

basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

SENIOR CERTIFICATE/ NATIONAL SENIOR CERTIFICATE

GRADE 12

MECHANICAL TECHNOLOGY: WELDING AND METALWORK

NOVEMBER 2020

MARKING GUIDELINES

MARKS: 200

These marking guidelines consist of 18 pages.

QUESTION 1: MULTIPLE-CHOICE QUESTIONS (GENERIC)

1.1	A✓	(1)
1.2	D✓	(1)
1.3	A✓	(1)
1.4	C✓	(1)
1.5	B✓	(1)
1.6	B✓	(1) [6]
		[6]

Mechanical Technology (Welding and Metalwork) 3 SC/NSC – Marking Guidelines

DBE/November 2020

QUESTION 2: SAFETY (GENERIC)

2.1 Work procedures on machine:

Switch off machine. ✓

(1)

2.2 The horizontal band saw:

- No adjustments to machine or work piece. ✓
- Ensure sufficient coolant. ✓
- Do not leave machine unattended while in operation. ✓
- Do not lean on machine. ✓
- Keep hands clear from blade. ✓

(Any 2 x 1) (2)

2.3 **Surgical gloves:**

- Prevent contamination of wound ✓
- To prevent transmission of HIV/AIDS or any blood related diseases to the first aid helper. ✓

(2)

2.4 Personal protective equipment (PPE) during arc welding:

- Welding helmet / Helmet ✓
- Safety goggles / Face shield ✓
- Leather apron / Apron ✓
- Leather gloves / Gloves ✓
- Leather spat / Spats ✓
- Safety boots / Safety shoes / ÉcoleBooks
- Over-all ✓
- Skull cap ✓
- Neck protection ✓
- Ear plugs / Ear muffs. ✓
- Respirator ✓

(Any 2 x 1) (2)

2.5 Responsibility of the employer regarding the health and safety:

- Sufficient lighting ✓✓
- Sufficient ventilation ✓✓
- Provide first-aid equipment ✓✓
- Provide a safe / clean working environment ✓✓
- Provide personal protective equipment (PPE) ✓✓
- Provide safety training to employees ✓✓

(Any 1 x 2) (2)

2.6 Responsible for administering first aid:

A qualified / trained first aid person ✓

(1) **[10]**

QUESTION 3: MATERIALS (GENERIC)

3.1 Tests to identify various metals:

3.1.1 **Sound test:**

- Tapping the metal with a hammer (any metal object) ✓ and identify the sound. ✓
- Dropping the metal on the floor ✓ and identify the sound. ✓

(Any 1 x 2) (2)

3.1.2 **File test:**

File the metal and pay attention to the bite of the file into the metal. \checkmark The bigger the bite the softer the metal. \checkmark The smaller the bite the harder the metal. \checkmark

(2)

3.2 Purpose of heat treatment of steel:

- To change ✓ the properties ✓ of steel.
- To change ✓ the grain structure ✓ of steel.

(Any 1 x 2) (2)

3.3 Purpose of case hardening on steel:

To create a hard / wear resistance surface / case ✓ with a tough core. ✓

(2)

3.4 The tempering process for steel:

- Heat the steel to a temperature (temper colour) below the critical temperature. ✓
- Soak it at that temperature for a period. ✓
- Quench / cool in an appropriate quenching agent. ✓ (water, brine, or oil) (3)

3.5 THREE factors for heat treatment of steel:

- Heating temperature / Carbon content ✓
- Soaking (Time period at temperature) / Work piece size ✓
- Cooling rate / Quenching rate (Quenching medium) ✓ (3)
 [14]

Mechanical Technology (Welding and Metalwork) 5 SC/NSC – Marking Guidelines

DBE/November 2020

QUESTION 4: MULTIPLE-CHOICE QUESTIONS (SPECIFIC)

