PHYSICS

Physics is abraktodsfienceothat deals with the study of matter，energy and their interactions．

Branches of Physics

1．Mechanics：Motion and properties of matter．
2．Heat：A form of energy that causes rise in temperature．
3．Optics：Light and waves．
4．Electricity and Magnetism．
5．Modern Physics：Atomic and NuclearPhysics．

Why we study Physics

＊To help students develop an experimental attitude by performing experiments and acquire skills such as observation，measuring，dra wing logical conclusions．
＊To understand scientific theories，principles and concepts
＊Io prepare students tor turther studies in Ynysics．
＊To understand the applicability of Physics in other disciplines like security，medicine，engineering，e．t．c and improve the world＇s technology．

Physics is concerned with measurement of physical quantities and classifying them into groups according to their natıre
To measure is to find the value of a physical quantity using a scientific instrument with a standard scale．

Physical Quantities

A physical quantity is a physical property that can accurately be mea sured．

Tvnes of Phvsical Ouantities

There are two types of Physical Quantities namely；
（i）FundamentalQuantities or Basic Quantities
（ii）Derived Quantities

1：1：1．FUNDAMENTAL QUANTITIES OR BASIC QUANTITIES

These are quantities from which all other quantities are obtained．They are seven in total and these are：

Fundamental Quantities	S．I unit	Symbol
	Metre	M
	Kilogrm	Kg
3．$\hat{\text { 人 }}$ 人食人	Second	S
4．Thermodynamic Temperatur	Kelvin	K
5．Electric current	Ampere	A
6．Amount of a substance	Mole	Mol．
7．Luminous Intensity	Candela	Cd

Note：In mechanics，we use only three fundamental quantities；i．e length，mass and time．

1：1：1：1．LENGTH：

Length is the distance between | andelomks |
| :---: |

It can also be defined as the distance covered by matter．It is a measurement of the extent of something from end to end．

The S．I unit of length is a metre（m）．
Other units of length include；Miles，kilometer，Hectometre， Decametre，Decimetre，Centimetre，etc．

CONVERSIONS

Example： 1

Convert the following as instructed：
（i） 16.4 mm to metres
（ii） 20 m to centimetres
（iii） 0.092 km to metres
（iv） 250 cm to metres

Solution

（i） 16.4 mm to metres

（ii） 20 m to centimetres

Solution

20m to centimetres

Km	Hm	Dm	M	dm	Cm	Mm
			1	0	0	
$1 \mathrm{~m}=$ ¢ 100 cm						
$20 \mathrm{~m}=X$						
$1 \times\rangle=20 \times 100\rangle\rangle$ $\hat{s}=2000$ s						

（iii） 0.092 km to metres

Solution

0.092 km to metres

（iv） 250 cm to metres

Solution

250 cm to metres

Km	Hm	Dm	m	Dm	cm	mm					
			1	0	0						
			100 c								

$100 \times 2=250 \times 1 \geqslant$
100-8 250
$\overline{100}=$ Fiolebooks.com
$0=2.580$
Thus $250 \mathrm{~cm}=2.5 \mathrm{~m}$

Instruments Used in measuring length
(i) Tape-measure: (Accurately measures length greater than 1 metre: $\rangle>1\rangle$). E g length of a foot ball field, length of a plot of land etc.
(ii) Metre-rule :(Accurately measures length greater than 12 centimetres but less than 1 metre: $12 \geqslant<\rangle<$ $1($). Eg length of a desk, breadth of a window, etc.
A metre rule gives readings in cm to 1 dp .

(iii) Vernier calipers or Slide calipers :

Accurately measures length greater than 1 cm but less than $12 \mathrm{~cm}: 2.5 \mathrm{~cm}<\rangle<12 \quad$ E.g Internal and External diameters of test tubes and beakers, breadth of a metre rule. etc.
A vernier caliper gives readings in cm to 2dp.

Engineer calipers

The distance between the jaws is after wards measured on an ordinary scale like a metre-rule.

How to read a vernier Caliper
cm

- The main scale is in centimeters, 1 cm has 10 divisions each division is $\frac{1}{10} \mathrm{~cm}=$

Reading of vernier caliper

1. Record the reading on th Écidele Broplases in cm .
2. Look along the Vernien scale carefully until you see division on it which coincides with the main scale, this gives the second decimal place.

Examples:
cm

Main scale $=2.40 \mathrm{~cm}$
Vernier scale $=0.04 \mathrm{~cm}$
Final reading $=2.44 \mathrm{~cm}$

What readings are represented in the diagram?

(iv) Micrometer screw gauge: (Accurately measures length less than 1centimetre: 1$\rangle \gg<25\rangle$) Eg Diameter of wires, Diameter of ball beairings and pendulum bob, etc.
A micrometer screw gauge gives readings in cm to 2 dp .

For each turn the spindle moves through 0.5 mm . The fraction of each turn is indicated on the thimble. This has a scale of 50 divisions on the thimble and represents $\frac{1}{50}$ of half a millimeter i.e. $\frac{1}{10} \times 0.5 \mathrm{~mm}=0.01 \mathrm{~mm}$.
The sleeve-reading gives units to the $1^{\text {st }}$ two decimal places and the thimble gives $2^{\text {nd }}$ decimal place.

Example I:

Example II:

Sleeve scale reading $=9.5$
00 mm
Thimble scale reading $=0.29 \mathrm{~mm}$

$$
=9.79 \mathrm{~mm}
$$

Precautions taken when using a micrometer screw gauge

- The faces of the anvil and the spindle must be cleaned to remove dust so as to get accurate readings.
- The reading must be checked.

1:1:1:2: MASS:

Mass is the quantity of matter in a substance.
The S.I unit of mass is a kilogram (kg).
Other units of mass include: Tonnes (1tonne $=1000 \mathrm{~kg}$),
Hectogram (Hg), Decagram (Dg), Gram (g), Decigram (dg),
Centigram (cg), Milligram (mg), etc.
Instruments Used in measuring Mass
(i) weighing beam balance
(ii) Digital beam balance
(iii) Top arm beam balance
(iv) Lever arm beam balance
(v) Tripple beam balance

Conversions

Example 1:
Convert the following as instructed:
(i) 100 grams to kilogra ms
(ii) 2 kg to dg
(iii) 40 mg to kg
(iv) 20.55 g to cg

Solution

(i) 100 grams to kilograms

(ii) 2 kg to dg

Solution
2 kg to dg

Kg	Hg	Dg	G	dg	Cg	mg
$\mathbf{1}$	0	0	0	0		

(iii) 40 mg to kg

Solution
40 mg to kg

(iv) 20.55 g to cg

Solution

20.55 g to cg

Kg		Hg	Dg		g	dg	Cg	mg
					1	0	0	
$1 \mathrm{~g}=$			100 cg					
		$5 \mathrm{~g}=$		X				
$\begin{gathered} 1 \times \hat{\vartheta}=20.55 \times 100\rangle \hat{\vartheta} \\ \hat{\theta}=2055 \hat{\geqslant} \end{gathered}$								

1:1:1:3: TIME:

Time is the interval between two events.
The S.I unit of time is a second (s).
Other units of time include Minute ($1 \mathrm{~min}=60 \mathrm{~s}$), Hour ($1 \mathrm{hr}=60 \mathrm{~min}$), Day (1 day $=24 \mathrm{hrs}$), Week (7 days), fortnight (2weeks), Month (1month=30days), Year (1yr=12months),
decade, century, and a millennium.
Instruments Used in measuring Time

- Stop clock
- stop watch
- Half life of a radioactive substance eg Carbon-14
- Shadows

1:1:2. DERIVED QUANTITIES

These are quantities which can be expressed in terms of the fundamental quantities. Besides the seven fundamental quantities, the rest of the Physical quantities' are derived quantities. Their S.I units are also called Derived units.

Examples of Derived Physical quantities include:

Derived Quantities		S.I unit	Symbol
1.	Area	squaremetre	m^{2}
2.	Volume	cubicmetres	m^{3}
3.	Density	kilogram per cubicmetre	kgm^{-3}
4.	Speed and Velocity	metres per second	ms^{-1}
5.	Pressure	newton per square metre (or pascal)	Nm^{-2} (or Pa)
6.	Force and weight	Newton	N
E.t. c			

1:1:2:1. AREA:
Area is a mea sure of the size of a surface.
The S.I unitis asqubremetre $\left(\mathrm{m}^{2}\right) \mathrm{n}$
Other units of area include:
$\left.\left.\left.\hat{\nu} \hat{\nu}^{2}, \hat{\nu} \hat{\nu}^{2},\right\rangle \nu^{2}\right\rangle \hat{\nu}\right\rangle$

Example 1:

Convert the following as instructed
(i) $15 \mathrm{~mm}^{2}$ to cm^{2}
(ii) $20 \mathrm{~m}^{2}$ to mm^{2}
(iii) $16.4 \mathrm{~mm}^{2}$ to m^{2}

Solution

(i) $\left.15 \geqslant\rangle^{2} \geqslant 人 \geqslant\right\rangle^{2}$

(ii) $\left.20 \hat{\nu}^{2} \geqslant \geqslant \geqslant\right\rangle^{2}$

Solution
(iii) $\left.\left.16.4 \geqslant\rangle^{2}\right\rangle\right\rangle \hat{\nu}^{2}$

Types of areas
(i) Cross-sectional are

ÉcoleBooks
(ii) Surface area

Figure	Name	Formula for Area
1.	Rectangle	$\theta=\theta^{2}$
2.	Square (All sides are equal)	$\hat{\nu} \hat{\beta}^{2}$
3.	Triangle	$\hat{\rho}_{2}=\begin{gathered} 1 \\ h_{2} \end{gathered}$
4.	Circle	$\hat{\nu}=\hat{\nu}^{2}$
5.	Trapezium $(2$ parallel un equal sides $)$	$\rangle=\frac{1}{2}(\hat{2}+\hat{\nu}$
$6 .$	Sphere	$\hat{\nu} \cdot \boldsymbol{\nu}=4\rangle\rangle^{2}$
7.	Cuboid	$\begin{aligned} & \text { 仓े } \\ & =2(\hat{\rangle}) \\ & +2(\hat{\rangle}) \\ & +2(\hat{>} h) \end{aligned}$
8.	Cube (All faces are equal)	$\hat{\nu} \cdot \boldsymbol{\theta}=6\rangle^{2}$

1:1:2:2. VOLUME:
Volume is the space occupied by matter.
The S.I unit of volume is cubic metre $\left(\mathbf{m}^{3}\right)$.
Other units of volume include:

 $\hat{\nu} \hat{\nu}\rangle \hat{\nu}\rangle \vec{\nu}(\hat{\nu})$.

Instruments for measuring Volume include:

- Measuring cylinder
- Volumetric flask
- Pipette

Volume of regular objects

Figure Ecolebook	$\begin{gathered} \text { Name } \\ \text { com } \end{gathered}$	Formula for Volume
1.	Cylinder	$\hat{\nu}=\hat{\nu} \hat{\nu}^{2} h$
2.	Circular cone	$\left.\left.\left.\rangle={ }_{3}{ }^{(}\right\rangle\right\rangle^{2}\right) h$
$3 .$	Sphere	$\rangle=\hat{3}_{3} \hat{3}^{3}$
4.	Cuboid	$\rangle=$ 人 $\boldsymbol{\nu}^{2} h$
5.	Cube （All faces are equal）	$\hat{\theta}^{3}=$

Experiment to determine the volume of an irregular object
The volume of an irregular object can be obtained by the
Displacement method．
－Pour water into a measuring cylinder up to a certain level．Record the volume of water $\left(\mathrm{V}_{1}\right)$ ．
－Tie a thread on the irregular object and gently lower it into the water in the measuring cylinder．Note the new volume of water in the cylinder $\left(\mathrm{V}_{2}\right)$ ．
－$\hat{\mathbf{H}}^{3}$ e Volume of the irregular object is then equal to the volume of displàced water；Thus $\mathbf{V}=\left(\mathbf{V}_{\mathbf{2}}-\mathbf{V}_{\mathbf{1}}\right)$ ．

Water（Liquid）

OR
－Pour water in an over flow can up to the level of the spout．Place a measuring cylinder just below the spout．
－Tie a thread around the irregular object and gently lower it into the overflow can．
－Note the volume of water， \mathbf{V} that collects in the measuring cylinder．It is equal to the volume of the irregular object．

Question：

A mea suring cylinder containing some water stands on a scale pan．A solid ball is lowered into the water．The water level rises from the $30 \mathrm{~cm}^{3}$ mark to $40 \mathrm{~cm}^{3}$ mark．The scale reading increases from 100 g to 180 g ．

What is the density of the material of the ball？
A． $2.0 \mathrm{gcm}^{-3}$ ．
B． $4.5 \mathrm{gcm}^{-3}$ ．
B． $8.0 \mathrm{gcm}^{-3}$ ．
D． $18 \mathrm{gcm}^{-3}$ ．

Example 1：

Convert the following as instructed
（i） $\left.250 仓\rangle^{3} 仓\right\rangle$
（iis）
（ii） $500 \geqslant \geqslant \geqslant \hat{\vartheta}^{3} \quad$（i 10,000

Solution

Example 2：

Use the match box below to answer questions that follow．

Find the volume
(i) in $\mathrm{cm}^{3}\left[400 \mathrm{~cm}^{3}\right]$
(ii) in m^{3} [00g04 ${ }^{2} \mathrm{~B}^{3}$ books.com

Exercise:

1. A cuboid has dimensions 2 cm by 10 cm . Find its width in metre if it occupies a volume of $80 \mathrm{~cm}^{3}$. [$\mathbf{0 . 0 4 m}$]
2. (a) Find the volume of water in a cylinder of water radius 7 cm if its height is $10 \mathrm{~cm} .\left[\mathbf{1 5 4 0} \mathrm{cm}^{\mathbf{3}}\right.$]
(b) The volume of the cylinder was $120 \mathrm{~m}^{3}$. When a stone was lowered in the cylinder filled with water the volume increased to $15 \mathrm{~cm}^{3}$. Find the height of the cylinder of radius $7 \mathrm{~cm} .[0.078 \mathrm{~cm}]$
3. A Perspex box has 10 cm square base and contains water to a height of 10 cm . A piece of rock of mass 600 g is lowered gently into the water and the level rises to 12 cm . Find the;
(i) Volume of water displaced by the rock.
(ii) volume of the rock in
(iii) density of the rock in

1:1:3. SCIENTIFIC NOTATION AND SIGNIFICANT

Scientific notation or StGHaAREform

- Annmberistureescientifica fowniowhis itnisltüpititednbas a

inclusive but 10 exclusive. \mathbf{n} is an integer (....-2,-1, $0,1,2 \ldots$).
- Scientific notation is used for writing down very large
and very small measurements.
Example:
$\begin{array}{lll}\text { (ii) } \quad 800,000,0807 \mathrm{~m} & \equiv & 8.98 \times 190^{78} \mathrm{~m} \\ \text { (iii) } 60220 \mathrm{~m} & = & 6.022 \times 10^{4} \mathrm{~m}\end{array}$
Questions:
(adnvef. 0 he8followifg to scye8tixfib0form.
(b) $\stackrel{3}{4}^{-1}=0.75=7.5 \times 10^{-1}$
(d) $80 \pi 00=8.7 .0 \times 10^{8}$
(e) $\stackrel{8}{=}=0.125=1.25 \times 10^{-1}$

Significant figures

* Decimal Places

The number of decimal places (dp) is the number of digits to the right end of a decimal point. E.g. the number 3.6420 is given to 4 dp .Thus $3.6420 \approx 3.642(3 \mathrm{dp}), 3.6420 \approx 3.64(2 \mathrm{dp})$, $3.6420 \approx 3.6(1 \mathrm{dp}), 3.6420 \approx 4$ (0 dp).

* Significant Figures

a) None zero digits $(1,2,3,4,5,6,7,8$ and 9$)$ are significant figures.
b) Zeros

Leading zeros (i.e. zeros at the left end of a number) i.e zeros before the first significant figure; are not significant figures e.g. 0.000456 (3s.f), 0.017 (2s.f).

Tapped zeros; zeros between significant figures i.e. zeros between non zero digis arf simgifica it digures e.g. 6.0037 (5s.f), 0.0100034 (6 s.f).

Trailing zeros (zeros at the right end of a number);
(i) Trailing after a decimal point: These are significant figures. E.g 2.00 (3s.f), 0.0020 (2s.f), 0.0120700 ($6 \mathrm{~s} . f$)
Normally these values are obtained by using an instrument.
(ii) Trailing before a decimal point: These are NOT significant figures. E.g 20 (1s.f), 2400 (2s.f), 580100 (4s.f) Normally these values are obtained as a result of rounding off certain numbers to the nearest tens, fifties, hundreds, thousands, ten thousands e.t.c.
For example, if a number 348 is rounded off to 1 s.f, we get 300 and if it's rounded off to 2 s.f we get 350 . The trailing zeros in these approximations (i.e. 300 and 350) are due to rounding off and therefore are not significant.

Questions

Write the following to the stated significant figures
a) 28.8 to 3 s.f. b) ${ }^{2}$ to 2 s.f $\begin{gathered}\text { c) } 4.027 \times 10^{-2} \text { to } 3 \text { s.f }\end{gathered}$

	Symbol	Exponent
Tera	G	100^{12}
Mfoga	M	10^{196}
Lerato	迷	100^{2}
Deatre	d	(1) ${ }^{1}$
Centi	c	10^{-2}
Mibio	m	$10^{=6}$
Nano	n	10^{-9}
Fiequto	P	$10^{-1 / 3}$
Atto	A	10^{-18}

Example:

Sta00 V	Sciedutifidform	Prefix used
4900 000J	$4.9 \times 10^{6} \mathrm{~J}$	4.9 MJ
0.00006 m 25 g	5:26 $\times 10^{=6} \mathrm{~m}$	\$.26mmg

1:2:1. DENSITY

Density is the mass per unit volume:
Density $=\frac{\text { mass }}{\text { volume }}$

Cdangiag

So when changing gcm^{-3} to kgm^{-3} simply multiplies by 1000

Example:
Express $0.8 \mathrm{gcm}^{-3}$ in kgm^{-3}

$$
\begin{aligned}
& \rangle=0.8 \times 1000 \geqslant ?^{2} \\
& \geqslant=800 \geqslant ?^{-3} \\
& \text { Thus } 0.8 \hat{p} \hat{p} \hat{p}^{-3}=800 \hat{p} \hat{p} \hat{p}^{-3}
\end{aligned}
$$

 known; then the density obtained from:

(9) FRE An Regulfarly sthap qd rineqidured on a beam balance

* micrometer screw gaugg.

Density of solid $=$ mass of solid
volume of solid
(b) Fre soliargoularly shaped solid bala nce to obtain its

* Thess ${ }_{\text {volume of }}$ of the solid is obtained by displacement methods. using a displacement can. The volume of
displaced water is equalto the volume of the solid.
* The density is then got from the formula.

Density of solid $=$ mass of solid
volume of solid
NOTE:
. FOTE: a floating object. Tie a sinker on the floating object and gently dip it water. Get the volume of the water displaced, \mathbf{V}_{1}.

Then dip the sinker alone in the water and again get the volume of water displaced, $\mathbf{V}_{\mathbf{2}}$.
The volume of the floating object, $V=\mathbf{V}_{\mathbf{1}}-\mathbf{V}_{\mathbf{2}}$
2. For a pin or a ball bearing.

(c) For liquids

* The volume of the liquid is measured using a measuring cylinder and the volume, V is noted.
* An empty measuring cylinder is weighed on a beam ba lance and its mass, 5 EisQlotedooks
* A liquid is addedto it and it is weighed again using the beam balance;

? ? ? ? ? ? ? Densitifeofliqutid $=$ mas

A round-bottomed flask is weighed using a beam balance (i) Measuring of mass

pump. Then

when full of air and after removing the air using a vacuum The volume of air is found by filling the flask with water (ii) Measuring of volume
= volume of water transferred into the measuring cylinder. and pouring it into a measuring cylinder. Then volume of air

> volume of air
> ma s s of a

Density of air $\overline{\bar{c}}$ be dried
ir

Firecauint sbinoitalkendry

-The atmospheric pressure and tempera ture should be noted.
(i) Temperature

Factonsthat siffe ext Delusity. The density then decreases.

When the temperature of a substance is reduced, it contracts
When the pressure of a given mass of a gas is increased, the
(ii) Pressure

Padssure Chily incfeaserthedenisyty fofatbergas.
 When the pressure of a given mass of a gas is reduced, the dectused tre-dennsty yomategials for construction

Uses of densify Choose the light gases to fill balloons
A Perspex boxhas andocmisquare basectantaining water to a DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM
into the, water and the level rises to 12 cm .
(a) What is the volume of water displaced by the rock?

$$
\begin{array}{cc}
\mathrm{V} & = \\
\text { Ecolebooks.com } & \begin{array}{c}
\mathrm{L} \times \mathrm{wxh} \\
10 \times 10 \times(12-10)
\end{array} \\
200 \mathrm{~cm}^{3}
\end{array}
$$

(b) What is the volume of the rock?

