Depatanent
Basicteducaion

REPUBLIC OF SOUTH AFRICA

2021 ATP: Grade 11 - Term 1: TECHNICAL MATHEMATICS

TERM 1	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10
CAPS Topics	Exponents and surds			Equations and inequalities			Nature of roots	Logarithms		Analytical Geometry
Topics /Concepts, Skills and Values	1. Apply the involving 2. Add, subt	onents to onents. and divi	ons surds	Solve 1. quadratic equations (by factorisation and by using the quadratic formula); 2. equations in two unknowns, one of which is linear and the other quadratic algebraically or graphically.			- Explore the nature of roots through the value of $b^{2}-4 a c$.	- Demonstr definition needed to	tanding of the and any laws problems	- Use a Cartesian co-ordinate system to determine: - the equation of a line through two given points; - the equation of a line through one point and parallel or perpendicular to a given line; and the angle of inclination of a line.
SBA	Investigation or project							Test		

2021 ATP: Grade 11 - Term 2: TECHNICAL MATHEMATICS

TERM 2	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10
CAPS Topics	Analytical Geometry (continuation)	Functions and graphs				Euclidean Geometry			Trigonometry	
	- Use a Cartesian co-ordinate system to determine: the equation of a line through one point and parallel or perpendicular to a given line;and the angle of inclination of a line.	1. Revise the effect of the parameters a and q on the graphs. Investigate the effect of p on the graphs of the functions defined by: 1.1. $y=f(x)=a(x+p)^{2}+q$ 1.2. $y=f(x)=a x^{2}+b x+c$ 1.3. $y=\frac{a}{x}+q$ 1.4. $y=a . f(x)=a . b^{x}+q, b>0$ and $b \neq 1$ $\begin{aligned} & \text { 2. } \quad x^{2}+y^{2}=r^{2} \\ & y= \pm \sqrt{r^{2}-x^{2}} \\ & y=+\sqrt{r^{2}-x^{2}} \\ & y=-\sqrt{r^{2}-x^{2}} \end{aligned}$ Accept results established in earlier grades as axioms and also that a tangent to a circle is perpendicular to the radius, drawn to the point of contact. Then investigate and apply the theorems of the geometry of circles: - The line drawn from the centre of a circle perpendicular to a chord bisects the chord; - The perpendicular bisector of a chord passes through the centre of the circle; - The angle subtended by an arc at the centre of a circle is double the size of the angle subtended by the same arc at the circle (on the same side of the chord as the centre); - Angles subtended by a chord of the circle, on the same side of the chord, are equal; - The opposite angles of a cyclic quadrilateral are supplementary; - Exterior angle of cyclic quad. is equal to opposite interior angle; - Two tangents drawn to a circle from the same point outside the circle are equal in length; - Radius is perpendicular to the tangent; and - The angle between the tangent to a circle and the chord drawn from the point of contact is equal to the angle in the alternate segment.							1. Revise the trig ratios in the solving of right-angle triangle in all 4 quadrants (Grade 10). 2. Apply the sine, cosine and area rules. 3. Solve problems in two dimensions using the sine, cosine and area rules 4. Draw the graphs of the functions defined by: $\begin{aligned} & y=k \sin x, \\ & y=k \cos x, \\ & y=\sin (k x), \text { and } \\ & y=\cos (k x), \end{aligned}$	
SBA	Assignment					Test				

TERM 3	Week 1 Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week 9	Week 10
CAPS Topics	Trigonometry	Circles, angles and angular movement				Finance, growth and decay		Mensuration	
	5. Draw the graphs of the functions defined by $y=$ $\sin (x+p) \text { and } y=\cos (x+p)$ 6. Developing the sine and cosine curve 7.Trigonometric equations. 8. Introduce and apply identities	- Angles and arcs - Degrees and radians - Sectors and segments - Angular and circumferential velocity.				Use simple and compound growth/decay formulae $A=P(1 \pm i n)$ and $A=P(1 \pm i)^{n}$ to solve problems (including interest, hire purchase, inflation, population growth and other real life problems). The effect of different periods of compounding growth and decay (including effective and nominal interest rates).		Solve problems involving volume and surface area of solids studied in earlier grades and combinations of those objects to form more complex shaped solids. 1. Surface area and volume of right prisms, cylinders, pyramids, cones and spheres, and combinations of these geometric objects. 2. The effect on volume and surface area when multiplying any dimension by factor k. 3. Determine the area of an irregular figure using midordinate rule.	
SBA	Test					Test			