4.1	B/D ✓		(1)
4.2	A✓		(1)
4.3	C✓		(1)
4.4	D✓		(1)
4.5	B✓		(1)
4.6	D✓		(1)
4.7	A✓		(1)
4.8	C✓		(1)
4.9	D✓		(1)
4.10	C✓		(1)
4.11	B√		(1)
4.12	C✓	ÉcoleBooks	(1)
4.13	A✓		(1)
4.14	D✓		(1) [14]

QUESTION 5: TERMINOLOGY (TEMPLATES) (SPECIFIC)

5.1 Advantages of templates:

- Quicker to use to improve mass production ✓
- Accurate production ✓
- Cheap to manufacture ✓
- Unskilled labour will be able to use it ✓
- Avoid unnecessary wastages / cost effective ✓
- Uniformity in production ✓
- Can be reused. ✓

(Any 2×1) (2)

5.2 Use of templates:

5.2.1 Thin metal is used for profile cutting machines ✓

(1)

- Hardboard templates is used for templates for gussets. ✓
 - Hardboard templates are used for checking sizes. ✓
 - Hardboard templates is used for marking of holes. ✓

(Any 1 x 1) (1)

5.3 Components of a roof truss:

- A. Rafter ✓
- B. Purlin ✓
- C. Internal bracing members / strut
- D. Gusset plate ✓
- E. Main tie / Tie beam / Beam ✓

(5)

5.4 A mild steel ring material:

Calculate the dimensions of the required material:

Mean
$$\theta$$
 = Outside θ - plate thickness
= 280-12 \checkmark
= 268 mm \checkmark

Mean circumference = $\pi \times mean\theta$

(5)

5.5 **Abbreviation 'SANS':**

South African ✓ National Standards ✓ (2)

SC/NSC - Marking Guidelines

DBE/November 2020

[23]

Mechanical Technology (Welding and Metalwork)

5.6 **Resistance weld:** 5.6.1 Foil seam ✓ (1) 5.6.2 Flash or resistance butt ✓ (1) Weld dimensions: 5.7 5 – size (width) of weld ✓ 25 – length of weld ✓ • 50 – pitch of welds ✓ (3) Position of the weld: 5.8 5.8.1 Weld on the arrow side ✓ (1) 5.8.2 Weld on both sides ✓ (1)

QUESTION 6: TOOLS AND EQUIPMENT (SPECIFIC)

6.1 **Pedestal drill machine:**

A = Table / Machine table / Working table / Platform ✓

B = Chuck / Drill bit holder ✓

C = Motor ✓

 $D = Pillar / Column \checkmark$ (4)

6.2 **Operating principles:**

6.2.1 **Horizontal band saw:**

- The blade is tensioned around two pulleys. ✓
- The machine is driven by an electric motor. ✓
- The blade is fitted so that it cuts in a continuously forward motion. ✓
- The blade assembly is raised and lowered by hand or by hydraulic controls. ✓
- The metal being cut is held firmly in the stock clamp during the cutting process. ✓

(Any 4 x 1) (4)

6.2.2 Punch and cropper (shear) machine:

- It is an electrically driven machine. ✓
- It makes use of a flywheel and clutches

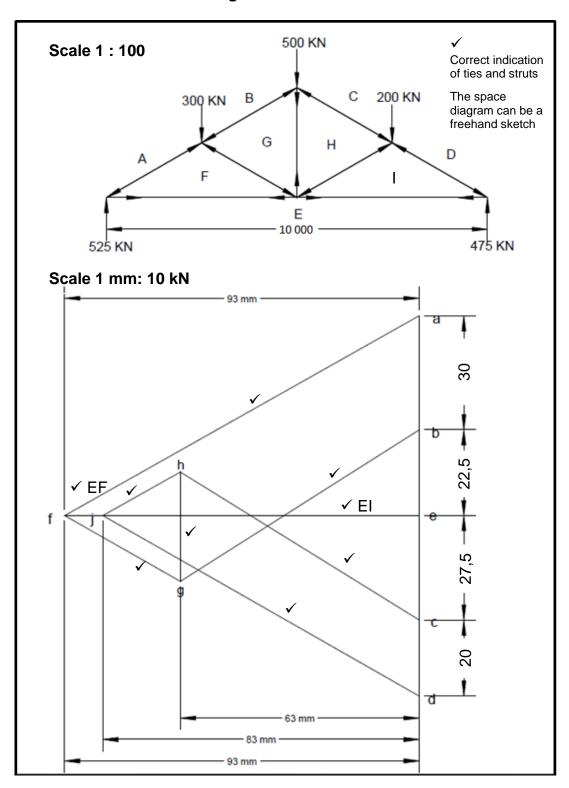
 ✓ to engage various shearing blades or punches. ✓