Volume of rock $=$ volume of water displaced

$$
=200 \mathrm{~cm}^{3}
$$

Alternatively,

Volume of water before adding the rock
$\mathrm{V}_{1}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

$$
\begin{aligned}
& =\quad\left(10 \mathrm{~cm} \mathrm{x}^{3} 10 \mathrm{~cm} \times 10 \mathrm{~cm}\right) \\
& =\quad 1000 \mathrm{~cm}^{3}
\end{aligned}
$$

Volume of water after adding the rock
$\mathrm{V}_{2}=\mathrm{L} \times \mathrm{W} \times \mathrm{H}$

$$
\begin{array}{ll}
= & \mathrm{L} \times \mathrm{W} \times \mathrm{H} \\
= & (10 \times 10 \times 12) \mathrm{cm}^{3} \\
= & 1200 \mathrm{~cm}^{3}
\end{array}
$$

Volume of water displaced

$$
\begin{aligned}
\mathrm{V} & = & \mathrm{V}_{2}-\mathrm{V} \\
& = & (1200-1000) \mathrm{cm}^{3} \\
& = & 200 \mathrm{~cm}^{3}
\end{aligned}
$$

(c) Calculate the density of the rock

$$
\text { Density }=\frac{\mathrm{m} \text { ass }}{\text { volume }}=\frac{600 \mathrm{~g}}{200 \mathrm{~cm}^{3}}=3 \mathrm{gcm}^{-3}
$$

Example 2:
(ii) The mass of $24.4 \mathrm{~cm}^{3}$ of mercury is 332 g . Find the density of mercury. $\left(=\mathbf{1 3 . 6} \mathbf{~ g c m}^{-3}\right)$
(iii) An 800 g solid measures 10 cm by 5 cm by 4 cm . Determine its density. $\left(=\mathbf{4} \mathbf{~ g c m}^{-3}\right)$
(iv) A glass stopper of volume $16 \mathrm{~cm}^{3}$ weighs 40 g . Calculate its density in : (i) gcm^{-3}. $\left(=2.5 \mathbf{~ g c m}^{-3}\right.$)
(ii) $\mathrm{kgm}^{-3} \cdot\left(=\mathbf{2 5 0 0} \mathrm{kgm}^{-3}\right)$
(v) The density of copper is $8.9 \mathrm{gcm}^{-3}$. What is the mass $100 \mathrm{~cm}^{3}$ of copper? . $(=\mathbf{8 9 0} \mathbf{g})$
 were $500 \mathrm{~cm}^{3}$ and $600 \mathrm{~cm}^{3}$ respectively. Calculate the density of the stone. $\left(=\mathbf{2} \mathbf{g c m}^{-\mathbf{3}}\right.$)
(vii) An empty beaker weighs 120 g in air and 180 g when

(viii) What is the mass of 1.5 litres of water? ($=\mathbf{1 . 5} \mathbf{k g}$)
2. The oil level in a burette is $25 \mathrm{~cm}^{3} .50$ drops of oil fall
from a burette. If the volume of one drop is $0.1 \mathrm{~cm}^{3}$. What is the final oil level in the burette. [$\mathbf{3 0} \mathbf{c m}^{\mathbf{3}}$]
3. A measuring cylinder has water level of 13 cm . What will
be the new water level if 1.6 g of a metallic block of density $0.8 \mathrm{~g} / \mathrm{cm}^{3}$ is added.
4. A perspex box having 6 cm square base contains water to a height of 10 cm .
(a) Find the volume of water in the box $\left[360 \mathrm{~cm}^{3}\right]$
(b) A stone of mass 120 g is lowered into the box and the level of water rises to 13 cm .
(i) Find the new volume of water? $\left[468 \mathrm{~cm}^{3}\right]$
(1) Find the new volume of water? [468 cm^{3}. ${ }^{\text {Pxample } 2 .}$

Liquid Y of volume $0.40 \mathrm{~m}^{3}$ and density $90.0 \mathrm{kgm}^{-3}$ is mixed with liquid X of volume $0.35 \mathrm{~m}^{3}$ and density $800 \mathrm{kgm}^{-3}$. Calculatethedresityof themixture.

Solution

mass of $\mathrm{Y}=$ Volume of $\mathrm{Y} \times$ Density of Y
mass of $Y=0.40 \times 90.0$
mass of $Y=360 \mathrm{~kg}$
mass of $\mathrm{X}=$ Volume of $\mathrm{X} \times$ Density of X
mass of $Y=0.35 \times 800$
mass of $\mathrm{Y}=280 \mathrm{~kg}$
.Then:
Density of mixture $=\begin{gathered}\text { mass of mixture } \\ \text { Volume of mixture }\end{gathered}$
Density of mixture
$=$
mass of liquid $Y+$ mass of liquid X
Volume ofliquid $Y+3 / \notin d u m e 88 f$ liquid X
Density of mixture $=$
$0.40+0.35$
640 kg
$=\frac{.75 \mathrm{~m}^{3}}{}$

Exercise:

1. An alloy is formed by adding 500 g of element P of density $5 \mathrm{gcm}^{-3}$ to $400 \mathrm{~cm}^{3}$ of element Q of density $4 \mathrm{gcm}^{-3}$. Calculate the density of the alloy.[$4.2 \mathrm{gcm}^{-3}$]
2. $500 \mathrm{~cm}^{3}$ of liquid X of density $2 \mathrm{gcm}^{-3}$ is combined with 200 g of liquid Y of density $4 \mathrm{gcm}^{-3}$. Calculate the density of the mixture.
3. Liquid M of density $0.5 \mathrm{gcm}^{-3}$ is mixed with liquid N in equal volumes. If the mixture has a density of $0.8 \mathrm{gcm}^{-3}$, Find the density of liquid N .
4. $3 \mathrm{~cm}^{-3}$ of water was mixed with $5 \mathrm{~cm}^{-3}$ of milk of density $1500 \mathrm{kgm}^{-3}$. Find the density of the mixture. [$1312.5 \mathrm{kgm}^{-3}$]
5. Liquid A of volume $400 \mathrm{~cm}^{3}$ and density $800 \mathrm{kgm}^{-3}$ is mixed with liquid B of volume $600 \mathrm{~cm}^{3}$ and density $1120 \mathrm{kgm}^{-3}$. Calculate the density of the mixture.

1:2:3. RELATIVE DENSITY (R.D)

Relative density is defined as the ratio of the density of a substance to the density of an equal volume of water.

Density of substance
Relative Density $=$ Density of equal volume of water
Note: Density of pure water $=1 \mathrm{gcm}^{-3}=1000 \mathrm{kgm}^{-3}$ since density = mass / Volume, Then:

Relative Density =
mass of substance

Relative Density $=\begin{gathered}\text { weight of substance } \\ \text { weight of equal volume of water }\end{gathered}$
Note: Relative density has no units.
Experiment: To determine the Relative density of a liquid using a density bottle. WNROAD sit be RESOURCE LIKE THIS On ECOL

The bottle contains exactly the same volume when the liquid level is at the hole.

* mass of empty bottle M_{0}

A dry density bottle with a stopper is weighed when empty using a balance.

* Mass of bottle filled with the liquid M_{2}

A dry density bottle with a stopper is weighed when filled with the liquid using a balance.

* Mass of bottle filled with water M_{1}

After removing the liquid and rinsing out the density bottle with water, the density bottle is filled with water and weighed again.

* The measurements are recorded as below:

Mass of empty: $\quad=m_{0}$
Mass of bottle full of water: $=m_{1}$
Mass of bottle full of liquid: $=m_{2}$
Mass of liquid: $\quad=m_{2}-\mathrm{m}_{0}$
Mass of water: $\quad=m_{1}-m_{0}$

* Relative Density of a liquid $=$

Note: The advantage of using a density bottle in measuring the relative density of a solid is that it is accurate compared to other methods.

Measurement of relative density of a solid

* This can be found by weighing the solid in air and when fully immersed in water.
* The solid immersed in water displaces an amount of water equal to its volume. The relative density is then calculated using;
* Relative density $=\frac{\text { Wei ght in air }}{\text { Weight in water }}=\underset{W_{a}-W_{w}}{ }-{ }^{2}$

Example 1

A density bottle was used to measure the density of mercury. The following mea surements were taken:

- Mass of empty bottle $=20 \mathrm{~g}$
- Mass of bottle full of mercury $=360 \mathrm{~g}$
- Mass of bottle full of water $=45 \mathrm{~g}$

Calculate the;
a. Relative density of mercury
b. Density of mercury

Solution

(ii)
R. D $=\frac{\text { Density mercury }}{\text { Density of water }}$
$13.6=\frac{\rho}{1000}$
$\rangle=13.6 \times 1000$
$\hat{\nu}=13600 \geqslant$

Example: 2

A density bottle has mass 75 g when empty, 95 g when full of water and 998cyberfublofs . Liguid Calculate the:
(i) Retative density of the fiquid.
(ii) density of the liquid

Solution

$\mathrm{m}_{\mathrm{E}}=75 \mathrm{~g} ; \mathrm{m}_{\mathrm{L}}=9$	
(i)	$\text { R. D }=\frac{\text { Density of liquid }}{\text { Density of water }}$
R. $\mathrm{D}=\frac{\mathrm{m}_{\underline{L}} \underline{-\mathrm{m}_{\underline{E}}} \underline{\underline{W}} \text { (}}{}$	
$\mathrm{m}_{\mathrm{W}}-\mathrm{m}_{\mathrm{E}}$	
R. $\mathrm{D}=9$ 99-75	$1.2=\frac{}{1000}$
95-75	$\begin{aligned} & \hat{2}=1.2 \times 1000 \\ & \hat{\theta}=1200\rangle \end{aligned}$
24	$)^{-3}$
R. $\mathrm{D}=\overline{20}$	

Exercise:

 calculate the density of ethanol.

Find the relative density of the liquid and its density.
3. An empty 60 -litre petrol tank weighs 10 kg . What will be its mass when full of petrol of relative density 0.72 ?
4. A density bottle was used to measure the relative density of a liquid and the following results were obtained.
Mass of empty bottle $\quad:=30 \mathrm{~g}$
Mass of bottle full of water : $=130 \mathrm{~g}$
Mass of bottle full of liquid : $=110 \mathrm{~g}$
Calculate the density of the liquid. $\left(=\mathbf{0 . 8} \mathbf{g c m}^{-\mathbf{3}}\right)$
5. An empty density bottle is 46.00 g . When fully filled with water, it weighs 96.00 g . It weighs 86.00 g when full of an unknown liquid. Find the density of the liquid. $\left(=\mathbf{0 . 8} \mathbf{g c m}^{-3}\right)$
6. A piece of aluminum weighs 80 N in air and 50.37 N when completely immersed in water. Calculate the relative density of aluminum. (=2.7)
7. Two solid cubes have the same mass but their surface areas are in the ratio of $1: 16$. What is the ratio of their densities?
A. $1: 2$
B. $4: 1$
C. $64: 1$
D. 1:64
9. A metalcuboid of dimensions 3 cm by 2 cm by 1 cm and $8.9 \mathrm{~g} \mathrm{~cm}^{-3}$ is completely immersed in a liquid of density 0.8 $\mathrm{g} \mathrm{cm}-3$. The mass of the liquid displaced is.
A. 53.4 g .
B. 7.5 g .
C. 29.1 g .
D. 4.8 g .
10. $0.002 \mathrm{~m}^{3}$ of a liquid of density $800 \mathrm{kgm}^{-3}$ is mixed with $0.003 \mathrm{~m}^{3}$ of a nother liquid of density $1200 \mathrm{kgm}^{-3}$. What is the density of the mixture?
A. $1,000 \mathrm{kgm}^{-3}$
B. $4,000 \mathrm{kgm}^{-3}$
11. A bottle weighs 160 g when empty 760 g when filled with water, and 1 kg when filled with a certain liquid.

A: $160 \mathrm{~cm}^{3}$
 C: $760 \mathrm{~cm}^{3}$

B: $600 \mathrm{~cm}^{3}$
ED:Olem Cnoks
12. What mass of lead hasthe same volume as 1600 kg of petrol? \{Density of lead $=11400 \mathrm{~kg} \mathrm{~m}^{-3}$, Density of petrol $\left.=800 \mathrm{~kg} \mathrm{~m}^{-3}\right\}$
A. 22800 kg
C. 1600 kg
B. C. 11400 kg
D. 800 kg
13. A metal cuboid of dimensions 3 cm by 2 cm by 1 cm and $8.9 \mathrm{~g} \mathrm{~cm}-3$ is completely immersed in a liquid of density $0.8 \mathrm{~g} \mathrm{~cm}-3$. The mass of the liquid displaced is
A. 53.4 g .
B. 29.1 g .
B. C. 7.5 g .
D. 4.8 g .
14. A tank 2 m tall and base area of $2.5 \mathrm{~m}^{2}$ is filled to the brim with a liquid, which weighs 40000 N . Calculate, the
density of the liquid in $\mathrm{kg} / \mathrm{m}^{3}$.
A. $\mathrm{Z} \times \frac{4009}{0.0}$
C. $2 \approx 2.5090$

Physical quantities can be divided into two types namely:

i) Scalarquantity ii) Vector quantity

A scalar quantity is physical quantity which has magnitude only.
Examples: Mass, volume, time, temperature distance, pressure etc.

A vector quantity is a physical quantity which has both magnitude and direction.
Examples: Velocity, acceleration, force, momentum displacement, Electric and magnetic field intensities.

Resultant Vector

A resultant vector is a single vector which produces the same effect on an object as two or more vectors acting on the same body.
Moving from O to B along OB is the same as moving through $O A$ followed by $A B$. This shows that a single vector OB produces the same effect as adding; $\overrightarrow{O B}=\overrightarrow{0} A+\overrightarrow{A M}$

In general the resultant force is calculated by adding all the force. But when the forces are in opposite direction the resultant force is calculated by subtracting.

Addition and subtraction of vectors

The addition of vector takes place so long as the directions are the same though the magnitude may differ.
The subtraction occurs when the directions are opposite.

Example 1:

A goat moves 13 m west and continue moving west ward 5 m . Find the resultant displacement of the got.

Example 2:

Move 13 m west and the move 5 m east

$\mathrm{S}_{\mathrm{H}}=13-5$
$=8 \mathrm{~m}$ in the western direction

Example 3:

Three force of $3,5 \mathrm{~N}$ and 7 N act on an object A as shown.
Find single vector which can produce the same effect.

$\mathrm{F}_{\mathrm{H}}=(3+7)-5$
$=5 \mathrm{~N}$ towards the East

Example 4

Three force of $3,5 \mathrm{~N}$ and 7 N act on an object A as shown. Find single vector which can produce the same effect.

Fv $=15-(6+3)$
$=6 \mathrm{~N}$ towards the South
Example 5
Two force of 3 and 4 N act on an object as shown. Find single force which can produce the same effect as the two
forces aboye

$\mathrm{F}_{\mathrm{H}}=4 \mathrm{~N}$
$\mathrm{Fv}=3 \mathrm{~N} \uparrow$
Resultant Vector diagram

Magnitude of the resultant force Using the Pythogras theorem;

$+$
$(\hat{\nu}\rangle\rangle\rangle\rangle\rangle)$

$\mathrm{R} \quad= \pm 5 \mathrm{~N}$

\therefore The magnitude of
resultant force is 5 N

Example 6

The figure below shows five forces acting on a 2.5 kg mass.

Calculate the;
(i) resultant force on the mass
(ii) direction of the resultant force
(iii) acceleration of the mass

Solution

(i) $\mathrm{F}_{\mathrm{H}}=(12-7) \mathrm{N}=5 \mathrm{~N} \rightarrow$
$\mathrm{F}_{\mathrm{V}}=\{(13+8) \mathrm{N}-9 \mathrm{~N}\}=12 \mathrm{~N} \downarrow$

* Resultant Vector diagra m

* The magnitude of the resultant force

Using the Pythogras theorem;
(人े人

$$
(\mathrm{R})^{2} \quad=(\mathrm{b})^{2} \quad+(\mathrm{h})^{2}
$$

$$
\begin{aligned}
& \mathrm{R}^{2}=5^{2} \\
& \mathrm{R}^{2} \equiv \pm 0 \sqrt{\equiv}+12^{2}
\end{aligned}
$$

$\mathrm{R}= \pm 13 \mathrm{~N}$
(iii) $)_{\text {The magnitude of the resultant force is } 13 \mathrm{~N}}$

From the vector diagram;
$\ldots \frac{\text { Heig }}{\text { htase }}$
$\underline{12} \tan \theta \overline{\overline{5}}$

$$
\begin{aligned}
& \theta=\tan ^{-1}\left(\frac{12}{5}\right) \\
& \theta=67.4^{0}
\end{aligned}
$$

\therefore The direction of the resultant force is 67.4^{0} below the horizontal (or below the 4 N force)
(iii)

* Acceleration of the mass

From F = ma

$$
\begin{aligned}
13 & =2.5 \mathrm{a} \\
\frac{13}{2.5} & =\frac{2.5}{2.5} \mathrm{a} \\
& ={ }^{2} \\
\therefore \quad a & =0.48
\end{aligned}
$$

$(\mathrm{R})^{2}=(\mathrm{b})^{2}-(\mathrm{h})^{2}$

Two forces 6 N and 8 N act on 2 kg body as shown. Calculate (i) the resultant force (ii) the acceleration

Ecolebo水s.com

Methode I: Using Graphical Method.
Procdures

- Choose a scale for the axes
- Draw the vectors at the given angle
- Complete the Parallelogram of vectors.
- Measure the length R of the diagonal
- Multiply R by the scale to get the resultant Vector.

Method II: Using the Cosine Rule.

$a^{2}=b^{2}+c^{2}-2 b c \cos \theta$
$R^{2}=8^{2}+6^{2}-2(8)(6) \cos 150$
$R^{2}=64+36-104 \cos 150$
$R^{2}=100-104 \cos 150$
$\mathrm{R}^{2}=190.07$
$\mathrm{R}= \pm 13.8 \mathrm{~N}$
Method III: By Resolving the Forces Horizontally and Vertically.

From the diagram;
$\sin 60=\frac{x}{6}$

$$
x=6 \sin 60=6 \times 0.8666=N
$$

$\cos 60=\frac{y}{6}$

$$
y=6^{6} \cos 60=6 \times 0.5=3 N
$$

Then;
$\mathrm{Fv}=\mathrm{y}=3 \mathrm{~N}$
$\mathrm{F}_{\mathrm{H}}=\mathrm{x}+8=\mathrm{N}$

Using the Pythogras theorem;
 20N $(\mathrm{R})^{2} \quad=(b)^{2}+(h)^{2}$

$R= \pm \sqrt{169}$ ÉcoleBooks $R= \pm 13 N$ 年

\therefore The magnitude of the resultant force is 13 N

Example 8

A mass of 15 kg is suspended using a string. The string is then pulled by a horizontal force F such that the string makes an angle of 30° with the down ward vertical. Calculate the;
(i) Tension in the string.
(ii) Horizontalforce F.

Solution:

The three forces are in equilibrium
Step 1: forming a closed triangle
Step 2: resolving Vertically;

$$
\cos 30=\frac{150}{\mathrm{~T}} \Leftrightarrow \mathrm{~T} \cos 30=150 \Leftrightarrow \mathrm{~T}=\frac{150}{\cos 30}=173.21 \mathrm{~N}
$$

Step 3: Resolving Horizontally
$\operatorname{Tan} 30=\frac{\mathrm{F}}{150} \Leftrightarrow 150 \tan 30=\mathrm{F} \Leftrightarrow \mathrm{F}=86.6 \mathrm{~N}$
OR
$\sin 30=\frac{\mathrm{F}}{\mathrm{T}} \Leftrightarrow \mathrm{T} \sin 30=\mathrm{F} \Leftrightarrow \mathrm{F}=173 \sin 30=86.6 \mathrm{~N}$

Example 9

A block of mass 2 kg is pulled along a rough horizontal ground by a force of 120 N , with the help of a string, which makes an angle of 60° with the horizontal. If the friction between the block and the ground is 50 N , calculate the;
(i) Resultant force on the block.
(ii) Acceleration of the block.

From the diagram;

$$
x=120 \sin 30=120 \times 0.5=60 N
$$

$\cos 30=\frac{y}{x}$
E28 lebooks. com
$y=120 \cos 30=120 \times 0.8666=18.51 \mathrm{~N}$
Then;
$\mathrm{F}_{\mathrm{V}}=18.51+(-20)=-1.49 \mathrm{~N}$
$\mathrm{F}_{\mathrm{H}}=60+(-50)=10 \mathrm{~N}$

Using the Pythogras theorem;

$(\mathrm{R})^{2} \quad=(\mathrm{b})^{2}+(\mathrm{h})^{2}$

$$
\begin{aligned}
\mathrm{R}^{2} & =10^{2}+1.49^{2} \\
\mathrm{R}^{2} & =102.2201 \\
\mathrm{R} & = \pm \sqrt{102.2201} \\
\mathrm{R} & =10.11 \mathrm{~N}
\end{aligned}
$$

\therefore The magnitude of the resultant force is 10.11 N

1:3:1. FORCES

A force is that which changes a body's state of rest or uniform motion in a straight line.
-It is that which makes a body to accelerate.
-It is a push or a pull on a body.
Force is a vector quantity.
The S.I unit is a newton, N.

