 0.8 \times 10^{-3} \text{ m}^2$ $p = \frac{F_A}{A_A}$ $=\frac{120}{0,8\times10^{-3}}$ $= 0,1492 \times 10^{6}$ Pa ÉcoleBooks = 0,15 MPa or 149207,76 Pa (NO UNIT – NO MARK) (4)

11.2.2 Diameter of the ram:

$$d = \sqrt{\frac{4A}{\pi}}$$
$$= \sqrt{\frac{4 \times 0,12}{\pi}}$$
$$= 0,39088 \text{ m}$$
$$= 390,88 \text{ mm}$$

Please turn over

11.3 Hydraulic symbols: One-way valve

(1)

11.4 Belt drives:

Rotation frequency of the drive pulley:

$$N_{DR}D_{DR} = N_{DN}D_{DN} \qquad \checkmark$$

$$N_{DR} = \frac{N_{DN} \times D_{DN}}{D_{DR}} \qquad \checkmark$$

$$= \frac{80 \times 240}{75} \qquad \checkmark$$

$$= 256 \text{ r/min} \qquad \checkmark$$

 $N_B \times T_B = N_A \times T_A$

 $N_{\rm B} = \frac{N_{\rm A} \times T_{\rm A}}{T_{\rm B}}$

 $=\frac{3000\times20}{35}$

= 1714,29r/min ✓

(4)

11.5 Gear drives:

11.5.1 Rotation frequency of the output: $\frac{N_{A}}{N_{D}} = \frac{Product of Driven gears}{Product of Driver gears}$ $\frac{N_{D}}{N_{A}} = \frac{T_{A} \times T_{C}}{T_{B} \times T_{D}}$ $N_{D} = \frac{T_{A} \times T_{C} \times N_{A}}{T_{B} \times T_{D}}$ $= \frac{20 \times 25 \times 3000}{35 \times 30}$ $N_{D} = \frac{1428,57 \text{ r/min}}{60}$ = 23,81 r/sec

OR

 \checkmark

$$N_{\rm B} = N_{\rm C} = 1714,29$$
r/min

(6)

Copyright reserved

Please turn over

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Download more resource	es like	this o	n ECOLEBOO	KS.COM			
Mechanical Technology: Fitting and Machining 21 DBE/November 2							
NSC – Marking Guidelines							
11.5.2 Gear ratio:							
Gear (allo =			teeth on driven				
		number of	teeth on driver	gears			
$=\frac{35}{20}\times\frac{35}{20}$	30			\checkmark			
= 2,1 :	1			\checkmark	(3)		
11.6 Work done:							
Work done = $F \times s$	\checkmark						
$= 250 \times 15$							
= 3750 Joule of	or N.m 🖌				(2)		
					. ,		
			TOTAL QUES	TION 11:	[28]		
				TOTAL:	200		

ÉcoleBooks