6.3 Primary function of flashback arrestors:

It prevents ✓ back-feeding/backfiring. ✓ ✓ (3)

6.4 Use of taps and dies:

- Taps are used to cut / clean ✓ internal / nut screw threads ✓
- Dies are used to cut / clean ✓ external / bolt screw threads ✓


[18]

(3)

QUESTION 7: FORCES (SPECIFIC)

7.1 Frameworks:

7.1.1 Force diagram:

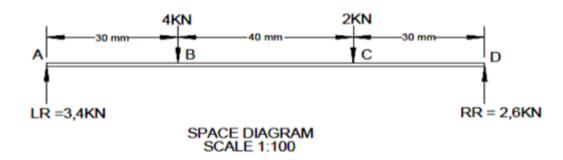
Markers need to draw the diagram to scale.

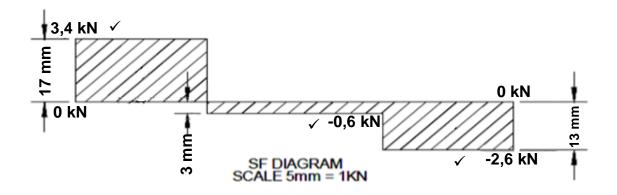
(10)

7.1.2 Magnitude and nature of the members:

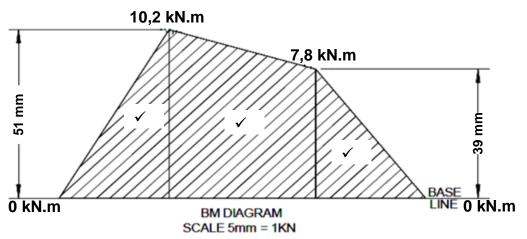
MEMBER	MAGNITUDE (kN)	NATURE
AF	1050 ✓ (1020 – 1080)	STRUT ✓
BG	760 √ (730 – 790)	STRUT ✓
CH	760 √ (730 – 790)	STRUT ✓
DI	960 ✓ (930 – 990)	STRUT ✓
FG	300 ✓ (270 – 330)	STRUT ✓
HI	200 ✓ (170 – 230)	STRUT ✓
FE	930 ✓ (900 – 960)	TIE ✓
GH	250 ✓ (220 – 280)	TIE ✓
IE	830 ✓ (800 – 860)	TIE ✓
	Minus 2 marks for incorrect conversion (mm to kN)	

(18)


7.2 **BEAMS**:


7.2.1 **Bending moments:**

$$BM_{B} = (3,4\times3)$$
 \checkmark
= 10,2 kN.m \checkmark coleBooks
 $BM_{C} = (3,4\times7) - (4\times4)$
= 23,8-16
= 7,8 kN.m \checkmark


$$BM_{D} = 0 \text{ kN.m} \quad \checkmark$$
 (6)

7.2.2 **Shear force diagram:**

7.2.3 Bending moment diagram:

Markers need to draw to scale at marking centre SCALE 5mm =1kN.m

Copyright reserved Please turn over

(3)

(3)

7.3 Stress and Strain:

7.3.1 **Maximum stress:**

Maximum Stress =
$$\frac{\text{Maximum Load}}{\text{Area}}$$

$$= \frac{8 \times 10^{3}}{0.08 \times 10^{-3}} \quad \checkmark$$

$$= 100 \times 10^{6} \text{ Pa} \quad \checkmark$$

$$= 100 \text{ MPa}$$
(3)