Types of forces

There various types
Gravitational force, weight, friction, upthrust force, electrostatic force. elastic force. magnetic force. Centripetal force, centrifugal force, Tensional force, compression force, shearforce etc.

Gravitationalforce

The earth is surrounded by gravitationalfield which exerts a force on anybody in the field.

The strength of the gravitational field is the force acting on a
unit mass in the earth's field. Experimental measurements show that on a unit mass on the earth's surface, a mass of 1 kg experiences a force of 0.9 N i.e. its weight is 9.8 N so the earth's field strength " g " $=9.8 \mathrm{~N} / \mathrm{kg}=10 \mathrm{~N} / \mathrm{kg}$

$$
\begin{aligned}
1 \mathrm{~kg} & =10 \mathrm{~N} \\
\mathrm{~g} & =10 \mathrm{~N} / \mathrm{kg}=10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Free fall is a vertical motion whose acceleration is due to gravity " g " $=10 \mathrm{~m} / \mathrm{s}$. The gravitationalforce is towards the centre of the earth and its magnitude on the body of mass m" is given by mg.

1:3:1:1 WEIGHT

Weight of a body is the force of gravity on the body. or The gravitationalforce acting on a body. Or
Is the force a body exerts on anything which freely supports

Weight of body $=$ mass of body " m " $(\mathrm{kg}) x$ acceleration due to gravity, g . $\mathbf{W}=\mathbf{m g}$
The S.I unit of weight is a newton " N " Weight of a body varies from place to place or from planet to planet.

Why weight of a body varies

Weight of a body varies because of the following reasons:
i) The shape of the earth is not a perfect sphere. so at the equator the value of acceleration due to gravity is less than that at the pole. This makes the weight of the body to be less at the equator and greater at the poles.
ii) Planets have different accelerations due to gravity. A body resting on the surface experience a reaction force R from the surface which supports it.

Differences between Mass and weight

Mass	Weight
i) S.I unit is kg	SI unit is N
ii) Is a scalar quantity	Is a vector quantity
iii) Is constant at all places	Varies from place to place
iv) Is a measure of quantity of matter in a body	Is force of gravity acting on a body.

1:3:1:2. FRICTION

Friction is the force which opposes motion.
It acts in the opposite direction to that of the force causing motion.

Types of friction

These are:
$\begin{array}{ll}\text { a) Static friction } & \text { b) Sliding or dynamic friction }\end{array}$
c) Viscosity

a) Static Friction:

Is friction which opposes motion between two surfaces in contact at rest.

* It prevents motion.

Experiment for measurement of static friction

i) Adding weight on pan

Know weights are added to the scale pan until the block moves with a uniform velocity.
ii) The above will occur when weight of scale pan + weights on the pan (loads) $=$ maximum friction, F . This maximum friction is called limiting friction.
iii) Repeating

The procedure is repeated by increasing weight of the block "W" and obtaining the corresponding "F"
iv) Plotting a graph

A graph of F against W (= normal reaction " R ") is plotted .and its slope $=$ coefficient of static friction $\rangle.$

$$
\binom{\text { Frictional }}{\text { force, } F}=\left(\begin{array}{c}
\text { coefficient } \\
F
\end{array}=\mu \mathrm{R} \text { friction, } \mu \mathrm{R} . \begin{array}{c}
\text { Normal } \\
\text { Reaction, } \mathrm{R}
\end{array}\right)
$$

Thus Coefficient of static friction μ is the ratio of limiting frictional force F to the normal reaction R . i.e $\mu=\mathrm{F}$
Note: Coefficient of friction μ has no units.

Example

Calculate the static friction when a body of mass 6 kg rests on a surface; given that coefficient of friction of surface is
0.5.

Given: $\mathrm{m}=6 \mathrm{~kg} ; \mu=0.5 ; \mathrm{g}=10 \mathrm{~ms}^{-2}$
From; Frictional force, $\mathrm{F}=\mu \mathrm{R}$
But $\mathrm{R}=\mathrm{W}=\underset{=}{=} \mathrm{mg} 10)$

$$
\mathrm{R} \quad=60 \mathrm{~N}
$$

30 N
 surfaces in contact and in motion.

[^0]Experiment for measurement of static friction
ÉcoleBooks

i) Adding weight on pan

Known weights are added to the scale pan and a small push is given each time until the block move with a uniform velocity.
ii) The above will occur when weight of scale pan + weights on the pan (loads) $=$ maximum friction, F . This maximum friction is called limiting friction.
iii) Repeating

The procedure is repeated by increasing weight of the block "W" and obtaining the corresponding frictional force F ".
iv) Plotting a graph

A graph of "F" against R is plotted and its slope $=$ coefficient of sliding friction \rangle..

c) Viscosity:

Is the opposition to the relative motion between layers of a tluid.

Advantages of friction

ii) It enables bodies to come to rest
iii) Ithelps in writing
iv) It helps in makifig fire

Disadvantages of friction

i.) causes unnecessary heat
ii)
reduces the fficiency of machines
iii) Gatuses things like tyres, soles of shoes to wear
iv) Causes pa 1 iteotssemghinesto break.

Reduction of friction

i) Lubrication using oil or grease
ii) Using ball bearings or rollers

Laws of friction

-Friction always opposes motion
-Limiting friction is proportionalto normal reaction which is equaland oppositectallebwidht .fth
-Friction always increases from zero to maximum value called limiting friction.

Exercise

1. Two forces of 7 N and 9 N act perpendicularly on a body of mass 2 kg . Find the acceleration of the body.
2. A man starts from point A and walks a distance of 20 m due north and then 15 m due east. Find his new position relative to A .
3. A parachutist falling with a constant velocity of $16 \mathrm{~ms}^{-1}$ is blown by wind horizontally at $12 \mathrm{~ms}^{-1}$.
(i) Find the resultant velocity of the parachutist.
(ii) If the parachutist jumps from a height of 500 m directly above a ground target, find the horizontaldistance by which the parachutist will miss the target on landing.
4.

MATTER:

Matter is anything that occupies space and has weight.

States of matter:

There are three states of matter namely:

* Solids \rightarrow e.g stone, ice, e.t.c
* Liquids \rightarrow e.g water, paraffin, e.t.c
* Gases \rightarrow e.g oxygen, nitrogen, e.t.c

Property	Solids	Liquids	Gases
1. Arrangeme nt of molecules.	Closely packed in regular pattern called lattice	Fairly closely packed in regular pattern	Far apart from each other. $\left\lvert\, \begin{array}{llll} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right.$
2.Intermole cular forces.	Strong	Weak	Very weak
$\begin{aligned} & \text { 3. Motion } \\ & \text { of the the } \\ & \text { molecules. } \end{aligned}$	Vibrate within fixed position	$\begin{array}{\|l} \hline \text { Vibrate with } \\ \text { greater } \\ \text { amplitude } \end{array}$	Move randomly throughou Eontainethe 3peeneater
4.Shape 5.Rate of	\$Hape definite Very low in	\$Wape. definite Teolna aisheupe of Low	Wefinite shape. High
diffusion 6.Compress	some solids Incompressible	Incompressibl	Compressi
ibility Note:		e	ble
* Solids and liquids are incompressible, meaning that their volumes cannot be reduced by squeezing them. * Gases are compressible because of the large spaces between their molecules.			

Change of state

* Heating of matter

When a solid is heated, it changes to a liquid at constant temperature called melting point. The process is called melting or fusion.
When the liquid formed is heated further, the liquid changes to vapour at constant temperature called boiling point. The process is called boiling or evaporation.

* Cooling of matter

When a gas or vapour is cooled, it condenses to a liquid at constant temperature called freezing point. The process is called condensation or liquefying.
When the liquid formed is cooled further, it changes to a solid at constant temperature called freezing point. The process is called freezing or solidifying.

Kinetic Theory of matter

The kinetic theory of matter states that:

* Matter is made up of small particles called molecules or atoms that are in a state of constant random motion.
* The speed of motion of the particles is directly proportional to the temperature.

The kinetic theory of matter can be proved by using:
(ii) Brownian motion

BROWNIAN MOTION

Brownian motion is the constant random (or haphazard) movement of tiny particles in fluids.

Experiment to demonstrate Brownian motion

Experiment 1 U Using. Pollens are dropped in water or suspended in water and observed through a microscope,

* The molecules will dibe ${ }^{\text {monentins }}$ making irregular
* This shows that particles of matter are ever in a state of constant random motion.

Experiment 2: Using Smoke particles in air.

Microscope Glass slide

$\stackrel{\text { Smoke is placed in a glass cell and the glass cell }}{\stackrel{\circ}{*}}$
 using a microscope.

Observation:

* White specks of smoke particles will be seen moving in a constant random motion.
* qurstandzandampaqtives of matter are ever in a state of

Explanation:

The constant random motion is due to un even collision (or bombardment) of the invisible air molecules with the visible pollen grains or smoke particles.

Factors that affect Brownian motion

(i) Temperature

* When the temperature of the smoke cell is increased, smoke particles are seen foode Basteras when it is reduced, they are seenmoving slowly.
* Increase in temperature increases the kinetic energy of the molecules, hence they move faster than before.
* Decrease in temperature decreases the kinetic energy of the molecules, hence they move slowly.
(ii) Size and density of the particles
* When the size of the particles is increased, Brownian motion is reduced and when the size of particles is reduced, Brownian motion increases.

DIFFUSION

Diffusion is the spreading (or flow) of molecules a low concentration.

Eiffusion intliguidss diffusion in liquids

Procedures:

* Water is placed in a clean glass trough
* At qrestrtofnpetassiumprormenganate is then introduced

Observation:

 solution.

Conclusion:

Diffusionin gasses:
Experiment to show diffusionin gases

* Cotton wool soaked in aqueous ammonia is placed at one end and a nother cotton wool soaked in concentra ted hydrochloric acid is placed at the other end of a glass tube of about 1 m long.

Observation:

* White fumes of ammonium chloride forms inside the tube ne Fthelamoritksottomwool soaked in $\mathbf{H C l}$ acid.

Conclusion

* This means that:
(i) The gases have diffused through the air in the tube.
(ii) Ammonia diffuses faster than Hydrogen chloride.

Note: Alternatively;

An air molecule tube is inverted over brown nitrogen dioxide molecules tube.
Observation: the brown colour spreads into the upper tube at the same time the air molecules spread into the lower tube.

Experiment II: to show diffusion in gases

* Connect a water manometer to a porous pot containing
* Pairs hydrogen into the air enclosed in the porous
* materialas shown in the diagram above

The water level in the left arm of the manometer falls while that in the right arm rises.

* The hydrogen molecules diffuse through the porous material into the air. This increases the pressure in the porous pot, which then acts on the water surface in the left arm of the manometer, thus pushing the water level down wards.

Factors that determine the rate of diffusion

 inneectause larger molecules occupy large space than small

(ii) Temperature

The rate of diffusion is directly proportional to temperature.
(riithe rate Beadiflesion is directly proportional to pressure.

pressure.
(iv) Molecular weight

 carbon dioxide.

(a) MOLECULAR PROPERTIES OF MATTER

Molecular properties of matter are based on the behavior of the molecules. These are observed in the following;
(i) Diffusion
(ii) Molecular forces
(iii) Capillarity
(iv) Surface tension
(v) Elasticity

Molecularforces:

Intermolecular forces are forces of attraction or repulsion between molecules of matter. The molecules may be of the same substance or of different substance.
Types ofmolecularforces

* Cohesion (or Cohesive) force

Cohesion is the force of attraction between molecules of the same kind or same substance.
E.g Forces between water molecules themselves, forces between mercury molecules themselves e.t.c.

* Adhesion (or Adhesive) force

Adhesion is the force of attraction between molecules of different kinds or different substances.
E.g Forces between water molecules and glass molecules, forces between mercury molecules and glass molecules, forces between water molecules and mercury molecules, e.t.c.

NOTE: The magnitude of the cohesion and adhesion forces determines the:

- Shape of liquid meniscus in contact with a solid
- Ability of the liquid to wet a substance
- Rise or fall in a capillary tube.

When cohesion is greater than adhesion forces, e.g mercury and glass, then the liquid;
(i) Does not wet glass
(ii) Forms spherical balls when spilled on a glass surface
(iii) Depresses in a capillary tube
(iv) Meniscus curves downwards.

Mercury droplets

When adhesion is greater than cohesion forces, e.g water and glass, then the liquid;
(iii) Syletaddasken spilled on a glass surface

therglassbetween water molecules themselves hence wetting
ECOLEBOOKS.COM

CAPILLARITY:

Capillarity is the elevation (or rise) or depression (or fall) of a liquid a natrewpobonsdime g tube.
Capillary action depends on cohesion and adhesion forces.
(i) When adhesion is greater than cohesion forces, e.g water and glass, then :

- the liquid rises in the capillary tube
- the meniscus curves upwards (concave);
- The liquid wets glass

(ii) When cohesion is greater than adhesion forces, e.g mercury and glass, then the :
- liquid falls (or depresses) in the capillary tube
- the meniscus curves downwards (convex);
- the liquid forms spherical balls when spilled on a surface
- does not wet glass

Effect of size or diameterof the capillary tube on capillarity

- Water rises higher in a capillary tube of smaller diameterthan the one of a a ager diameter.

- It helps para

Fito ase Pponkeks of stoves and lamps.

- It helps water to move up tree-trunks to the leaves
- It helps blotting papers to absorb liquids

NOTE:

* All the above uses are possible because of greater adhesion forces than cohesion forces between molecules of the two substances. (i.e Fuel and wick, water and tree-trunk, liquid and blotting paper respectively). Thus, the wet part of the solid goes on increasing upwards
* Damp proof material e.g polythene is put in the foundation course of a building to stop capillary action. This is because bricks, plaster and mortar are porous, so water can rise up through the narrow pores and weaken the wall.

SURFACE TENSION:

Surface tension is the force acting normally on a one-metre length of a line drawn on the surface of a liquid. Its S.I unit is Nm^{-}
Surface tension enables the surface of a liquid to behave like a stretched elastic skin (or membrane).
It is due to cohesion forces between the liquid molecules.
Surface tension is the force on the liquid surface that causes it to behave as if it is covered with a thin elastic membrane. Molecular explanation of surface tension:

According to Kinetic theory surface tension is explain as follow:-

Molecules on the surface experience a net down word

force on them and surface of the liquid thus tends to
contract and acquire a sfate of tension.

* A molecule inside the surface of the liquid is surrounded by equal number of molecules on all sides. The intermolecular forces between it and the surrounding molecules is zero.
* A molecule on the surface has very few molecules on the $e_{f a c e p e r ~ s i d e ~ c o m p a r e d ~ t o ~ t h o s e ~ b e l l o w ~ t h e ~ l i q u i d ~}^{\text {and }}$
* Thus if this molecule is displaced upwards, a resultant attractive force due to the large number of molecules
bellow the liquid surface has to overcome.
* This force is trying to pull the molecule out of the surface into the hulk. It is trying to make the surface
smatler, hence surface tension!

Experiment to demonstrate existence of Surface tension

Procedures：

＊A clean beaker is filled with water．
＊A blotting paper is placed on the surface of the water．
$\dot{*}$ A pin or needle is gently placed on the blotting papper and observed．

Observation：

＊After some few minutes，the blotting paper absorbs water and sinks to the bottom．
＊The needle remains floating on the water surface．
Conclusion：
＊The needle is held by surface tension．
全人仓）
Effects of surfacetension
 off due to surface tension．
（iv）Water drops from a tap form spherical shapes．This is
（iii）Insectse．g pond skatercan walk a cross a water surface． the least（minimum）area．

Factors affecting surface tension
（i）Temperature：Increase in temperature（or heating a liquid）weakens or reduces surface tension．
（ii）Impurities：Impurities such as detergents，soap solution， alcohole．t．c reduce surface tension．

Estimating the thickness（or Size）of an oil molecule：
A drop of oil is able to spread into a thin film of a large area when placed on a clean water surface．This is because the end of the oil molecule has greater adhesion forces than cohesion forces for neighboring molecules．
The size of an oil molecule is too small to be accurately measured．Its approximate size can only be estimated using an experiment．
Experiment to estimate the size of an oil molecule

＊Fill a clean trough with clean water and sprinkle lycopodium powder on the surface of the water．
＊Srop a known velume yof ，the oill onto the water
＊The thickness or size of the oil film is estimated from：

1000000

NOTE：
It is a common procedure to；
\checkmark Dissolve a known volume of a solute（e．g cooking oil or oleic acid） \mathbf{V}_{1} in a known volume of a solvent（e．g Petroleum，alcohol or ether） $\mathbf{V}_{\mathbf{2}}$ to form a solute－solvent solution．
$\checkmark \quad$ Then a known volume， $\mathbf{V}_{\mathbf{3}}$ of the solute－solvent solution is dropped onto the water surface covered with lycopodium powder．
\checkmark The solvent in the drop either dissolves in water or evaporates and the solute（oil）spreads forming a cylindrical oil film with a circular patch，whose
\checkmark diametice＇＇d＇d＂＇is measured．oil film is estimated from：

Volume of cylindrical film＝（2）

Area of Patch \times Thickness $(\mathrm{t})=$ Volume of oil

$$
\begin{aligned}
& \quad\left(V_{1}+V_{2}\right) \\
& \mathrm{V}=\frac{\mathrm{V}_{1} V_{3}}{} \\
& \text { oil in drop },
\end{aligned}
$$

Volume of oil in drop
（i）All the solvent has evaporated or dissolved in water．
Assumption
（ii）The oil film or molecule formed is cylindrical．
（ii）The oil patch is circular．
spaces between the molecules in the oil film are assumed to be negligible）．
（iii）The oil film formed is one molecule thick．（i．e the
（iv）Volume of cylindrical film＝Volume of oil in spherical dro
（jiv）The oil drop is spherical．
The water surface should be sprinkled with lycopodium powder so that：
（i）The film becomes stationary．
（ii）A clear circular patch for measuring diameter is formed．

Example 1：

A solution is made by dissolving $1 \mathrm{~cm}^{3}$ of cooking oil in dropped on the surface of water，an oil film of diameter

(iii) State any two assumptions made in (i) above.

Solution:

Volume of solvent (methanol), $\left(\mathbf{V}_{\mathbf{2}}\right)=1999 \mathrm{~cm}^{3}$
Volume of solution dropped, $\left(\mathbf{V}_{\mathbf{3}}\right)=0.004 \mathrm{~cm}^{3}$
Volume of solute or oil, in $\mathbf{V}_{\mathbf{3}}=\mathbf{V}$

Volume of oil in drop,$V=\frac{V_{1} V_{3}}{\left(V_{1}+V_{2}\right)}=\frac{1 \times(0.004)}{(1+1999)}$
πR^{2}

$$
V=\frac{0.004}{(2000)}
$$

Volume of oil in drop, $V=0.000002 \mathrm{~cm}^{3}$

Alternatively:

Volume of Solutionolumes	Volume of Oil
$2.004 \varepsilon \varepsilon^{3} 3^{3}$	
$2000 \mathrm{~V} \equiv 0.000 .004 \mathrm{~cm}^{3}$	

Area of oil patch, $=\frac{\hat{y}^{2}}{2}$
1×10
Area of oil patch, $\rangle==(13.0)^{2} 7 \mathrm{~cm}^{2}$

$$
=3.14 \times 36
$$

Thickness of oil drop; $\mathrm{t}=$
Volume of oil drop Area of oil patch 113.097
$\mathrm{t}=$
Fixcamphe efoil drop: $t=1.76 \times 10^{-8} \mathrm{~cm}$
$0.005 \mathrm{~cm}^{3}$ of oleic acid was dropped on lycopodium powder In an oil film, experiment to estimate the size of a molecule Calculate the thickness of a molecule of oleic acid.
on a water surface. The mean diameter of the acid was 5 cm .

Volume of solute or oleic acid, $\left(\mathbf{V}_{\mathbf{1}}\right)=0.005 \mathrm{~cm}^{3}$
Solution:
Xolumegf pil, in drop $_{\pi R^{2}}$
$V=0.005 \mathrm{~cm}^{3}$

$$
\begin{aligned}
& =\pi(-)^{2} \\
& =3.144 \times 6.25
\end{aligned}
$$

Area of oil patch, $\mathrm{A}=19.63 \mathrm{~cm}^{2}$
cm).
Thickness of oil drop; $\mathrm{t}=$
Then, from $A \times t=V$

> Volume of oil drop(V)
> $\mathrm{t}=$ Area of oil patch (A)

Thickness of oil drop; $t=2.55 \times 10^{-4} \mathrm{~cm}$

An oil drop of volumed $10^{-9} \mathrm{~m}^{3}$ spreads on a water surface to form a patch of areat $5800-2 B 子$ ofkthe patch is one molecule thick, find the approximate number of molecules in the drop.

Solution:

Volume of oil in drop, $V=1 \times 10^{-9} \mathrm{~m}^{3}$
Area of oil patch, $\mathrm{A}=$

$$
A=5 \times 10^{-2} \mathrm{~m}^{2}
$$

Then, from $\mathrm{A} \times \mathrm{t}=\mathrm{V}$
$\left(5 \times 10^{-2} \mathrm{~m}^{2}\right) \times \mathrm{t} \equiv \frac{1 \times 10^{-9} \mathrm{~m}^{3}}{5 \times 18^{=3 \mathrm{~m}_{\mathrm{m}}^{2}}}$
$\mathrm{t}=2 \times 10^{-8} \mathrm{~m}$
 enical
Thus the fadius of the sph oil drop, r is given by;, $\mathrm{r}={ }^{\overline{2}}=\frac{2 \times \neq 0}{}=1 \times 10^{-8} \mathrm{~m}$
If n is the number of molecules the oil drop, then n (volume of sphere of radius, -) $=$ (volume of oil drop)

14

1. In an experiment to estimate the size of an oil molecule, Exerciselume of $0.12 \mathrm{~cm}^{3}$ was placed on a clean surface and
spread into a patch of area $0.0006 \mathrm{~cm}^{2}$. Calculate the size of the oil molecule. (\geqslant) 人
water, an oil film of diameter 6.0 cm was formed.
2. When $0.002 \mathrm{~cm}^{3}$ of oil was dropped on the surface of
(2)

Calculate the thickness of the film.
such drop was placed on a water surface and it şpread
3. The volume of 100 drops of certain oil is $1.0 \mathrm{~cm}^{3}$. One
 is the size of the oil molecule?
cm^{2}. Determine the thickness of the patch.
4. If $1.8 \times 10^{-4} \mathrm{~cm}^{3}$ oil spreads to form a patch of area 150
(2)
5. A drop q dignex $8-5 \mathrm{~mm}$ becomes a circular film of oil of diameter 30 cm .
(i) Find the thickness of the oil film. drop. ($\langle\boldsymbol{\rightharpoonup})$: $\mathrm{n}=1.6 \times 10^{17}$
6. $1 \mathrm{~cm}^{3}$ of oleic acid was dissolved in $99 \mathrm{~cm}^{3}$ of alcohol to form $100 \mathrm{~cm}^{3}$ of solution. A $1-\mathrm{cm}^{3}$ drop of the solution
 powder. The alcoholdissolved in water leaving the acid which spread to form a patch of diameter $14 \mathrm{~cm}^{3}$.
(i) Explain why lycopodium powder was used
(ii) Calculate the volume of the acid in the $1-\mathrm{cm}^{3}$ drop of the solution.
(iii) Estimate the size of oleic acid molecule.
7. In an experiment to determine the thickness of an oil molecules the following were done;

* $1 \mathrm{~cm}^{3}$ of oil was dissolved in $99 \mathrm{~cm}^{3}$ of ether and $1 \mathrm{~cm}^{3}$ of the solution was diluted to $200 \mathrm{~cm}^{3}$
* $0.4 \mathrm{~cm}^{3}$ of the dilute solution was dropped onto the surface of water.
* The diameter of film formed was found to be 7 cm . from the above. Calculate the thickness of the oil molecules. ($\boldsymbol{>}$) : $=5.19 \times 10^{-7}$

8. A solytion was made by dissolving $1 \mathrm{~cm}^{3}$ of cooking.oil m 19 cm or metnano. When $0.04 \mathrm{~cm}^{3}$ of the solution
 oil molecule.
9. See UNEB

1987 Qn. 36 and Qn. 7	1987 Qn. 2
1997 Qn. 13	2001 Qn. 43
1999 Qn. 13	2003 Qn.3
2006 Qn. 19	2005 Qn. 49
1992 Qn. 31	1993 Qn. 7
2007 Qn. 25	2002 Qn. 45

(b) MECHANICAL PROPERTIES OF MATTER

Mechanical properties of matter are the behavior of matter under action of an externalforce.

Materials are things used in the construction of structures like buildings bridges, dams, etc. Before a materialis put to use the following mechanical properties should be considered; strength, stiffness, ductility, brittleness and elasticity.

Strength: It is the ability of a material to resist forces that want to deform it.
Is the ability of a material to resist breaking when stretched, compressed or sheared.

Force

Braking stress $=$ tross - sectonal area
The strength depends on
i) Dimensions of the material, in that a large force is applied in order to bend a material of large diameter.
ii) Nature of the substance

Materials of same size but of different substance require different force to be broken.E.g. a large force is a pplied to a steel rod compared to a piece of wood of the same size.

Stiffness (toughness): Is the ability of a material to resist bending or to resist forces, wiglÉEyotedhengedits shape or size so that it is not flexible A material which is more stiff always needs a large force in order to bend e.g. wood is more stiff than rubber.

Ductility: Is the ability of a material to deform when a force is applied. Is the ability of a material to be changed/rolled/hammered/pressed/bent or stretched into other shapes with out breaking.
Ductile materials can be hammered, bent or drawn into various shapes with out breaking.
A Ductile material is one, which stretches elastically then plastically before it breaks when tensile force acts on it

Examples;

- Wet clay, plasticine, Metals, steel, e.t.c.

Properties of ductile material.

ii) can be molded into any shape. be bent without breaking. Because of the above
 breaking.
Brittleness: Is the ability of a material to break suddenly without bending.
A brittle material is one, which bends very little, then suddenly cracks without undergoing plastic deformation.
When a brittle materialbreaks, its pieces fit together almost exactly and can be glued back.

Properties of brittle material

i) Can bend very little and suddenly break without undergoing plactic deformation.
ii) Cannot be molded into any shape.

Examples;

- Glass, chalk, stones, concrete, cast iron bricks, alloys like brass, and bronze.

Elasticity: Is the ability of a material to recover its original shape and size after a deformation force has been removed.

The material stretches due to the particle being pulled further apart from one a nother.
A material, which does not recover its original shape and size but is deformed permanently, is plastic.

Examples;

- Rubber, steel, e.t.c.

Hooke's law:

Hook's law states that the extension of a material is directly proportional to the applied force provided the elastic limit is not exceeded.
i.e. the material returns to its original length when the stretching force is removed, provide the elastic limit is not exceed

In short: $\langle 仓\rangle\rangle \propto$

Where k is the proportionality constant or material constant in $\mathbf{N m}^{\mathbf{- 1}}$, Where, F is the stretching force in newtons and e is the extensionic Aletbesoks.com
Extension, e New length - Original length

It is also important to note that;

$$
\frac{\mathrm{F}_{1}}{e_{1}}=\frac{\mathrm{F}_{2}}{e_{2}} \quad \text { or } \quad \frac{\mathrm{F}_{1}}{\mathrm{~F}_{2}}=\frac{\mathrm{e}_{1}}{e_{2}}
$$

Where F_{1} is stretching force producing extension e_{1} and F_{2} is stretching force producing extension e_{2} on the same material.

Example1:

A spring is stretched by 0.05 m by a weight of 5 N hung from one end.
(i) What weight will stretch it by 0.03 m ?
(ii) Determine the spring constant.

Solution:

Given $; \mathrm{e}_{1}=0.05 \mathrm{~m}, \mathrm{e}_{2}=0.03 \mathrm{~m}, \mathrm{k}=?, \mathrm{~F}_{1}=5 \mathrm{~N}, \mathrm{~F}_{2}=$?.

Example 2:

A spring increases its length from 20 cm to 25 cm when a force is applied. If the spring is constant is $100 \mathrm{~N} / \mathrm{m}$. Calculate the force.

Solution:
Given; $l_{o}=20 \mathrm{~cm}, l_{\mathrm{n}}=25 \mathrm{~cm}, \mathrm{k}=100 \mathrm{Nm}^{-1}$.

$$
\begin{array}{l|l}
\hline \hat{e}=25-20 & F=\mathrm{ke} \\
\mathrm{e}=2 \mathrm{~cm} \\
\mathrm{e}=5 \mathrm{~cm} \\
\mathrm{e}=\frac{5}{100}=\underline{0.05 \mathrm{~m}} & \mathrm{~F}=100(0.05) \\
& \mathrm{F}=5 \mathrm{~N} \\
\hline
\end{array}
$$

Exercise:

1. A vertical spring of length 30 cm is stretched to 36 cm when an object of mass 100 g is place in the pan attached to it. The spring is stretched to 40 cm when a mass of 200 g is placed in the pan. Find the mass of the pan.
2. A force of 500 N extends a wire by 2 mm . If the force is reduced by a half, what will be the new length of the wire, if the original length is 10 cm .
3. A spring constant of natural length $8.0 \times 10^{-2} \mathrm{~m}$ extends by $2.5 \times 10^{-2} \mathrm{~mm}$ when a weight of 10 N is suspended on it.
(i) Find the spring constant.
(ii) Determine the extension when a weight of 15 N is suspended on the spring

ÉcoleBooks

ExperimenttoverifyHookslaw.

* Original length of the spring $\boldsymbol{l}_{\boldsymbol{o}}$ is noted.
* Then various loads are suspended on the spring and the corresponding new length, $\boldsymbol{l}_{\boldsymbol{n}}$ of spring for each is noted.
* The extension, e produced is calculated from; Extension,
* The readings are noted in a table below.

Load(N)	e(m)	
-	-	-
-	-	-

* A graph of load against extension is drawn, and a straight-line graph is obtained whose slope is equal to the spring constant.

* Thus, the load is directly proportional to the extension "e". This verifies Hooke's law.

A graph of load against extension

Explanation

Along OB, the load is proportional to extension in that the extension increases as the load increases.
Point " B " is called elastic limit.
Beyond B (elastic limit), the graph is not a straight line meaning that extension is no longer proportionalto the load. The material becomes plastic. This is indicated by a kink at C, which is called yield point.

Beyond C, the material behaves plastically. i.e. it does not regain its shape and size. Therefore, it undergoes plastic deformation. This goes on to the breaking point E .

Point D represents the maximum stress (Breaking stress) the material can withstand fracturing.

Explanation of sketch of load against extension according to kinetic theory
OB the molecules are pulled slightly farther apart but can move back to original position when stretching force is removed. The deformation is called elastic.

Beyond C, layers of atoms slip over each other. The molecule move farther apart but cannot move back to original position when stretching force is removed.

Tensile stress, Tensile strain and Young's modulus.
Tensile stress:
Is the force acting per cross section area of a material. Its S.I unit is Nm^{-2} or Pa . Force F
Stress $=$ Cross section area $=A$

Tensile strain:

Is the ratio of extension to original length of a material. It has no units.

> Extension e

Strain $=$ Original length $=\hat{\Delta}$

Young's medylusitensile stress to tensile strain.
It is the gradient of the straight line in the elastic region. Its S.I unit is Nm^{-2} orPa.

Young's modulus $\stackrel{\text { stress }}{\text { strain }}$
ÉcoleBooks
Note: This holds only whenthe elastic limit of a material is not exceeded.

Example 3:

A wire of cross section area $3 \mathrm{~m}^{2}$ increases in length from 20 cm to 25 cm , when a force of 5 N is applied. Calculate the;
(i) tensile strain.
(ii) tensile stress
(iii) Young's modulus.

Solution:

(i) Given; $\left.l_{o}=20 \mathrm{~cm}, l_{\mathrm{n}}=25 \mathrm{~cm}, \mathrm{~F}=5 \mathrm{~N}, \mathrm{~A}=3\right\rangle^{2}$
$\rangle=-\hat{\rho} \hat{\rho}=(25-20)=5 \mathrm{~cm}$
$\mathrm{e}=\frac{5}{100}=\underline{0.05 \mathrm{~m}}$

Example 4:

Calculate the tensile stress when a force of 25 N acts on a wire of cross sectional area $5 \mathrm{~m}^{2}$.

Given; $\mathrm{A}=5 \mathrm{~m}^{2}, \mathrm{~F}=25 \mathrm{~N}$
Tensile stress $=\frac{\mathrm{F}}{\mathrm{A}}$
Tensile stress $=\begin{gathered}25 \\ 5\end{gathered}$
Tensile stress $=5 \mathrm{Nm}={ }^{2}$
Qufstianlic solid of mass 45 kg rests on a copper rod of cross sectionalarea $0.5 \mathrm{~cm}^{2}$ standing vertically as shown below,

e: $9: 8 \times 18^{2} \mathrm{Nm} \mathrm{Nm}^{-2}$
B: $9: 8 \times 18^{5} \mathrm{Nm} \mathrm{m}^{-\frac{2}{2}}$

CRYSTALS:

Crystals have hard, flat sides and straight edges. Crystals of the sam玉substaticokavecthe same shape. This will be observed when salt crystals grow as water evaporates from the salt solution on glass slide as seen through a microscope.

This fact suggests that crystals are made of small particles called atoms or molecules arranged in orderly way in plates. Metals consist of tiny crystals.

Tensile, shear and compression force.

(i) Compression force

Compression is when the force acts as in the diagram below. This results in the particles to be pressed more closely together. So the length of the material decreases but the thickness of the materialincrease.

(ii) Tensile force

Tensile force is when the force acts as in the diagram below.
This result in the particle of the material to be pulled further apart from one another. So tensile forces increase the length
of the materialbut its thickness decreases.

Differences between tensile and compression force.

Tensile force	Compression force
i) Particles are pulled furtherapart	i) Particles are pulled close together
ii) Length of the material increases	ii) Length of material decreases
iii) Thickness of the materialdecreases	iii) Thickness of the material increases

(iii) Shear force

Shear force is the force needed to fracture the material in a direction parallel to the applied force in that one section (or layer) of the material slides over its neighbour.
A shear is produced when two equal but opposite forces are applied to a body. The effect depends on the turning effect or movement of the force.

Application Of shear force

Important materials used for construction.
Larg $\left(\mathrm{a}^{2}\right.$ Matalsif metals are available from which different
 usually strong, rigid and elastic.

Some of the common metats-are; copper, Zinc, Lead, Tin, Nickel, Chromium.e.t.c
(b) Alloys:

Alloys are made by mixing one metal with one or more other metals and in some cases non metals.

* Steel alloys. Steel is an alloy of Iron and carbon. Iron is alloyed with a variety of the other materials like:-

Examples of steel

- Mild steel (Iron and carbon) used in making cars, ships etc.
- Stainless steel has high corrosion resistance due to its composition of chromium and nickel. It is used in making knives, watch casing etc.
- Lead and sulphur steel. It is used in the making of screws because it is easy to cut.
* Duralium is an alloy of aluminium and is used in the making of aircrafts because of its lightness and strength.
* Nickel-Chromium alloys
i) Haye good resistance to corrosion.
ii) The electrical conductivity is independent of temperature
iil) Have a high melting point.

For these properties, nickel-chromium alloys are useful for
makingelementsot, electrical heaters.

* Invar: is a nickel-iron alloy with low expansivity. It can be used to make accurate measuring tape and parts of watches.
* Brass: Is copper-zinc alloy? It is ductile and with high tensile strength. It is used in stamping, pressing or drawing. It is used in the making plumbing fittings.
* Bronze: Is an alloy of copper and tin is harder and stronger than brass. It is useful in ornamental work.

(c) Stony materials

* Bricks: Are made by moulding a mixture of clay and water and beating the mixture strongly.
* Concrete: A concrete is a stony material which is a mixture of cement, sand gravel and water. This is left to harden in desired form.

Properties of concrete which makes it a suitable building material
i) It is resistant to weather
iii) It is resistanttocompression
iv) It is resistant to fire

Concrete can be primarily subjected to compression like column and arches because it compression strength is high.

 beam.

In order to overcome the limitation of low tensile strength, steel (with high tensile strength) is interlocked and completely sucoleded dK haddened concrete mass to form integral part of the membranes called reinforced concrete.

Reinforced concrete is a combination of steel rods, Cement, sand, gravel and water.

Concrete is reinforced by interlocking and surrounding the steel rods with the hardened concrete mass.

Advantages of reinforced concrete.

i) It has high compressive strength
ii) It has high tensile strength
iii) It has much greater ductility
iv) It is tough
v) It is weather and fire resistant

However, the disadvantage of concrete is its volume instability caused by shrinkage of concrete, which results in cracks.

The cracks can be filled with mixture of special tar, sand, cement and water.

Cement Mortar: Cement mortar is composed of sand, cement mixed with water and left to harden.

Reinforcement: sisal-fibre, bamboo stripes, wood strands are also used in reinforcing concrete and cement mortars.

The reinforcing improyess on tensive strength and weather
resistance ofthe mate

Glass: Glass can be melted and formed into various shapes.
Advantages of glass which makes it useful as construction $\frac{\text { material. }}{1}$

It is transparent
ii) Its surface quite harder
iii) Cery few chemicals react with glass. shapes.

Safety glass: Is used motor vehicle windscreen safely glass is made by heating plate glass cooling the two surfaces in a stream of air.

These contract and compress the glass in the middle resulting a very strong glass which when hit hard enough Breaks. into small fragment that are less dangerous than large

Werodicity! yood is a poor conductor of both heat and The hardness and strength of wood varies from one sample to another.

Thin sheets of wood are glued together to form a laminate (plykneess.) which is stronger than solid wood of the same

BEAMS AND STRUCTURES

A beam is a large and long srazfífriele B6odterials with uniform cross-sectional are

A girder is a small piece of material used to strengthen a beam.

A beam is the simplest but one of the most important structures. When a beam bends, one side is compressed, the other is stretched (tensile) and the centre is unstretched neutralplane.

Above is the diagram of rubber marked with lines as shown. When the rubber is bent as shown below,

Tensional Force.

The lines above OA move further apart. Showing that the above parts are in tension.

The lines below OA move closer showing that the below part are in compression.

Along OA the lines are at the same distance apart as before implying neutralaxis.
From above it can be noted that materials from neutral plane can withstand compression and tensile force due to loading.

The top and bottom flanges have the shape shown.
Because they are beams that have had material removed from the neutral plane, so can with stand compression and tensile forces due to loading.
In general, pipes for construction of structures like bicycles,

fomplesshoulfartalane so can withstand tensile and

- Aretching.cannot spread easily hence less risk of
- Less material is used for construction
- Provide room for expansion and contraction.

The Notch effect.lebooks.com

Cracks and fractures:
A notch is a cut or weak point in the surface of a material.
When a notch is made in the reinforcing material, the fibres, stripes and strands in the length of concrete or mortar are broken down.
This result in such materials to fail to withstand compression or tensile force.

Glass tubes are easily broken after notch is made on the side.

A notch, crack or scratch on the surface of brittle material

Reducing notch effect:

This is advantageous in that as well as resisting tension

(b) For glass:

1) Nobaheraximgerrensurfad frofnglglasssas smooth as possible. So glass usually making smooth to reduce the breaking due to notches.
 stream of air where they contract and compress the glass in the middle. This is called thermaltoughening.
iii) By reinforcing glass with transparent polythene.
(c) For wood;

Thin sheet of wood are glued together to form a laminated structure which is able to resist notches more than solids because for solid structures, the crack or a notch goes right through while in a laminated structure it may be stopped by one of the layers.

STRUCTURES:

A structure is rigid meaning th

EquplaBieigiks

Triangular structures are more rigid than others. So a rectangular structure can be made rigid by adding a diagonal piece so that the rectangular change into two a triangular structure, which are more rigid. This is why doors, water tanks and roofing tuffs are made with triangular shapes.

Struts and Ties

In any structure, there are parts, which are under action of tensional forces and others under action of compressional forces.

Ties are girders, which are under tension.
This occurs when a girder results ip the points it joins to movesfurther apart of the removal of such girder in a tie.

Properties of ties:
$\checkmark \quad$ It is under tension
\checkmark aphen removed, the point it joins move further
\checkmark It can be replaced by a rope or strong string.

Strutscatergitderf a whiqh aresurd ir giemprefsition move closer

 together on removal girder in struts.
Propertief of struter:compression

\checkmark ddalemanoved, the point it joins move closer to
\checkmark It gannot be replaced by a rope or strong string.

In order to determine each of the girders whether its a tie or a strut, each of the girders is removed and the effect is noted.

* If the points move further apart then the girder is tie and if the points move closer together then the girder is strut.
* When BC is removed, point B moves close to point C showing that girder BC is strut.
* When AB is removed, point A moves close to B . so girder $A B$ is strut.
* When AE is removed, point A moves further apart from E meaning that girder AE is tie. Similarly, girder ED is tie.

For structures

When BE is removes point B move further apart from E meaning 堇egilddrBElife:com

CD is a tie $B F$ is a tie $B C$ is a tie
CE is a strut $A D$ is a strut $D E$ is a strut

When BF is removed, the structure turns about point G . B will move further a way from F hence $B F$ is a tie.
When BC is removed, the structure will bend at E . Thus, C will move in the direction of the load, faraway from B. This means $B C$ is under tension and hence it is a tie.

When CD is removed, point D moves down wards with the load. Point D moves a way from C , so CD is a tie.

When DE is removed, CD will be vertical due to the load. Thus, point D moves nearer to E meaning that girder DE is a strut. Similarly, girder EG is a strut.

When CE is removed, the load moves down wards and part BCD will be straight due to the load. Thus, point C moves nearer to E meaning that girder CE is a strut. Similarly, girders BE and AB are struts.

Exercise:

1. Roofing structures and many bridges are made designed triangular sections to;
(i) Minimize the materialused
(ii) Withstand compression forces
(iii) Minimize tensile force under compression.
A. (ii) only
B.(ii) and (iii) only.
C. (i) and (iii) only.
D. (i), (ii) and (iii)
2. The beam shown below is being acted upon by forces F_{1} and F_{2} as shown.