7.3.2 Safe working stress:

Safe Stress =
$$\frac{\text{Maximum Stress}}{\text{Safety Factor}}$$

= $\frac{100 \times 10^6}{4}$ \checkmark
= $25 \times 10^6 \,\text{Pa}$ \checkmark
= $25 \,\text{MPa}$ (2)
[45]

DBE/November 2020

QUESTION 8: JOINING METHODS (INSPECTION OF WELDS) (SPECIFIC)

8.1 **Welding spatter:**

- Too high current / Amperage too high ✓
- Too long arc / Arc blow ✓
- Not using anti-spatter spray ✓
- Electrode angle too small ✓
- Welding speed too fast ✓
- Wet electrodes ✓
- Gas-flow too high (gas welding) ✓
- Incorrect polarity for electrode type ✓

(Any 4 x 1) (4)

(2)

8.2 **Gas cutting:**

8.2.1 Nozzle too high from surface:

- Excessive melting of the top edge. ✓
- Undercut at the top of the cut face with lower part square and sharp bottom corner. ✓

8.2.2 Nozzle too close to the surface:

- Top edge slightly rounded and heavily beaded. ✓
- Cut face usually square with fairly sharp bottom corner. ✓ (2)

8.3 Causes of weld defects:

8.3.1 **Porosity:**

- Dirty weld surface ✓
- Wet welding electrodes ✓
- Rust in the MIG wire electrode ✓
- Interruption of shielding gas supply ✓
- Welding in windy conditions where effectiveness of shielding gas is compromised ✓
- Wrong gas used on the specific metal ✓
- Weld ability of parent metal not good ✓
- Wrong electrode used on the specific metal ✓
- Too high temperature √ (Any 2 x 1)

8.3.2 **Poor penetration:**

- Welding current is too low ✓
- Travel speed is too fast ✓
- Incorrect electrode angle ✓
- Poor edge preparation ✓
- Insufficient root gap ✓
- Gas flow too low (gas welding) √ (Any 2 x 1)

8.4 Heat Affected Zone (HAZ) Cracks:

- Excessive hydrogen ✓
- High residual stress levels (work piece cooled too fast) ✓
- High carbon content on the base metal ✓

(Any 2 x 1) (2)

8.5 **Visual inspection:**

- Shape of the profile ✓
- Uniformity of the surface ✓
- Overlap ✓
- Undercutting ✓
- Penetration bead ✓
- Root groove ✓
- Surface cracks ✓

(Any 3×1) (3)

8.6 Ultrasonic test:

- Gel should be put on the surface of the work piece. ✓
- The sender/receiver is moved in a zigzag motion across the weld to broaden its detection range. ✓
- A high frequency sound wave is send into the metal. ✓
- When the wave is stopped, the sender serves then as a receiver. ✓
- The receiver monitors the waves as it is reflected through the metal. ✓
- Each wave is visually represented on an oscilloscope. ✓
- The calibrated oscilloscope will then indicate the deviations in the waves which represents the defects in the metal. ✓

(Any 6 x 1) (6)

[23]

Mechanical Technology (Welding and Metalwork) 15 SC/NSC – Marking Guidelines

DBE/November 2020

QUESTION 9: JOINING METHODS (STRESSES AND DISTORTION) (SPECIFIC)

9.1 Residual stress:

Residual stresses are stresses that exist in a metal ✓ after cooling. ✓ (2)

9.2 Effect of hot working on steel:

- In hot working, deformation and recrystallization occur simultaneously so that the rate of softening is greater than work hardening. ✓
- Hot-working should be finished at a temperature just above the recrystallization temperature. ✓
- To obtain a fine grain structure. ✓
- If the finishing temperature is too high, grain growth will occur while the metal is cooling above the recrystallization temperature and inferior properties will develop. ✓

9.3 **Iron-carbon diagram:**

- 9.3.1 Iron-carbon equilibrium diagram ✓ (1)
- 9.3.2 A. Temperature / Degrees Celsius ✓
 - B. Austenite ✓
 - C. Austenite and Cementite ✓
 - D. Ferrite and Pearlite ✓
 - E. Carbon content (5)