The regions \mathbf{P}, \mathbf{Q} and \mathbf{R} are respectively,
A. tension, compression, neutral axis
B. neutralaxis, compression, tension
C. tension, neutralaxis, compression
D. compression, neutralaxis, tension
3. A notch on a material spreads more rapidly when the

Moment of a force is also called the measure of the turning effect of a force.

Moment of a force is a product of a force and the perpendicular distance of the line of action of the force from the fulcrum (pivot).

SI unit of moment is a newton meter (Nm). Moment of a force is a vectorquantity.

Examperythetumng eftects of a force;

- Opening or clọsing a door
- Children playing on a see-saw
- Bending of the fore arm of a hand

Example; 1

A force of 12 N is applied to open a door handle, which is A.force of the hingeppof the door. Calculate the moment of the force produced.

Solution

Taking moments about the Hinge:

Example, $2^{n t}$ of a force is 4 Nm in the clockwise direction
when the lid of a tin is opened. Calculate the vertical force applied, if the perpendicular distance from the hinges is 40 cm .

Solution

Taking moments about the Hinge;
Moment of Force $=$ Force, $\mathrm{F} \times$ Perp. distance

$$
\begin{aligned}
& \frac{4}{\mathrm{~F}} \equiv \mathrm{~F} \times \frac{\mathrm{F} \times}{4} \mathrm{~N} \cdot 4 \\
& \mathrm{~F}=9.9 \mathrm{~N}
\end{aligned}
$$

From above, it can be noted that:

* The greater turning effectaleoboodcers when the force acts on an objectat right angle.
* It is easier to close the door by pushing it at a point as faraway from the hinges as possible. Because the force applied can easily balance with the reaction at the hinges.

Factors affecting moments

The moment of the force depends on the:-
i) magnitude of a force
ii) Perpendicular distance from the turning point (fulcrum).

Law or principle of moments

This states that when body is in a state of equilibrium the sum of clockwise moments about any point is equal to the sum anticlockwise moments about the same point.

Experiment to verify the principle of moments.

The metre rule is balanced horizontally on a knife-edge and its centre of gravity, G noted.

Un equal masses m_{1} and m_{2} are hung from cotton loops on either sides of the rule.

The distances of the masses are then adjusted until the rule balances horizontally once a gain. The distances d_{1} and d_{2} are measured and recorded.

The experiment is repeated several times tabulated including values of $w_{1} d_{1}$ and $w_{2} d_{2}$.
 the principle of moments.

The points from which moments are being taken acts as the pikboakwibe momehaderisorce at that point is zero (0).) $($ moments $)=($ force $) \times($ distenquenfitioml quivot $)$

$$
\text { Anti - } \quad \text { Anti }-\quad \text { Perpendicular }
$$

$$
(\text { ahoakweistes })=(\text { cl ofdkwése }) \times(\text { distance from pivot })
$$

Taking moments about the pivot;

Clockwise moments $=\mathrm{W}_{1} \mathrm{xd}_{1}=\mathrm{W}_{1} \mathrm{~d}_{1}$
Anticlockwise moments $=\mathrm{W}_{2} \times \mathrm{d}_{2}=\mathrm{W}_{2} \mathrm{~d}_{2}$
And by the law of moment;
Sum of clockwise moments $=$ sum of anti-clock moment about any point. Thus, $W_{1} \mathrm{~d}_{1}=\mathrm{W}_{2} \mathrm{~d}_{2}$

Note: When calculating moments about a point (pivot) all distances should be measured from that point.

Finding the mass and weight of uniform body
$\checkmark \quad$ When body is uniform, the mass or weight must act at the centre.
\checkmark A metre rule is marked from $0-100 \mathrm{~cm}$ mark. If it is uniform, then its mass/weight must act in the middle, which is 50 cm mark.
\checkmark The mass or weight is calculated by applying the principle of moment.

Example 2:
A metre-rule suspended from the centre of gravity is in equilibrium, i.e balanced at G, when forces ofW W_{1}, W_{2} and W_{3}, act at distances of a, b and c respectively from the pivot.
(i) Draw a labeled diagram to show all the forces acting on the metre-rule.

(ii) Write an expression for the sum of the moments.

Taking moments about the pivot;
Sum of Anticlockwise moments $=W_{1} \times d_{1}+W_{2} \times d_{2}$
Sum of Clockwise moments $=W_{3} \times c$
Applying the principle of moments;
Sum of clockwise moments $=$ Sum of anticlockwise moments
$W_{\underline{3}} \underline{x}=W_{1} \underline{x a+W_{2}} \underline{\times b}$

Example 3:

A uniform metre rule is pivoted at its centre and three forces of 6N, 2 N aß8 Watat
espectively from the zeromark. If the metre rule balances horizontally, find the value of EcoleBooks
olution

Taking moments about the pivot;
Sum of Anticlockwise moments $=6 \times 30=180 \mathrm{Ncm}$

$$
\text { um of Clockwise moments }=2 \times 10+\mathrm{F} \times 30
$$

$$
=(20+30 \mathrm{~F}) \mathrm{Ncm}
$$

Applying the principle of moments;
Sum of clockwise moments = Sum of anticlockwise moments

$$
\begin{array}{rlrl}
(20+30 \mathrm{~F}) \mathrm{Ncm} & =180 \mathrm{Ncm} \\
30 \mathrm{~F} & =160 \\
-\quad \mathrm{F}=5.3 \mathrm{~N} \\
\hline
\end{array}
$$

Example 4:

A non-uniform tree trunk of weight 1000 N is placed on a $p^{\text {ivot, }} 4 \mathrm{~m}$ from the thick end. A weight of 800 N is placed on the other side of the pivot, at a distance equal to that from the thick end to the centre of gravity, just tips off the tree trunk. How far is the weight from the thick end?

Solution:

Let the distance from the thick end to the Centre of gravity (C.O.G) be \boldsymbol{x}.

Taking moments about the pivot;

Applying the principle of moments;
S um of clockwise moments $=$ Sum of anticlockwise moments

```
(800\times仓) Nm =1000\times(4->}
    800` = 4000
1800< #000>
```

4800 18000
-
Thus the heavy weight, i$)(4 \pm 2.2) \mathrm{m}=6.2 \mathrm{~m}$ from the thick E LEBOOKS.COM

Example: 1

A uniform metre rule is suspended from 40 cm marking as shown in thediagtarbedrw. Eixhthe mass of the metre rule if it's in equitibrium.

Taking moments about the pivot;
$\rangle=(40-10)=30\rangle\rangle$
$\hat{\geqslant}=(50-40)=10 \geqslant\rangle$
rule.
Applying the principle of moments;
Sum of clockwise moments $=$ Sum of anticlockwise moments

$$
\begin{gathered}
(2 \times \hat{\vartheta})=\mathrm{m} \times \mathrm{d} \\
2(30)=10 \mathrm{~m} \\
60=10 \mathrm{~m} \\
\frac{10 \mathrm{~m}}{\mathrm{~m}}=60 \\
\frac{10}{\mathrm{~m}}=6 \mathrm{~kg}
\end{gathered}
$$

Thus, the mass of the metre rule is 60 kg
Example 2: A uniform metre rule pivoted at 10 cm mark balance when a mass of 400 g is suspended at 0 cm mark. Calculate the mass of the metre rule. (Ans: m=100g)

Example 3: The diagram below is a metre rule pivoted at 80 cm mark. Calculate the mass of the metre. (Ans: $\mathbf{m = 6 7 g}$)

Example 4: A uniform beam 2 m long is suspended as shown below. Calculate the mass of the metre. (Ans: $\mathrm{m}=16 \mathrm{~kg}$)

Interpreting the question in diagram form.
\checkmark the diagram for any body should be drawn in the form.
$\checkmark \quad$ if the body is uniform, its mass or weight will act from the centre of gravity which is obtained by,

$$
\text { C. o.g }=\frac{L}{2}
$$

i.e. For a uniform metre rule, which is marked from 0 100 cm , the centre of gravity from which the mass or weight acts is,

L $\quad 100 \mathrm{~cm}$

\checkmark Then the required value is calculated from the principle of moment.

EcoleBooks
Example:5 A uniform metre rule is pivoted at 30 cm mark. It balances horizontally when a body of mass 20 g is suspended at 25 cm mark.
a) Draw a force diagram for the arrangement.
b) Calculate the mass of the metre rule (Ans: $\mathbf{m = 5 g}$)

Example: 6 A uniform half-metre rule is pivoted at 15 cm mark and balances horizontally when a body of 40 g is hanging from 2 cm mark.
i) Draw a diagram of the arrangement.
ii) Calculate the mass of the metre

(Ans: $\mathbf{m = 5 2 g}$)

Example: 7 A uniform rod $A B$ of length 5 cm is suspended at 2 m from end A . if the mass of the rod is 10 kg . Calculate the mass of the body, which must be suspended at 1 m from end A so as for the rod to balance horizontally.
(Ans: $\mathbf{m = 5 k g}$)
Example: 8 A hand cart of length 1.5 m , has the centre of gravity at length 0.5 m from the wheel when loaded with 50 kg as shown below.

If the mass of the hand cart is 10 kg , find the effort needed to lift the hand cart.

Condition for Body to be in Equilibrium Under action of

 parallel forces.When a number of parallel forces act on a body such that the body attains equilibrium, then the following conditions must be met or fulfilled:
(i) The sum of the forces is one direction is equal to the sum of forces in the opposite direction.
(ii) The sum of the clockwise moment about any point is equal to sum of the anti-clockwise moments about the same point.

The above conditions are useful in calculations involving two unknown forces. The following steps should be taken.
(i) An equation for sum of force in one direction equaling to sum of forces in the opposite direction is written.
(ii) Moments should be taken about one of the unknown force. Where by the sum of anticlockwise moment is equal to sum of the clockwise moments.

Example:

A uniform wooden beam of length 2 m and weight 34 N rests on two supports A and B placed at 40 cm from either end of the beam. Two weights of 40 N and 50 N are suspended at Eheldabibouk
(i) Draw a diagram to show the forces acting on the beam.
(ii) Calculate the reactions at the supports.

Ecolebooks.com

Solution:

(a)

Example 1: A truck of weight 20 KN is driving across a uniform 50 m long bridge of weight 500 KN as shown below.

Calculate the reactions at "A" and " B " if the bridge is in equilibrium sum of forces in one direction $=$ sum of forces in opposite direction.

Solution

Sum of upward forces=sum of downward forces
$R_{1}+R_{2}=520 \mathrm{RN}_{\mathcal{\prime}}+\mathrm{R}_{2}=20 \mathrm{KN}+500 \mathrm{KN}$
Since R_{1} and R_{2} are, unknown forces so moments can be taken about either R_{1} or R_{2}.

Taking moments about R_{1} :
Sum of clockwise moments $=$ Sum of anticlockwise moments
$(20 \times 5)+(500 \times 25) \stackrel{ }{=} \mathrm{R}_{2} \times 50$

$$
\begin{aligned}
100+12500 & =50 \mathrm{R}_{2} \\
12600 & =50 \mathrm{R}_{2} \\
\frac{50-\mathrm{R}_{2}}{\frac{50}{\mathrm{R}_{2}}} & =\overline{2520 \mathrm{RN}}
\end{aligned}
$$

Substituting for $\rangle_{2}=252 \mathrm{KN}$ into equation (i), gives;
$\mathrm{R}_{1}+252_{\mathrm{R}_{1}}=520 \mathrm{E} 26 \mathrm{KN}$
The Reactions R_{1} and R_{2} respectively are 268 KN and
Example 2: Two labourers "A" and "B" carry between

(a) Draw a diagram to show the force acting on the poles.

Solution

Sum of upward forces=sum of downward forces

$$
\begin{equation*}
\mathrm{T}_{1}+\mathrm{T}_{2}=500 \mathrm{~N}+50 \mathrm{~N} \tag{i}
\end{equation*}
$$

$\mathrm{T}_{1}+\mathrm{R}_{2}=550 \mathrm{~N}$
Since T_{1} and T_{2} are, unknown forces so moments can be taken about either T_{1} or T_{2}.

Taking moments about R_{1} :
Sum of clockwise moments = Sum of anticlockwise moments $(500 \times 50)+(50 \times 100)=\mathrm{T}_{2} \times 200$

$$
\begin{aligned}
25000+5000 & =200 \mathrm{~T}_{2} \mathrm{r}_{2} \\
30000 & =200 \mathrm{~T}_{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{200-\mathrm{T}_{2}}{200} & =\frac{30000}{200} \\
\mathrm{~T}_{2} & =150 \mathrm{~N}
\end{aligned}
$$

Substituting for $\mathrm{T}_{2}=150 \mathrm{~N}$ into equation (i), gives;
$\mathrm{T}_{1}+150=550$
$\mathrm{T}_{1}=400 \mathrm{~N}$
Thus, the Tensions T1 $1=-4$ $\underline{\underline{150 N}}$
(c) Find the fraction of the totalweight that is supported by B.

Fraction $=\frac{\text { Weight supportd by } B}{\text { Total weight }}$

150

Fraction $=550$

Fraction $=\frac{3}{11}$

Centre of gravity

Centre of gravity is st.te point of application pf the resultant

downwards at the point G.
The centre of gravity or centre of the mass is a fixed point in the object where the resultant weight, (force of gravity) seems to act. If the centre of gravity is taken to, any other point of support is not zero.

Centre of gravity or regularly shaped object.

The mass or weight is evenly distributed and its centre or gravity isEcthremiddle. S. Which is at the geometric centre of the shape.

Square

Rectangle

Rhombus

e.g. uniform metre rule.

Finding the centre of gravity of an irregularly shaped object (lamina).

Marking troles. Three floles "A", " B " and " C " are made in the object at the edges far a way from each other.

Marking the cross lines: The object is suspended on a retort stand from each of the holes and plumb (or pendulum bob)
is used to trace the centre of gravity by markinga line on the object tracing the plumb line thread when swinging stops.

Reneating:Chenaxperimentint is fripeated. with thembject hung which all the lines cross is the centre of gravity of the body.

1:5:2 STABILITY:

Stability is the difficulty with which a body topples.
When a body is at rest, it is said to be in a state of equilibrium or stability.

Types or states of stability or Equilibrium

Some bodies are in a more stable state than others.
There are three types or states of equilibrium or stability:
a) stable equilibrium
b) unstable equilibrium
c) $\begin{aligned} & \text { neutral equilibrium } \\ & \text { DORE RESOURCES }\end{aligned}$

WNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

A machine is a device on which a force applied at one point, is used to overcome a force at a nother point.
A machine is a device, which simplifies works by magnifying the effort.

Principle of machines:
It states that a small force (effort) moves over a large distance to produce a bigger force that moves the load over a small distance.
Effort: Is the force applied at one point of a machine to overcome the load.
Load: Is the force, which is overcome by the machine using the effort.

Mechanical Advantage (M.A):
This is the ratio of load to effort. Load
i.e; M.A= Effort
vote:--viecnanicaıadva ntage nas no units.
-Ivi.A is the number or times the road is greater tnan the effort. Alternatively, it gives the number of times the machine magnifies the effort.

Velocity ratio (V.R):
This is the ratio of the distance moved by the effort to the distance moved by the load.
i.e; V.R $=\frac{\text { Distance moved by effort }}{\text { Distance moved by load }}$

Note: It is the ratio of the velocity of the effort to the velocity of the load in the same time.
It is independent of friction.

Efficiency (() :

This is the ratio of work output to the work input expressed as a percentage.
i.e; Efficiency $(\eta)=\frac{\text { Work output }}{\text { Work input }} \times 100 \%$

Work out put $=$ Load \times load distance
Work input $=$ Effort \times Effort distance
Efficiency $=\frac{\text { Loa d } \times \text { load distanc e }}{\times 100 \%}$
Effored Effordddjstance
$=$ Effort $_{\times}$Effort distance $\times 100 \%$
$=\mathrm{M} . \mathrm{A} \times T \times 100 \%$
V.R

NOTE:

Thereffiequase off, a machine system is always less than

* Friction in the moving parts of the machine.
movable parts of the machine.
The efficiency can be improved by;

This consists of two wheels of different radii on the same
The effort is applied to the wheel and a string attached to the axle raises the load.

For a complete turn or rotation;

* The effort moves through a distance equal to the circumference of the wheel. $\hat{人}=\hat{\geqslant}\rangle, R=$ radius of wheel.
* The load moves through a distance equal to the circumference of the axle. $\rangle=\rangle\rangle\rangle, r=$ radius of axle.
* Thus, from; V.R =
$\frac{\text { Distancemovedbyeffort }}{\text { Distance moved by load }}$
$=\frac{2 \pi \mathrm{R}}{2 \pi \mathrm{r}}$

$$
\mathbf{V} \cdot \mathbf{R}=\frac{\mathbf{R}}{\mathbf{r}}
$$

Example1:
The figure below shows a wheel land axle system, which uses an effort of 300 N to raise a load of 900 N using an axle of radius 10 cm .

Calculate the; (i) velocity ratio
(ii) Efficiency of the system

Solution:
$\mathrm{R}=40 \mathrm{~cm}, \mathrm{r}=10 \mathrm{~cm} ; \mathrm{L}=900 \mathrm{~N}, \mathrm{E}=300 \mathrm{~N}$;
Thus, from; V.R $=\frac{\text { Distance moved by effiot }}{\text { Distance moved by load }}=\frac{2 \pi R}{2 \pi r}$
(i)

$$
\mathrm{V} . \mathrm{R}=\frac{\mathrm{R}}{\mathrm{r}}=\frac{40}{10}=4
$$

Thus, the velocity ratio is 4.
(ii).
M.A $=\frac{\text { Load }}{\text { Effort }}=\frac{900}{300}=3$
M.A $=3$
$\operatorname{Efficiency}(\eta)=\frac{M \cdot A}{V \cdot R} \times 100 \%$

$$
\eta=\frac{3}{4} \times 100 \%
$$

The effort and the load are applied on the shafts connected to the gear wheels. A large V.R is obtained only when the effort is acblieborks.edy gear so that it drives the large gear.
$\mathrm{V} \cdot \mathrm{R}=\frac{\text { Number of teeth on driven gear }}{\text { Number of teeth on driving gear }}=\frac{2}{2}$

Example 1:

Two gearwheels A and B with 20 and 40 teeth respectively lock into each other. They are fastened on axles of equal diameters such that a weight of 400 N attached to a string wound around one-axle, raises a load of 600 N attached to a string wound around the other axle. Calculate the:
(a) Velocity ratio of the system when; (i) A drives B
(ii) B drives A
(b) Efficiency when;
(i) A drives B
(ii) B drives A

Solution:

(a) $\mathrm{N}=40 \mathrm{~cm}, \mathrm{n}=20 \mathrm{~cm}$
$\mathrm{L}=600 \mathrm{~N}, \mathrm{E}=400 \mathrm{~N}$
(i)Thus, from; $\mathrm{V} \cdot \mathrm{R}=\frac{\mathrm{N} u m b \text { er of } \mathrm{t} \text { eet } \mathrm{h} \text { on driven gear }}{\text { Number of teeth on driving gear } \frac{-}{\mathrm{n}}}={ }^{\mathrm{N}}$
V.R $=\frac{\frac{N}{B}}{\frac{B}{n_{A}}}$
$\begin{aligned} & =\frac{-40}{20} \\ & \text { V. } \mathrm{R}\end{aligned}=2$.
The velocity ratio is 2.
(ii)
$V . R=\frac{N_{A}}{n_{B}}$

$$
=\frac{20}{40}
$$

$\mathrm{V} . \mathrm{R}=0.5$.
The velocity ratio is 0.5 .

$$
\begin{aligned}
& \text { (iii) M.A }=\frac{\text { Load }}{\text { Effort }}=\frac{600}{400}=1.5 \\
& \mathrm{~V} . \mathrm{R}=2 . \\
& \operatorname{Efficiency}(\eta)=\frac{\frac{M}{\underline{A}}}{\text { V. }} \times 100 \% \\
& \eta=4.5 \times 100 \% \\
& 2
\end{aligned}
$$

(ii) $\mathrm{M} . \mathrm{A}=1.5$
V.R $=2$

$$
\begin{aligned}
& \text { Efficiency }(\eta)= \frac{\underline{M}}{\underline{A}} \\
& \eta= \times 100 \% \\
& \frac{1 .}{\underline{5}}
\end{aligned}
$$

Example 2:

Two gear wheels P and Q with 80 and 20 teeth respectively, lock each other. They are fastened on axles of equal diameters such that a weight of 150 N attached to a string wound around one-axle raises a load of 450 N attached to a string wound around the other axle. Calculate the;
(i) Velocity ratio of the gear system. (Ans: V.R=4)
(ii) Efficiency of the system. (Ans: $\eta=75 \%$)
WWLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOf $\begin{aligned} & \text { are } 2.5 \mathrm{~mm} \text { apart } \\ & \text { (Cingthe; }\end{aligned}$
(i) Velocity ratio (Ans: V.R $=1408$)
(ii) Mechanicaladvantage (Ans: M.A = 352)

Ecolebooks.com

Solution:

(a) Radius (lever arm), $l=56 \mathrm{~cm}$, Pitch of a screw $=\frac{2.5}{10}=$ 0.25 cm
$\mathrm{L}=800 \mathrm{~N}$.
V.R of a screw $=\frac{2 \pi \hat{\vartheta}}{1 \text { Pitch }}$
V.R of a screw $=\underline{2 \times 3.14 \times 56}$
$=1406.92^{25}$

An inclined plane is a slope, which allows a load to be raised more gradually by using a smaller effort than when lifting vertically upwards.

V.R $=\frac{\text { Distance moved by effort }}{\text { Distance moved by load }}=\frac{\text { length of the plane }}{\text { height of the plane }}$

Example:
A load of 400 N is pulled along an inclined plane as shown

Solution:
(i) V.R (=3)
$\mathrm{l}=15 \mathrm{~cm}, \mathrm{~h}=5 \mathrm{~cm}$
(i)Thus, from;

V. $\mathrm{R}=$

A pulley is Ewhelebitblasereoyed rim over which a string passes．

Types of pulleys．

（i）Single fixed pulley
（ii）Single movable pulley
（iii）Block and tackle pulley system
（i）Single fixed pulley
This is the type of pulley fixed on a rigid support．

It is applied in：
y R4ining tidm
Here，－load distance $=$ effort distance
－tension is the same throughout the string．
－If no friction is considered，Load $=$ Effort．Hence M．A $=$ Load $=\frac{\mathrm{E}}{\mathrm{E}}=1 .($ since $\mathrm{L}=\mathrm{E})$

However，in practice the mechanicaladvantage and V．R of a single fixed pulley is less than one．Because of the

（ii）Some energy is wasted in lifting useless loads like threads．
（ii）Single movable pulley

Here，the effort distance is twice the load distance．
Here，－load distance $=2 \mathrm{x}$ effort distance
－tension is the same throughout the string．
－If no friction is considered，Load $=$ Effort．Hence
M．$A=\stackrel{\text { Load }}{ }={ }^{2 \mathrm{E}}=2 .($ since $\mathrm{L}=2 \mathrm{E})$
At balancing；Effort $\overline{\mathrm{E}}$
Sum of upward force $=$ sum of downward forces
$\mathrm{L}=\mathrm{E}+\mathrm{E}$
会＝全全

M．A and V．R of a single movable pulley is two
However，in practice，the M．A．of a single movable pulley is less than two．Because of the following reasons；
（i）Some energy is wasted in overcoming friction．
（ii）Some energy is wasted in lifting useless loads like threads．

A single movable pulley is more advantageous than a single fixed pulley．In that，for a single movable pulley the effort required to raise a load is less that the load．

（ii）Block and tackle pulley system

This is consists of two blocks each having one or more pulleys，combined together to form a machine．This is done in order to have high velocity ratio and a higher mechanical advantage．

Note：（i）The number of portions of the string supporting the lower block is equal to the velocity ratio of the system．
（ii）The effort applied is equal to the tension in each
string supporting the movable block．
E．g．ff the effort is 6 N ，the tension in each string is also 6 N ．
 In addition，the string starts from the lower block．

Passing the string
＊If the number of pulley wheels is odd，then the string should be tied down to the movable block．
＊For even number of pulley wheels，the string should be tied up to the fixed block．

Experiment to measure mechanical advantage and efficiency of pulley system．

Load pan
rises steadily when gixen a gentle push．
Determining effort：A known load is place on the load pan and knows weights are added to effort pan until the load just

Load（N）	Effort （N）	$\text { M.A }=\frac{\text { Load }}{\text { Effort }}$	$\begin{aligned} & \text { Efficiency=}=\frac{\text { M.A }}{\text { V.R }} \\ & \times 100 \end{aligned}$

Drawing the graph
From the table a graph offeciadeloonorechanical advantage against the load is plotted．

Explanation of the shape of the graphs：
＊As the load increases，the efficiency also increa ses
＊This is because the weight of the movable pulley block and friction become very small compared to the load．

Note：

In practice，the movable block has some weight（w）and there is friction（F）．These two together with the load（L）act downwards and they become part of the total downward

forces．

Thus，the efficiency do not increase beyond 100% because；i） some energy is wasted on overcomingfriction ii） Some energy is wasted on lifting useless loads like movable pulley blocks．

Therefore at Equilibrium；
Sum of upward forces＝sum of downward force
$\hat{\nu} \hat{\nu} \hat{\nu}$
会会会会
［
Load $(\mathbf{L})+$ Weight $(\mathbf{W})+$ Friction (\mathbf{F})人े）
（ $\stackrel{\rightharpoonup}{*})$
Below is a pulley $\mathbf{V} \cdot \mathbf{R}$ stem $=\mathbf{L}+\mathbf{W}+\mathbf{F}$

Example 1：

of 5 N

（a）Calculate the；
(i) Velocity ratio of the system
$V \cdot R=\binom{$ Number of portions of the string }{ Esdadetingthe moviable block }
会. $\mathrm{R}=4$
(ii) Effort required to raise the load.

Solution

Data
$\mathrm{L}=200 \mathrm{~N}, \mathrm{~m}=0.4 \mathrm{Kg}, \mathrm{F}=5 \mathrm{~N}, \mathrm{E}=$?,
$\mathrm{W}=\mathrm{mg}=0.4 \times 10$
$\mathrm{W}=4 \mathrm{~N}$
Sum of upward forces = sum of downward force
$\mathrm{E}+\mathrm{E}+\mathrm{E}+\mathrm{E}=\mathrm{L}+\mathrm{W}+\mathrm{F}$
$4 \mathrm{E}=\mathrm{L}+\mathrm{W}+\mathrm{F}$
$4 \mathrm{E}=200+4+5$
$4 \mathrm{E}=209$
$\frac{4 E}{4}=\frac{209}{4}$
$\mathrm{E}=52.25 \mathrm{~N}$
(iii) Mechanicaladvantage of the system
M. A $=\frac{\text { Load }}{\mathrm{Effort}^{20 \mathrm{rt}}}$
$=52.25$
$\mathrm{M} . \mathrm{A}=3.83$
(b) If the load is raised through 6 m , calculate the distance the effort moves at the same time.
Example 2:
Data
L.D $=6 \mathrm{~m}$, E.D $=$?
V. R $=\frac{\text { Effort distance }}{\text { Load distance }}$
$4=\frac{\text { E. } D}{6}$
E. $D=4 \times 6$
$E . D=24 \mathrm{~m}$

Example 2:

A pulley system has two pulleys on the bottom block. A load of 1000 N is hung from the bottom block, it is found that an effort of 300 N to raise the load.
(i) How much energy is supplied, if the effort moves through 5 m ?

Solution

Data
$\mathrm{L}=1000 \mathrm{~N}, \mathrm{E}=300 \mathrm{~N}$, E.D $=5 \mathrm{~m}$
Work in put $=$ Effort \times Effort distance

$$
\begin{aligned}
& =300 \times 5 \\
& =\quad 1500 \mathrm{~N} \\
& \hline
\end{aligned}
$$

(ii) If the effort moves through 5 m , find how far the laod rises.

Solution

Data
E. $\mathrm{D}=5 \mathrm{~m}, \mathrm{~V} . \mathrm{R}=4$, L. $\mathrm{D}=$?

Effort distance
V. $\mathrm{R}=$ Load distance

$$
4=\frac{5}{\mathrm{~L} \cdot \mathrm{D}} \Rightarrow 4 \mathrm{~L} \cdot \mathrm{D}=\underset{\hat{\imath} \hat{\imath}}{5} \Rightarrow \mathrm{~L} \cdot \mathrm{D} \frac{5}{\overline{4}} \Rightarrow \hat{\nu} \cdot \hat{\imath}=\hat{\imath}
$$

Work out put $=$ Load \times djstance $=300 \times 5$

Example 2:

A pulley system of velocity ratio 3 is used to lift a load of 100 N . The effort needed is found to be 60 N .
(a) Draw the arrangement of the pulley system.

Solution

Velocity ratio is odd. then;
Number of pulley wheels on each block $=\frac{\text { Velocityratio }}{2}=\frac{3}{2}=$ 1 remainder 1.
The remainder wheel is added to fixed block.

(b) Calculate the efficiency of the system.

Solution

V.R $=3$	
M. A $=\frac{\text { Load }}{\text { Effort }}$	Efficiency $=\frac{\text { M.A }}{\mathrm{V} \cdot \mathrm{R}} \times 100 \%$
$=\frac{100}{60}$	Efficiency $=\frac{1.67}{3} \times 100 \%$
M. A $=1.67$	E ffic ienc $\mathrm{y}=55.56 \%$

Coupled machines

If two or more machines are, coupled machines such that the output of one is connected to the input of the other, the over all performance is summed up by:
Overall -V.R $=V . R_{1}+V \cdot R_{2}$

$$
\begin{aligned}
& \text {-M.A. }=\text { M. } A_{1}+\text { M. } A_{2} \\
& - \text { Eff }=E f f_{1}+\text { Eff }_{2}
\end{aligned}
$$

The diagram above shows a pulley system used by a sailor for hoisting. Calculate the:
(a) Velocity ratio of the system

Solution

Velocity ratio of lower block $=4$
Velocity ratio of middle $=2$
Velocity ratio of upperblock $=1$
$\underline{\underline{\text { Overall V.R }}=4+2+1=7}$
(b) The effort required to lift the load if the efficiency of the system is 75%.

Solution

	Then from;
$\text { Efficiency }=\frac{\text { M.A }}{\text { V.R }} \times 100 \%$	$\text { M. A }=\frac{\text { Load }}{\text { Effort }}$
$75 \%=\frac{\text { M.A }}{7} \times 100 \%$	$5.25=1500$
$75 \%=\frac{}{7} \times 100 \%$	$5.25=\frac{150}{E}$
$0.75=7$	$5.25 \mathrm{E}=1500$
$\begin{aligned} & \text { M.A }=0.75 \times 7 \\ & \text { M } . A=5.25 \\ & \hline \end{aligned}$	$\underline{E}=285$

Example:

The diagram below shows a screw jack being used to lift a car in order that a wheel may be charged.

If the car bears down on theear with a force of 5000 N and that efficiency of a screw jack 18 15 eodelRutaldse;
a) V.R.

Given; Radius, $\mathrm{r}=2 \mathrm{~cm}=\frac{2}{100}=0.02 \mathrm{~m}$
Pitch, $\mathrm{P}=2 \mathrm{~mm}=\frac{2}{1000}=0.002 \mathrm{~m}$

Then; Effort Distance	(b)The effort required to turn the handle
$\begin{aligned} & \text { V.R }=\frac{\text { Load Distance }}{} \\ & \text { V.R }=\frac{2}{2} \end{aligned}$	$\text { M.A }=\frac{\text { Load }}{\text { Effort }}$
	$9.42=\frac{5000}{E}$
$V \cdot R=\hat{\nu} \hat{\nu}$	$\begin{aligned} & 9.42 \mathrm{E}=5000 \\ & 9.42 \quad 5000 \end{aligned}$
$\frac{2(3.14)(0.02)}{0.002}$	$\begin{aligned} & \text { 手 } \mathrm{E}=530.79 \mathrm{~N} \\ & \hline \end{aligned}$
$\underline{\mathrm{V} R \mathrm{R}=62.8}$	
Mechanical Advantage	(c)Work done by the operator in order to raise the side or the car by
$\begin{aligned} & \text { Given;Efficiency=15\% } \\ & E f f i=\frac{V}{V} R \in 160080 \end{aligned}$	25 cm .
Then;	$\mathrm{Eff}=\frac{\text { Work output }}{\text { Work input }} \times 100 \%$
$15 \%=\frac{\text { M.A }}{62.8} \times 100 \%$	Work output=Load \times Load distance Work output $=5000 \times\left(\frac{25}{100}\right)$
$0.15=\frac{}{62.8}$	Work output=1250J

NB: Work input is the work done by the effort. Sometimes it is considered as the work done by operator.

Efficiency $=\frac{\text { Work output }}{\text { Work input }} \times 100 \%$

$$
\begin{aligned}
& 15 \%=\frac{1250}{\mathrm{~W}_{\text {in }}} \times 100 \% \\
& 0.15=\frac{1250}{\mathrm{v}_{\text {in }}} \\
& 0.15 \mathrm{~W}_{\text {in }}=1250
\end{aligned}
$$

In general;
Work wasted $=$ work input - work output

$$
\begin{aligned}
& =8333.33-1250 \\
& =\underline{\underline{7083.33} \mathrm{~J}}
\end{aligned}
$$

From above, it is noted that work input is greater than workout put due to;

> i) some work wasted in lifting useless loads,
ii) Some work wasted in reducing friction.

Note: For the screw the velocity ratio is very high because the length of the handle is very big compared to the pitch of the screw.

However the efficiency is very low. Usually lower than 50%. This is because friction is very high so the screw cannot rule backifleftks.com

Exercise : See UNEB

1999 Qn. 2	1998 Qn.6
1994 Qn. 8	2006 Qn. 4
1987 Qn. 36	1992 Qn. 6
1988 Qn. 34	2001 Qn. 42
1991 Qn. 26	2007 Qn. 1

1:7:1. WORK

Work is the product of the force applied and the distance moved by the point of application of the force in the direction of the force.
Note that the distance moved has to be in the direction of the applied force. It is common that a force may be applied to move an object to the right, but instead the object moves to the left.
The force in this case has not done any work.

$$
\begin{aligned}
\text { Work done } & =\text { Force, } \mathrm{F} \times \text { Displacement, } \mathrm{S} \\
\mathrm{~W} & =\mathrm{FS}
\end{aligned}
$$

The S.I unit of work done is a joule (J)
Definition:
A joule is the work done when the point of application of a force of 1 N , moves through a distance of 1 m in the direction of the force.

Example: 1

1. Calculate the work done when a force of 9000 N acts on a body and makes it move through a distance of 6 m .

Solution

Force, $\mathrm{F}=9000 \mathrm{~N}$
Distance, $s=6 \mathrm{~m}$
Work done $=$ Force, $\mathrm{F} \times$ Displacement, S
$\mathbf{W}=\mathbf{F} \times \mathbf{S}$
$\mathrm{W}=9000 \times 6$
$\mathrm{W}=54000 \mathrm{~J}$

Note:

If an object is raised vertically or falling freely, then the force causing work to be done is weight.
Force $=$ Weight $=$ mass, $\mathrm{m} \times$ acceleration due to gravity, g Force $=$ Weight $=\mathrm{mg}$

Thus, the work done against gravity is given by;
Work done $=$ Weight \times height
Work done $=\mathbf{m g h}$
Where m is mass in kg , h is distance in metres and some times, it is height.

Example:2

A block of mass 3 kg held at a height of 5 m above the ground is allowed to fall freely to the ground. Calculate the workdone.
Solution
Given, mass, $\mathrm{m}=3 \mathrm{Kg}$, Distance, $\mathrm{s}=5 \mathrm{~m}$
Force $\mathrm{F}=$ Weight, $\mathrm{W}=$ mass $\times \mathrm{g}$

$$
\begin{aligned}
\mathrm{F} & =\mathrm{mg} \\
& =3 \times 10 \\
\mathrm{~F} & =30 \mathrm{~N}
\end{aligned}
$$

Work done $=$ Force, $\mathrm{F} \times$ Displacement, S
$\mathbf{W}=\mathbf{F} \times \mathbf{S}$
$\mathrm{W}=30 \times 5$
$\underline{W=150 \mathrm{~J}}$

Example: 3

A man of mass 80 kg runs up a staircase of 10 stairs, each of vertical heiget 35% EFiok thecrofk done against gravity.

Solution:

Given, mass $\mathrm{m}=80 \mathrm{Kg}$,
Distance, $\mathrm{h}=25 \mathrm{~cm}=\frac{25}{100}=0.25 \mathrm{~m}$
Total Distance, $h_{\circlearrowleft}=0.25 \mathrm{~m} \times 10$ stairs
Total Distance, $h=2.5 \mathrm{~m}$
Then;
Work done $=$ Weight \times height
Work done $=\mathrm{mgh}$

$$
=80 \times 10 \times 2.5
$$

Work done $=2000 \mathrm{~J}$

Example: 4
A crane is used to to raise 20 tonnes of concrete to the top floor of a building 30 m high. Calculate the total work done by the crane.

Solution:

Given, mass $\mathrm{m}=20$ tonnes $=20 \times 1000=20,000 \mathrm{Kg}$,
Distance, $\mathrm{h}=30 \mathrm{~m}$
Then;
Work done $=$ Weight \times height
Work done $=\mathrm{mgh}$

$$
=20,000 \times 10 \times 30
$$

Work done $=6,000,000 \mathrm{~J}$

Example: 5

the incline to a distance of 5 m . 200N

Solution:
Work done $=$ Force, $\mathrm{F} \times$ Displacement, S

$$
=200 \mathrm{~N} \times(-5 \mathrm{~m})
$$

Work done $=-1000 \mathrm{~J}$
(ii) Explain your answer.

The distance moved by the bale, was in a direction opposite to that of the force applied hence a negative displacement.
The negative in the answer therefore means that the bale did the work instead of the force applied.

1:7:2. ENERGY

Energy is the ability or capacity to do work.
The S.I unit of work done and energy is a joule (J).

Sources of energy:

The raw material for the production of energy is called the energy source.
There are two types of energy sources.
(a) Non-renewable sourees of eh́ergyleBooks

These are energy sources, which cannot be replaced when they get used up.
Examples of non- renewable sources of energy
(i) Fossil fuels; these are formed from plant remains that died million years ago. They include; coal, petroleum oil, naturalgas, e.t.c.
(ii) Nuclear fuels; these are fuels found in radioactive elements which may be occurring naturally such as Uranium.
These fuels can be used in nuclear reactions to produce electricity.

Advantages of non-renewable source of energy.

- They have high energy density. I.e a lot of energy can be produced from a small quantity.
- They are readily a vailable as demand increases.

Disadvantages of non-renewable source of energy.

- They are highly polluting.

(b) Renewable sources of energy

These are energy sources which can be replaced when they get used up. They can never get exhausted.
Advantage:
They are non-polluting.
Examples of renewable sources of energy.
(i) Solar energy: This is the form of energy which reaches
 into electrical energy, which is used for many purposes.
(ii) Wisdr:sWiusdddandibechborwetstmpesintgregnerattingindmills,

(iii) Running water: Running water is used in hydroelectricity plants to turn giant turbines, which produce electrical energy.
The water will always flow hence a renewable source. Tides can also be used to generate electricity in this way.
(iv) Geothermal energy: Water is pumped to hot under ground rocks where it's heated and then forced out through a nother shaft where it can turbines.

Forms of energy

Energy can exist in the following forms;
a) Chemical energy:

Chemical energy is the form of energy a body has due to the nature of its atoms and molecules and the way they are arranged.
In the combination of atoms to form compounds, there is gain or loss of energy. This energy is stored in the compound as chemical energy.
If the atoms in such compounds are rearranged to form a new compound, this energy is released. E.g If sugars in the human body are burnt, a lot of chemicalenergy is released.

b) Nuclear energy:

This is the energy released when atomic nuclei disintegrate during nuclear reactions.
In nuclear reactions, the energy, which holds the nuclear particles together (Binding energy), is released.
ECOLEBOOKS.COM

There are two types of nuclear reactions i.e. fission (Where large nuclei break to form smaller ones) and fusion (Where smaller nucledkebbine sodemplarger ones). In both cases, large amounts of energy are relea sed.

c) Electrical energy (Electricity):

This is the form of energy which is due to electric charges moving from one point of a conductorto a nother.
This form of energy is most easily converted to other forms, making it the most useful form.
d) Light energy:

This is the form of energy which enables us to see. Light is part of a wider spectrum of energy called the electromagnetic spectrum. Light consists of seven visible colours, of red, orange, yellow, green, blue, indigo and violet. We are able to see because the eye is sensitive to the colours.

e) Heat energy:

Heat is a form of energy, which results from random movement of the molecules in the body.
It is responsible for changes in temperature.
When a body is heated or when heat energy of the body increases;
(i) The internal kinetic energy of the molecules increases leading to a rise in temperature.
(ii) The internal potential energy of molecules increases leading to expansion and change of state of the body.
f) Sound energy:

This is the energy which enables us to hear.
Like light, sound is also a form of wave motion, which makes particles to vibrate. Our ears are able to detect sound because it produces vibrations in the ear.
g) Mechanicalenergy:

This is the energy of motion.
Mechanical energy $=$ kinetic energy $\boldsymbol{+}$ Potential energy
There are two forms of mechanicalenergy.
(i) Kinetic energy:- This is the energy possessed by a body due to its velocity or motion.
Kinetic energy $=\frac{1}{2}($ mass $) \times(\text { velocity })^{2}$

$$
K \cdot E=\frac{m v^{2}}{}
$$

(ii) Potential energy:- This is the energy possessed by a body due to its position or condition.
It is equal to the work done in putting the body in that position or condition.
A body above the earth's surface has an amount of gravitational potentialenergy equal to the work done against gravity.
Weight is the force of gravity acting on a body.
Weight $=\mathrm{mg}$.

Conservation of Energy.

The principle of conservation foféergoleBooks

It states that 'energy is nether created nor destroyed' but can be changed from one form to a nother.