9.4 Result when metal is cooled rapidly:

- The metal sets up internal and external stresses. ✓
- Causes cracks on the surface of the metal. ✓
- Causes deformation. ✓
- Hardness increases. ✓
- Martensite forms. ✓

(Any 2 x 1) (2)

9.5 **Quenching media:**

- Water ✓
- Brine ✓
- Oil √
- Air √
- Metal / Molten salts ✓
- Lime ✓
- Sand ✓
- Ash ✓

(Any 4 x 1) (4)

[18]

(4)

QUESTION 10: MAINTENANCE (SPECIFIC)

10.1 **Types of maintenance:**

- Preventative ✓
- Reliable centred ✓
- Predictive ✓
- Routine ✓
- Corrective ✓
- Condition based ✓
- Reactive maintenance ✓

(Any 2 x 1) (2)

10.2 Lockout on machines:

To ensure that nobody can turn on ✓ the machine while maintenance is being carried out. ✓

(2)

10.3 Rules to be observed before machine start up:

- Check if there is lock out tag ✓
- Confirm that the machine is safe and operational. ✓
- Check that all guards and safety devices are in position and operative. ✓
- Inform workers that the machine is being brought back into service. ✓
- Check that the area surrounding the machine is clear and that turning it on will not endanger anyone.
- Check that all relevant fasteners have been properly tightened. ✓
- Check that all lockout devices have been removed. ✓
- Turn on the machine's power supply. ✓
- Know where the stop switch or emergency switch is located. ✓

(Any 2 x 1) (2)

10.4 Factors to be observed when selecting the cutting speed of a drilling machine:

- Type of material ✓
- Diameter of drill bit ✓
- Material of which the drill bit is made ✓
- Type of drill bit ✓
- Firmness with which the work is clamped ✓
- Condition of the machine ✓
- Use of cutting fluids ✓
- Rate of feed ✓

(Any 3 x 1) (3)

[9]

17

DBE/November 2020

(7)

QUESTION 11: DEVELOPMENT (SPECIFIC)

Square-to-round transition:

11.1 The true length FG:

IK = 300(2units)
IH=150(1unit)
HK=
$$1\sqrt{3}$$
 (1unit× $\sqrt{3}$)

The true length FG:

Plan length FG = FK – GK
=
$$400-300$$

= 100 mm

The true FG is equal to H'F

$$CG^{2} = C'F^{2} + FG^{2}$$

$$= 400^{2} + 100^{2} \quad \checkmark$$

$$C'G = \sqrt{170000} \quad \checkmark$$

$$CG = 412,31 \text{ mm} \quad \checkmark$$
True length C'G = $\sqrt{412,31^{2} + 800^{2}}$ \checkmark

$$= 900 \text{ mm}$$

11.2 Length CI, the sides CE and EI of triangle CEI must be calculated:

$$HK = 1 \text{ unit } \times \sqrt{3}$$
$$= 150\sqrt{3} \qquad \checkmark$$
$$= 259,81 \text{ mm} \qquad \checkmark$$

FH = FK - HK
=
$$400-259,81$$

= $140,19 \text{ mm}$

$$CI^{2} = CE^{2} + EI^{2}$$

= $250^{2} + 140,19^{2}$ \checkmark
= $\sqrt{82153,24}$
 $CI = 286,62 \,\text{mm}$ \checkmark

Truelength
$$Cl^2 = Cl^2 + (Perpendicular Height)^{2.5}$$

= $286,62^2 + 800^2$ \checkmark
= $\sqrt{722151,02}$
= $849,79 \, \text{mm}$ \checkmark (10)

11.3 JI is one-twelfth of the circumference:

True Length of JI(Circumference)=
$$\pi \times \frac{MD}{12}$$

$$\frac{1}{12} \text{Circumference} = \frac{1884,9}{12} \quad \checkmark$$
=157,08 mm \checkmark (3)

[20] GRAND TOTAL: 200