In any system, the total original energy is equal to the total final energy. For example, electrical energy is changed to light energy in the bulb. However, the bulb also feels hot because some of the energy is changed to heat.
Therefore, light energy plus the heat energy is equal to the electrical energy supplied.
Thus from this principle, we conclude that;

- No new energy is created
- Totalexisting energy is not destroyed
- Energy is only changed from one form to a nother.

As energy is changed from one form or state to a nother, an energy converter (Device) is required to ease the conversion. Examples of such devices are shown in the table below.

Energy Change	Converter
Chemical to electrical	Cells or Batteries
Light to Electrical	Solar panels
Electrical to light	Electric lampse.g bulbs
Electrical to heat	Cooker or flat iron, etc.
Heat to Electrical	Thermocouple
Electrical to sound	Loud speakers
Sound to Electrical	Microphones
Electrical to Kinetic	Electric motors
Kinetic to Electrical	Electric generators

Conservationofmechanicalenergy:

A body of mass m at a height h above the ground, has a potential energy, P.E $=\mathrm{mgh}$. At this point, the velocity of the body is $0 \mathrm{~ms}^{-1}$ hence it has no kinetic energy. $($ K.E. $=0 \mathrm{~J})$.

When the body is released, it begins to fall with an acceleration g . The velocity of the body thus increases as the
height, h decreases. The body therefore gains kinetic energy at the expense of potentialenergy.

When the body is just reaching the ground, the height, h is zero ($\mathrm{h}=0 \mathrm{~m}$) while its velocity is given by;

Thus, its kinetic $\overline{=}$ energy as it reaches the ground is given

Ecollebooks．com

The above illustration shows that energy is conserved． Mechanical energy is continually transformed between kinetic and potentialenergy．

A swinging pendulum．
The transformation of energy between kinetic and potential energy can also be seen in a swinging pendulum．

At the end（extremes）of the swing，the energy of the pendulum bob is only potential．

As it passes the central position，it has only kinetic energy．
In other positions between the extreme ends and the central position，it has byrydigh kinetic energies．

P．E＋K．E

Only K．E

Mechanicalenergy $=$ P．E + K．E

As the bob falls from the left towards the central position，it gains K．E at the expense of P．E．

As it rises from the central position towards the left end，it gains P．E at the expense of K．E．

Example：

A ball of mass 200 g falls freely from a height of 20 m above the ground and hits a concrete floor and rebounds to a height of 5 m ．Given thatg $=10 \mathrm{~ms}^{-1}$ ，find the；
i）P．E of the ball before it fell．
ii）Its K．E．as it hits the concrete．
iii）Velocity with which it hits the concrete．
iv）K．E as it rebounds．
v）Velocity with which it rebounds．
vi）Velocity when it has fallen through a height of 15 m ．

Solution：

（i）
$\mathrm{P} . \mathrm{E}=\mathrm{mgh}(\mathrm{h}=$ height from which the ball is dropped） P．E $=0.2 \times 10 \times 20$
$\mathrm{PE}=40 \mathrm{~J}$

K．E $=0.2 \times 10 \times 20$
K．E＝40J
ÉcoleBooks
（iii）
As it hits the concrete，Total P．E is converted to K．E
$\left.K . E=\frac{1}{2} m\right\rangle^{2}=$
（ $\mathrm{h}=\mathrm{hm}$ ghtefigom which the ball is dropped）
1
$\frac{1}{2} \mathrm{~m} \stackrel{3}{2}^{2}=$
$\rangle^{2}=2 \mathrm{gh}$ ．
$\mathrm{v}=\sqrt{2 \mathrm{gh}}$
$\mathrm{v}=\sqrt{2(10)(20)}$
$\mathrm{v}=\sqrt{400}$
$\mathrm{v}=20$ 昷 ${ }^{-1}$
（iv）
As the bounces from the concrete，the K．E used to move the it from the bottom to the height h_{1} is converted to P．E at h_{1} and it is momentarily at rest．
$K . \mathrm{E}_{1}=\frac{1}{2} \mathrm{mv}_{1}=\mathrm{mgh}_{1}$
（ $h_{1}=$ height to which the ball bounces）．
K． $\mathrm{E}_{1}=0.2(10)(5)$

$\underline{K} \mathrm{E}_{\mathrm{L}}=10 \mathrm{~J}$

（v）
As the bounces from the concrete，the K．E used to move it from the bottom to the height h_{1} is converted to P．E at h_{1} and it_{1} is momentarily at rest．
K． $\mathrm{E}_{1}=\frac{-2}{2} \mathrm{mv}_{1}^{2}=\mathrm{mgh}_{1}$
（ $h_{1}=$ height to which the ball bounces）．
$\frac{1}{2}(0.2) \mathrm{v}_{\mathfrak{7}}=0.2(10)(5)$

$$
\begin{aligned}
& 20.1 \mathrm{v}_{1}^{2}=10 \\
& \mathrm{v}_{1}^{2}=100 \\
& \sqrt{1} \underline{\underline{2}} 10 \text { 人 }{ }^{-1}
\end{aligned}
$$

Falling ${ }_{1}$ to the height h_{1} ．
K． $\mathrm{E}_{\mathrm{T}}=\overline{2}^{\mathrm{mv}_{\underline{2}}}+\mathrm{mgh}{ }^{1}$
（ $h_{1}=$ height of the ball from ground）．
$40=\frac{-}{(0.2) \mathrm{v}_{1}^{2}+0.2(10)(5)}$
$40=2.1 \mathrm{v}_{\frac{1}{2}}^{2}+10$
$30=036 \mathrm{~V}_{1}$
$\hat{e}_{1}^{1} \equiv \sqrt{7} .92 \mathrm{~ms}$
Exakuple the kinetic energy of a 2 Kg mass trolly traveling

$=400)^{-1}$
2
K． $\mathrm{E}=\overline{2}(2)(400)^{2}$
COLEROOKS．COM

Example 2:

A 5 Kg mass falls from a height of 20 m . calculate the potentialen耳xqydqtbooks.com

P.E=全 h
P.E=5(10)(20)
$\underline{P E=1000 J}$
Example 3:
A 200 g ball falls from a height of 0.5 m . Calculate its kinetic energy just before hiting the ground.

K.E=mgh
$\mathrm{K} . \mathrm{E}=0.2(10)(0.5)$
K.E=1J

Exercise:

1. A block of mass 2 kg falls freely from rest through a distance of 3 m .
i) Find the K.E of the block. (Ans: =60J)
K.E gained $=$ P.E lost
ii) Potential energy (Ans: =60J)
iii) The velocity with which the body hits the ground. (K.E gained $=$ P.E lost).
2. A body falls freely through 3 m . Calculate the velocity with which it hits the ground. (Ans: $=7.75 \mathrm{~ms}^{-1}$)
3. 100 g steel ball falls from a height of 1.9 m on a plate and rebounds to a height of 1.25 m . Find the;
(i) P.E of the ball before the fall. (Ans: $=1.8 \mathrm{~J}$)
(ii) Its K.E. as it hits the plate. (Ans: $=1.8 \mathrm{~J}$)
(iii) Its velocity on the plate. (Ans: $=6 \mathrm{~ms}^{-1}$)
(iv) Its K.E as it leaves the plate on rebound. (Ans: $=1.25 \mathrm{~J}$)
(v) Its velocity of rebound. (Ans: $=5 \mathrm{~ms}^{-1}$)

For a body not falling freely but as it falls it experiences air resistance then the kinetic energy gained by the body just before it hits the ground is calculatea from:
$\hat{\nu} \cdot \hat{\nu}\rangle \hat{\nu}\rangle \hat{\nu}\rangle=(\hat{\nu}\rangle-\hat{\nu}) \hat{\nu}$
Where mg is the weight of the body, R is the air resistance and h is the height above the ground.

Example 4:

A 20 kg body falls from 1.8 m above the ground. If the air
resistance is 0.9 N .
(i) Calculate the kinetic energy just before hitting the ground.

Solution

K.E gained $=(20 \times 10-0.9) \times 1.8$

$$
\begin{aligned}
& =(200-0.9) \times 1.8 \\
& =(199.1) \times 1.8
\end{aligned}
$$

$\underline{\text { K.E gained }=358.38 \mathrm{~J}}$
(ii) Calculate energy lost due to air resistance

Total energy at $\mathrm{h},=\mathrm{mgh}$

$$
=20 \times 10 \times 1.8
$$

Total energy ath. $=360 \mathrm{~J}$

Energy lost due to air resistance $=360 \mathrm{~J}-358.38 \mathrm{~J}$
Energy lost due to air resistance $=1.62 \mathrm{~J}$

Note:

Energy lost due to air resistance can also be calculated from; Energy lost due to air resistance=Work done against R
Energy lost due to air resistance $=$ Force \times Height
Energy lost due to air $\mathrm{R}=$ Air resistance \times Height

$$
=0.9 \times 1.8
$$

E nergy lost due to air $\mathrm{R}=1.62 \mathrm{~J}$

Calculating the kinetic energy at any point for a body falling freely.

 $\mathrm{mgh}=$ Totalenergy.
At B the body has a mixture of kinetic energy and potential energy.
P. $\mathrm{E}_{\mathrm{T}}=$ K. $\mathrm{E}_{1}+$ P. E_{1}
$\mathrm{mgh}=\mathrm{K}^{2} . \mathrm{E}_{1}+\mathrm{mgh}_{1}$
$\mathbf{m g h}=\underline{\mathbf{1}} \mathbf{m v}_{\mathbf{i}} \mathbf{+} \mathbf{m g h}_{\mathbf{1}}$
Where ${ }^{\overline{\mathbf{2}}}{ }^{\prime} \mathbf{h}_{1}$ " is the height above the ground.

Example 5:

A stone of 150 g is dropped from a height of 80 m .
Calculatetheolebooks.com
(i) Kinetic energy when it is 50 m above the ground.

Solution:

$\mathrm{m}=150 \mathrm{~g}=\frac{150}{1000}=0.15 \mathrm{~kg}, \mathrm{~h}_{1}=50 \mathrm{~m}, \mathrm{~h}=80 \mathrm{~m}$.

(i)
$\mathrm{mgh}=\mathrm{K} \cdot \mathrm{E}_{1}+\mathrm{mgh}_{1}$
$0.15(10)(80)=$ K. $E_{1}+0.15(10)(50)$
$120=$ K. $\mathrm{E}_{1}+75$
K. $\mathrm{E}_{1}=120-75$
K. $\mathrm{E}_{1}=45 \mathrm{~J}$
(ii) Its velocity when its 50 m above the ground.

Method-

K. $\mathrm{E}_{1}=\frac{1}{1} \mathrm{mv}_{1}^{2}$

Method 2:

 Given; $a=10 \mathrm{~ms}^{-2}, \mathrm{u}=0 \mathrm{~ms}^{-}$ Where h is the height fallen through.Then using the third equation of motion, we have;

$$
v^{2}=\omega+2 \hat{\nu} h
$$

$$
\hat{y}^{2}=0^{2}+2(10)(30)
$$

$\rangle^{2}=600$

$45=2 \times 0.15 \times v_{1}^{2}$
$90=0.15_{2} \mathrm{v}_{1}^{2}$
$600=\mathrm{v}_{1}$
$\sqrt{600}=0_{1}$
$=24.49$ - -1
(iii) Its kinetic energy when it has fallen through 50 m .

Given; $\mathrm{g}=10 \mathrm{~ms}^{-2}, \mathrm{~h}=80, \mathrm{~h}_{1}=(80-50)=30 \mathrm{~m}, \mathrm{~K} . \mathrm{E}=$?
Where h is the height above the ground.
Then from;
$\mathrm{mgh}=\mathrm{K} \cdot \mathrm{E}_{1}+\mathrm{mgh}_{1}$
$0.15(10)(80)=$ K. $_{1}+0.15(10)(30)$

$$
120=\mathrm{K} \cdot \mathrm{E}_{1}+45
$$

K. $\mathrm{E}_{1}=120-745$
K. $\mathrm{E}_{1}=75 \mathrm{~J}$

Power is the rate of doing
POWER
Power is the rate of transfer ofenergy.
Note: Work done is the same a s energy transferred.

Where work done $=$ Force \times Distance
Power $=\frac{F \times d}{t}=F x_{t}^{d}=F V$

Where mg is the weight of the body and h the height.
Theald $\left.I_{1}{ }^{\prime}\right\}$ it ${ }^{\text {it }}$ of nower is watt (W)

Definition:

A watt is the rate of transfer of energy of one joule per second.
Or It is the rate of doing work of 1 joule in one second.

Example 1:

An engine raises 20 kg of water through a height of 50 m in 10 seconds. Calculate the power of the engine.

Solution:

Power $=\frac{m g h}{t}$
Power $=\frac{20(10)(}{\frac{50)}{10}}$
Powe r
$=1000 \mathrm{~W}$

An electric bulb is rated 100W. How much electrical energy does the bulb consume in 2 hours.

Solution:

$$
\begin{aligned}
\text { Power } & =\frac{\text { Energy used }}{\text { time taken }} \\
100 & =\frac{\text { Energy used }}{2 \times 60 \times 60}
\end{aligned}
$$

Enery used $=100(2 \times 60 \times 60)$
E ner y us ed $=720,0001$

Example 3:

A man uses an electric motor whose power output is 3000 W for 1 hour. If the motor consumes $1.44 \times 10^{7} \mathrm{~J}$ of electricity in that time, find the efficiency of the motor.

Solution:

Given; $\mathrm{P}_{\mathrm{out}}=3000 \mathrm{~W}, \mathrm{t}=1 \mathrm{hr}=1 \times 60 \times 60=3600 \mathrm{~s}$.

$$
\text { Energy }_{\text {input }}=1.44 \times 10^{7} \mathrm{~J}
$$

$$
\mathrm{E}_{\mathrm{ic}}=\frac{\mathrm{E}_{\mathrm{in}}}{\overline{\mathrm{O}} \mathrm{lebooks} . c o m}
$$

$\mathrm{P}_{\text {in }}=\frac{1.44 \times 10^{7}}{36000}$
$\mathrm{P}_{\mathrm{in}}=4000 \mathrm{~W}$
Efficiency $=\frac{\text { Power output }}{\text { Power input }} \times 100 \%$
Etticiency $=\frac{3000}{4000} \times 100 \%$
Effic ien cy $=75 \%$

For machines

Power input is the power created by effort.
Power input $=\frac{\text { Work input }}{\text { Time taken }}=\frac{\text { Effort } \times \text { Effort Distance }}{\text { Time taken }}$
Power output is the power created by the load.
Power output $=\frac{\text { Work output }}{\text { Time taken }}=\frac{\text { Load } \times \text { Load Distance }}{\text { Time taken }}$

Example 4:

An effort of 250 N raises a load of 1000 N through 5 m in 10 seconds. If the velocity ratio is five, Calculate the:
i) Power input
ii) Efficiency

Solution:
(i) Given;

Effort=250N, Load=1000N,
V.R $=5$, L. $D=5 \mathrm{~m}, \mathrm{t}=10 \mathrm{~s}$

$$
\begin{aligned}
& \text { V.R }=\frac{\text { E.D }}{\text { L.D }} \Leftrightarrow 5=\frac{\text { E.D }}{5} \\
& \text { E.D } 2.5 \mathrm{~m}
\end{aligned}
$$

$$
\begin{aligned}
& \binom{\text { Power }}{\text { input }}=\frac{\text { Work output }}{\text { Time taken }} \\
& =\frac{\text { Load } \times \text { LoadDistance }}{\text { Time taken }} \\
& =\frac{1000 \times 5}{10} \\
& \underline{\text { Power output }=500 \mathrm{~W}}
\end{aligned}
$$

(ii)

$$
\mathrm{Eff}=\frac{\left(\begin{array}{c}
\text { Power } \\
\text { output }
\end{array}\right.}{2^{\text {Power }} \begin{array}{l}
\text { input }
\end{array}} \times 100 \%
$$

$$
\text { Efficièncy }=-\times 100 \%
$$

E ffic ien c y $5 \underline{0} 080 \%$

INTERNAL COMBUSTION ENGINE

A heat engine is a machine, which changes heat energy obtained by burning fuel to kinetic energy (mechanical energy)

Engines are always less than 100% efficient because:-
i) Some of the energy is lost in over coming friction between walls of the cylinder and pistons.
ii) Some heat energy is lost to surrounding due to conduction.

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Ecolehooks.com

Pressure is the force acting normally per unit area of the surface.
$\hat{\theta} \hat{\theta} \hat{\nu} \hat{\theta} \hat{\theta} \hat{\theta} \hat{\theta} \hat{\theta} \hat{\theta}$
The S.I unit of pressure is a newton per square metre, $\left.\left(\mathrm{N} / \mathrm{m}^{2} \text { or }\right)^{-}\right)$or a pascal (\rangle 人

A pascal is the pressure exerted when a force of $\mathbf{1 N}$ acts normally on an area of $\rangle \geqslant$.

1:8:1. PRESSURE IN SOLIDS:

Pressure in solids depends on;

* Magnitude of force applied
* Cross sectional area in contact

Maximum and Minimum Pressure

Pressure increases when the area decreases and decreases when the area increases.
Thus:Maximum Pressue $=\frac{\text { For re or wei ght }}{\text { Minimum Area }}:$ i. e.

Minimum Pressue $=\frac{\text { Maxigubr Area, ht }}{\text { i. e. }}$

Example 1:
The box below weighs 60 N . Determine the maximum and minimympessures it exertson the ground.

Solution

Given:

-Dimensions; $1 \mathrm{~m} \times 2 \mathrm{mx} 3 \mathrm{~m}$
-Force, $\mathrm{F}=\mathrm{W}=60 \mathrm{~N}$
-Acceleration due to gravity, $\mathrm{g}=10 \mathrm{~ms}^{-2}$
Force, F = Weight
$F=60 \mathrm{~N}$
$\binom{$ Smallest }{ Area }$=\binom{$ Smallest }{ length }$\times\binom{$ Next smaller }{ length }
$A_{\text {min }}=(1 \times 2)=2 \mathrm{~m}^{2}$
Then: $P_{\text {max }}=\frac{F}{A_{\text {min }}}=\frac{60}{2}=30 \mathrm{Nm}^{-2}$ or 30 Pa
Largest Area $=\binom{$ Longest }{ length }$\times\binom{$ Next longer }{ length }
$A_{\max }=(3 \times 2)=6 \mathrm{~m}^{2}$
$P_{\text {min }}=\frac{F}{\widehat{A}_{\text {max }}}=6^{-}=10 \mathrm{Nm}^{-2}$ or 10 Pa

A box of dimensions 20 cm by 1 m by 10 cm weighs 30 kg . Determine the maximum and primuh φ Pessedsexerted by the box on the ground.

Given: -Dimensions; $\mathrm{cm} \times 10 \mathrm{~cm} \times 20 \mathrm{~cm}$
-Mass, $\mathrm{m}=30 \mathrm{~kg}$
-Acceleration due to gravity, $\mathrm{g}=10 \mathrm{~ms}^{-2}$

Given:

-Dimensions; $1 \mathrm{~m} \times 2 \mathrm{mx} 3 \mathrm{~m}$
-Mass, $\mathrm{m}=30 \mathrm{~kg}$
-Acceleration due to gravity, $g=10 \mathrm{~ms}^{-2}$
Force, $\mathrm{F}=$ Weight

$$
\begin{aligned}
& =\mathrm{mg} \\
\mathrm{~F} & =30 \times 10
\end{aligned}
$$

$\binom{\mathrm{F}=300 \mathrm{~N}}{$ Area }$=\binom{$ Smallest }{ length }$\times\binom{$ Next smaller }{ length }
$A_{\min }=\left(\frac{10}{100} \times \frac{20}{100}\right)=0.02 \mathrm{~m}^{2}$
Then: $P_{\max }=\frac{F}{A_{\min }}=\frac{300}{0.02}=15000 \mathrm{Nm}^{-2}$ or 15000 Pa
Largest Area $=\binom{$ Longest }{ length }$\times\binom{$ Next longer }{ length }
$A_{\max }=\left(1 \times \frac{20}{100}\right)=0.2 \mathrm{~m}^{2}$
$P_{\text {min }}=\frac{F}{A_{\text {max }}}=\frac{300}{0.2}=1500 \mathrm{Nm} \quad$ or 1500 Pa

Example 3:

The dimension of a cuboid are $5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 20 \mathrm{~cm}$ and the mass of the cuboid is 6 kg . Calculate the maximum and minimum pressures the cuboid exerts on the ground.

Solution

Given: - Dimensions; $5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 20 \mathrm{~cm}$
-Mass, $m=6 \mathrm{~kg}$
-Acceleration due to gravity, $\mathrm{g}=10 \mathrm{~ms}^{-2}$

Then: $P_{\max }=\frac{F}{A_{\text {min }}}$
Force, $\mathrm{F}=$ Weight

> | $F=m g$ |
| :--- |
| $F=6(10)$ |
| $F=60 \mathrm{~N}$ |

Example 2:
$A_{\text {min }}=\left(\frac{5}{10 £ \mathrm{CabobOO}} \times \frac{10}{\mathrm{Ean}} \mathrm{m}^{2}=0.005 \mathrm{~m}^{2}\right.$
$\mathrm{P}_{\text {max }}=\mathrm{A}_{\text {min }}=\frac{\mathrm{F}}{0.005} \frac{60}{12000} \mathrm{Nm} \quad$ or 12000 Pa
Largest Area $=\binom{$ Longest }{ length }$\times\binom{$ Next longer }{ length }
$\mathrm{A}_{\max }=\left(\frac{20}{100} \times \frac{10}{100}\right)=\frac{1}{50} \mathrm{~m}^{2}=0.02 \mathrm{~m}^{2}$
$P_{\text {min }}=\frac{F}{A_{\text {max }}}=\frac{60}{0.02}=3000 \mathrm{Nm}^{-2}$ or 3000 Pa

Example 4:

The tank below has a mass of 2.5 kg . Determine the minimum and maximum pressure exerted by the tank on the ground; When it is;
(i) empty
(ii) filled with waterup to the brim.
(iii) half filled with water. (Density of water $=1000 \mathrm{kgm}^{-3}$)

Solution

(i) When empty

Given: - Dimensions; $5 \mathrm{~cm} \times 10 \mathrm{~cm} \times 20 \mathrm{~cm}$
-Mass, $\mathrm{m}=2.5 \mathrm{~kg}$
-Acceleration due to gravity, $g=10 \mathrm{~ms}^{-2}$
Force, $\mathrm{F}=$ Weight

$$
\begin{aligned}
& F=m g \\
& F=2.5 \times 10 \\
& F=25 N
\end{aligned}
$$

$\binom{$ Smallest }{ Area }$=\binom{$ Smallest }{ length }$\times\binom{$ Next smaller }{ length }
$A_{\min }=\left(\frac{20}{1000} \times \frac{30}{100}\right)=0.006 \mathrm{~m}^{2}$
$\mathrm{P}_{\text {max }}=\frac{\mathrm{F}}{\mathrm{A}_{-2} \mathrm{~m}} \overline{\overline{\mathrm{n}}} \frac{25}{0.006}=4166.67 \mathrm{Nm} \quad$ or 4166.67 Pa
Largest Area $=\binom{$ Longest }{ length }$\times\binom{$ Next longer }{ length }
$A_{\max }=\left(0.5 \times \frac{30}{100}\right)=0.15 \mathrm{~m}^{2}$
$P_{\text {min }}=\frac{F}{A_{-2}{ }^{\max } \overline{\bar{x}}} \frac{25}{0.15}=166.67 \mathrm{Nm}$ or 166.67 Pa
(ii) When filled with water to the brim

Force, $\mathrm{F}=$ (Weight ofempty tank) + (weight of water)

$$
\begin{aligned}
& \mathrm{F}=\mathrm{m}_{\mathrm{t}} \mathrm{~g}+\mathrm{m}_{\mathrm{w}} \mathrm{~g} \\
& \mathrm{~F}=\mathrm{m}_{\mathrm{t}} \mathrm{~g}+\mathrm{V}_{\mathrm{w}} \rho_{\mathrm{w}} \mathrm{~g}
\end{aligned}
$$

$\mathrm{F}=2.5 \times 10+(0.003) \times(1000) \times 10$
$\mathrm{F}=25+30$
$\mathrm{F}=50 \mathrm{~N}$

$$
P_{\max }=\frac{50}{0.006}=\frac{50}{0.006}=8333.33 \mathrm{Nm}^{-2} \text { or } 8333.33 \mathrm{~Pa}
$$

$$
\mathrm{P}_{\min }=\frac{50}{0.15}=333.33 \mathrm{Nm}^{-2} \text { or } 333.33 \mathrm{~Pa}
$$

(iii) When half filled with water.

Force, $\mathrm{F}=$ (Weight ofempty tank) + (weight of water)

$$
\begin{aligned}
& F=m_{t} g+m_{w} g \\
& F=m_{t} g+V_{w} \rho_{w} g
\end{aligned}
$$

Where Volume of water, $\mathrm{V}_{\mathrm{w}}=1 \times \mathrm{w} \times \mathrm{h}$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{w}}=100 \times 1000 \times 0.25 \\
& \mathrm{~V}_{\mathrm{w}}=0.0015 \mathrm{~m}^{-3}
\end{aligned}
$$

Then, $\mathrm{F}=2.5 \times 10+(0.0015) \times(1000) \times 10$
$\mathrm{F}=25+15$
$\mathrm{F}=40 \mathrm{~N}$
$P_{\text {max }}=\frac{40}{0.006}=666.67 \mathrm{Nm}^{-2}$ or 666.67 Pa
$P_{\text {min }}=\frac{40}{0.15}=266.67 \mathrm{Nm}^{- \text {-or } 266.67 \mathrm{~Pa}}$
Note: when calculating pressure, the unit of area of base should always be in m^{2}. From the above calculations it is noted that: the greater the area over which the force acts normally the less is the pressure.

* A tractor with wide wheels can pass over soft ground because the greater area of wide wheel exerts less pressure.
* A hippopotamus of wide feet is able to walk on soft grounds without sinking because the greater area of wide hooves exerts less pressure.
* When the same force is applied on a needle and nails both placed on the hand, one tends to feel more pain from the needle because the small area of needle exerts greater pressure.
* A sharp knife cuts well than a blunt one.

Exercise:

1. Explain the following observations;
(i) A large reservoir is much wider at the base than at the top
(ii) In supply of water, smaller pipes are preferred to larger ones.
2. A rectangularblock of metal weighs 5 N and measures $2 \mathrm{~cm} \times 3 \mathrm{~cm} \times 4 \mathrm{~cm}$. What is the least pressure which it can exert on a horizontal surface?
A. $2.10 \times 10^{-7} \mathrm{~Pa}$
B.
$4.17 \times 10^{-5} \mathrm{~Pa}$
C. $6.25 \times 10^{-5} \mathrm{~Pa}$
D. $\quad 8.30 \times 10^{-5} \mathrm{~Pa}$

3. See UNEB

1999. Qn.33	1996. Qn.39
1988. Qn. 13	2002.Qn9

Ecolebooks.com

1: 8 :2. PRESSURE IN FLUIDS:

ATMOSPHERIC PRESSURE

The layer of air surrounding the earth is called the atmosphere.
Atmospheric pressure is the pressure exerted by the weight of air on all objects on the earth's surface.

Atmospheric Pressure depends on altitude.

The density of air above the earth decreases as the altitude increases leading to the decrease of atmospheric pressure at
high altitude and the vice yersa. At sea level, the atmospheric pressure is $1.0 \times 10^{5} \mathrm{~Pa}$.

Though the value of atmospheric pressure is large we do not normally feel it because: -Blood pressure is slightly greater than atmospheric pressure -Atmospheric pressure acts equally in all direction.

Frespriments to Demonstrate Existence of Atmospheric af air ollapsing Canor Crushing Can Experiment collapses because the air pressure inside becomes the atmospheric pressure.

- A small quantity of water is boiled in a can until steam
- forms steam drives out all the air inside the can, hence reducing the pressure inside the can.
- The stopper is then tightly fitted onto the can and the heat source removed.
- Cold water is then poured over the can. This causes the
stepmainsiderytowondensfe producing water and water
- The excess atmospheric pressure outside the can causes it to collapse inwards.

Importance of atmospheric pressure
a) Drinking straw
iNshae s甲qking This reduces the pressure inside the straw.
Then atmospheric pressure acting on surface of the liquid in

b) Rubber sucker

When the sucker is moistened and pressed on a smooth flat surface, the air is pushed out. Atmospheric pressure then holds it firmly against the surface.
Suckers are used for attaching car licenses to windscreen and in industry for lifting metalsheets.

Defining pressure in fluids

Fluids refer to gas or liquids. These take up the shape of the
container, so the volume of the liquid filling a cylindrical container is equal to the volume of that cylindrical
container.

Then from the definition of pressure:

$$
\begin{gathered}
\text { Force }(\mathrm{N}) \\
\text { Pressure }= \\
\text { Area }\left(\mathrm{m}^{2}\right)
\end{gathered}=\frac{\left(\pi r^{2}\right) \mathrm{h} \rho \mathrm{~g}}{\left(\pi \mathrm{r}^{2}\right)}=\mathrm{h} \rho g
$$

Properties of fluids related to pressure

(i) A liquid finds its own level:

Pressure in diquids does not depend or cross sectional area This can be illustrated by an experiment using a communicating tube as shown below.

A liquid is poured into the communicating tubes of different

The liquid is found to stand at the same level in each tube. This shows that pressure at same level is the same.
This iEbeq\&ecto surface of water in each tube.
(ii) Pressure at a given depth acts equally in all directions:

Pascal`s principle of transmission of pressure in fluids

It states that pressure in an enclosed fluid is equally transmitted through out the fluid in all directions.
Pascal's principle works because liquids are incompressible.
That is to say, their volumes can't be reduced by squeezing.
An experiment to verify Pascal's principle.

Holes of equal size are drilled in a round bottomed flask and covered with cork.
The flask is then filled with water and the piston pushed inside the flask.
Water shoots out equally in all directions, and travels equal distances. This verifies Pascal's principle.

Hydraulic machines

Pascal's principle states that: When a force exerted on a liquid, pressure is produced which is transmitted equally throughout the liquid.

The above principle is applied in hydraulic press, hydraulic brakes and hydraulic jacks. Liquids are almost uncompressible so they can pass on any pressure applied to them.
In hydraulic press a small force is applied to a small piston in order to raise, large force (load) placed on large piston.

(a) Hydraulic press

It consists of two interconnected cylinders of different diameters enclosed by means of pistons which fit tightly in
the cylinders.
A high-density liquid like oil is used to fill the system.
Effort applied on the smaller piston can be used to overcome
a larger load on the bigger piston.
When a force (effort) is acting on the smaller piston, exerts
pressure on the liquid. According to Pascal's principle, the pressure will be transmitted equally to every point of the liquid since the system is enclosed by the cylindrical pistons.
The same pressure then acts on the bigger piston, where it
overcomes a bigger force (heavy load) because of the large area of the piston.

Thus assuming a hydraulic press, which is 100% efficient, then,

$$
\begin{aligned}
\frac{\text { Effort }}{\text { Load }} & =\frac{\text { Area of smaller piston }}{\text { Area of bigger piston }} \\
\frac{\mathbf{F}_{1}}{\mathrm{~F}_{2}} & =\frac{\mathbf{A}_{1}}{\mathbf{A}_{2}} \\
\frac{\mathrm{~F}_{1}}{\mathrm{~F}_{2}} & =\frac{\pi \mathrm{r}^{2}}{\pi \mathrm{R}^{2}} \Rightarrow \frac{\mathbf{F}_{1}}{\mathrm{~F}_{2}}=\frac{\mathbf{r}^{2}}{\mathbf{R}^{2}}
\end{aligned}
$$

Where \mathbf{r} and \mathbf{R} are the radius of the smaller and bigger pistons respectively.

Example 1:

A hydraulic press is made of two cylinders of cross-section areas $20 \mathrm{~cm}^{2}$ and $120 \mathrm{~cm}^{2}$ respectively fitted tightly with pistons A and B. A force of 10 N applied on A is used to raise a load on piston B. Calculate the maximum possible force that can be raised on piston B.
Solution:
;Then from $\frac{F_{1}}{F_{2}}=\frac{A_{1}}{A_{2}}$

$\mathrm{F}_{2} \quad \stackrel{\frac{10}{20}}{2} 20$
$20 \mathrm{~F}=1200$

2: A hydraulic press requires an effort of 100 N acting on a piston of area $20 \mathrm{~cm}^{2}$ to press a bale of cotton placed on a
piston of area $240 \mathrm{~cm}^{2}$. If the percentage efficiency of the press is 80%, calculate the force applied on the bale.

Solution:

Then from; $\quad \frac{F_{1}}{F_{2}}=\frac{A_{1}}{A_{2}}$
$\frac{100}{\mathrm{~F}_{2}}=\left(\frac{80}{\left.100 \times \frac{20}{24 A(d) b o o k s . c o m}\right)}\right.$
$\frac{100}{\mathrm{~F}_{2}}=\left(\frac{16}{240}\right)$
$16 \mathrm{~F}_{2}=24000$

$\mathrm{E}_{2}=1500 \mathrm{~N}$

Advantage

A small force applied on small piston can overcome a large place load placed on a large piston.

Hydraulic lift

This is commonly used in garages; it lifts cars so that repairs and service on them can be done easily underneath the car. A force applied to the small piston, raises the large piston, which lifts the car. One valve allows the liquid to pass from The small cylinder to the wider one, a second valve allows more liquid (usually oil) to pass from oil reservoir on the left to the small cylinder. When one valve is open, the other must be shut.
(b) Hydraulic brake:

When the brake pedal is placed, the pressure exerted inside the master cylinder is transmitted equally to all the slave cylinders.

This pressed thebrike shoe hainst the brak drum (diss) therefore the wheel. This results in the stopping of the car.

1. A hydraulic press maehine is used to raise a load W placed on a piston of cross sectiohalBatealos $100 \mathrm{~cm}^{2}$ by using an effort of 20 N azpiston of cross-sectional area of $2 \mathrm{~cm}^{2}$.
Calculate the;
(i) Pressure transmitted through out the liquid $[\mathrm{P}=100000 \mathrm{~Pa}]$
(ii) Load, W. $[\mathrm{W}=1000 \mathrm{~N}]$
2. A force of 100 N is applied on a small piston of area $0.002 \mathrm{~m}^{2}$. Find the maximum load that can be lifted by a piston of area $0.8 \mathrm{~m}^{2}$.
3. Calculate the pressure at the bottom of a swimming pool 1000 cm deep. $\left\{\right.$ density of water $=1000 \mathrm{kgm}^{-3}$ \}
4. A diver dives to a depth of 20 m below the surface of sea water of density $1200 \mathrm{kgm}^{-3}$. Calculate the pressure Experienced.
5. The tank below contains mercury and water. Find the total pressure experienced at the bottom.
$\left\{\right.$ Density of mercury $=13600 \mathrm{kgcm}^{-3}$, Density of water $=$ $1000 \mathrm{kgm}^{-3}$ \}

6. (a) (i) Define Pressure and state its S.I unit.
(ii) Describe how a hydraulic car Brake system works.
(b) A hydraulic press has cylindrical pistons of radii

2 cm and 04 m respectively Calculate the maximum Load
at that can be overcbmeby force of 78 N . at that can be overcome by a force of 78 N .
7. Four different liquids are poured into identical measuring cylinders. The diagrams show the depths of
the liquids and their densities. Which liquid causes the targest pressure on the base of its measuring cylinder?

Factors affecting pressure in fluids

i) Depth "h" below the surface of the liqu id
iiii) Pensity exfthe ne surface of the liquid.

Experiment to show that pressure increases with depth.

Procedures:

Equally, spaced holes A, B and C of the same size are drilled at different depths along one vertical side of a cylindrical can.
The holes are then closed using corks.
Water is then poured into the can to full capacity.
The corks are then removed at the same time and the distance from the can to where water fom each hole lands noted.

Observation:

Water comes out fastest and lands furthest from the lowest hole C followed by B and then least from A.
This means that pressure is highest at C , which is deepest.
Hence, pressure in liquids increases with depth.

Water supply system:

Water supply often comes from reservoirs at a higher ground level. In a very tall building, it is necessary to pump water to a large tank in the roof.
All the above are done because the lower the place supplied the greater the water pressure at it.

Experiment to show that pressure depends on density

Two tall jars of the same size and height, each with a hole

The jars are then filled the Ésandeégholwish liquids of different densities e.g pacaffin and water.

The distance to which the liquids jet out is observed and compared.

It is observed that water jets furthest compared to paraffin i.e; $\mathbf{x}_{2}>\mathbf{x}_{1}$. Thus the higher pressure is exerted by water than paraffin at the same depth.
Therefore, the higher the density, the higher the pressure.
MEASURING FLUID PRESSURE
(a) Using a manometer
(i) Measurement of Liquid pressure

One arm of the manometer is connected to a thistle funnel whose base is covered with a thin membrane and the other end remains open to the atmosphere.

The difference in the liquid surface levels, h gives the pressure at point A and it is called the gauge pressure or absolute pressure.

(ii) Measurement of Gas pressure

Atmospheric

-Connect a manometer to a gas supply as shown above -Turn on the gas.

-The gas pressure in one arm (limb) is equal to the pressure in the opposite limb.
PressureatAlebveskurecathB
Pressure at $A=\binom{$ Atmospheric }{ pressure }$+\binom{$ pressure due }{ to mercury column }

(b) Using a bourdon gauge

This gauge measures the very high pressures of liquids or gases, e.g. the pressure of steam in boilers.
It is a hollow curved tube of springy metal closed at one end. The tube straightens slightly when pressure acts on the inside.
The closed end of the tube is joined to a series of levers and gear wheels which magnify the slight movement.
A pointer moving over a scale (usually graduated in $10^{5} \mathrm{pa}$, which is about 1 atmosphere pressure) records
Then, the recorded pressure is the excess pressure of liquid or gas over atmospheric pressure, but some gauges can record the actual pressure.

Bourdon gauges are commonly used at filling stations.

Example:1

Mercury was poured in a U- tube such that it finds its own level. When a column of 20 cm of alcohol was poured on one side of the tube, it was necessary to pour 16 cm of water on the other side to maintain equal mercury levels on both sides as shown below. Find the density of alcohol.

Solution

$$
\begin{aligned}
\text { From; } \quad \text { P } & =\text { h } \rho g, \\
h_{a} \rho_{\mathrm{a}} g & =\mathrm{h}_{\mathrm{w}} \rho_{\mathrm{w}} \mathrm{~g} \\
\rho_{\mathrm{a}}(20)(10) & =1000 \times 16 \times 10 \\
\rho_{\mathrm{a}} & =800 \mathrm{kgm}^{-3}
\end{aligned}
$$

Expressing cmHg or mmHg pressure in Nm^{-2} or Pa

This is done by applying of formula pressure $=\mathbf{h} \rho \boldsymbol{\rho}$ where \mathbf{h} is the liquid column which should be in meters, $\boldsymbol{\rho}$ is the density of the liquid and it should be in kgm^{-3} and is the acceleration due to gravity $\left.(\hat{\rho}=\hat{\nu}\rangle\rangle \boldsymbol{\nu}^{-\boldsymbol{\theta}}\right)$.

Example 1

Express a pressure of 75 cmHg given that the density of mercury (Hg) is $13600 \mathrm{kgm}^{-3}$.

Solution

| Given: |
| :--- | :--- |
| $\mathrm{h}=75 \mathrm{~cm},=\frac{75}{100} \mathrm{~m}$ |
| $=0.75 \mathrm{~m}$. |
| $\rho=13600 \mathrm{Kg} \mathrm{m}^{-3}$ |
| $\mathrm{~g}=10 \mathrm{~ms}^{-2}$ |\quad| Then from, |
| :--- |
| Pressure $=$ |
| Pp sure $=(0.75) \times(13600) \times 10$ |
| Thus. $75 \mathrm{cmHg}=102000 \mathrm{~Pa}$ |

Example 2

The manometer contains mercury so the atmospheric pressure is 76 cm Hg . Calculate the gas pressure in cm Hg and Nm^{-2}.

$$
\begin{aligned}
& \text { Gas pressure }=\mathrm{H}_{\mathrm{atm}}+\mathrm{h} \\
& \text { Gas pressure }=76+54.4
\end{aligned}
$$

$$
=130.4 \mathrm{c} \mathrm{mHg}
$$

Expressing_in_Nm ${ }^{-2}$
Gas pressure
$=\left(\mathrm{H}_{\mathrm{atm}}+\mathrm{h}\right) \rho \mathrm{g}$
$=\left(\frac{130.4}{100}\right) \times 136$
$=177344 \mathrm{Nm}^{-2}$

Exercise:

1. In an experiment to compare density of two liquids, water a ned cbititwerolused. The height of water was found to be $8 \overline{\mathrm{~cm}}$ and that of spirit was 12 cm . Given that the density of water is $\mathbf{1 0 0 0} \mathbf{k g m}^{-\mathbf{3}}$. Find the density of the spirit. [Ans: $\mathbf{6 6 6 . 6 7 \mathrm { kgm } ^ { - 3 }}$]
2. The manometer tubes below contain mercury and connected to a gas supply. Find the gas pressure.
[Atmospheric pressure $=103360 \mathrm{~Pa}$].
(a) $[$ Ans: 177344 Pa$]$

(b) [Ans:109620Pa]

(c)

3. In the figure below, a fixed mass of dry gas is trapped in bulb M.

Determine the total pressure of the gas in M , given that the atmospheric pressure is 760 mm of mercury.
A) 114 cm Hg
B) 106 cm Hg
C) 30 cm Hg
D) 46 cm Hg

A simple barometer of mercury

A barometer is a manometer which measures atmospheric pressure.

Describing how a simple mercury barometer is made in the

 laboratory.The description involves the following the following points:-
$\stackrel{\stackrel{\rightharpoonup}{*}}{ } 1 \mathrm{~m}$ long thiling a 1 m long thick walled tube tube is filled with mercury
Filling a 1 m long thick walled tube

* Inverting the filled tube

The above filled is inverted several time with finger over the open end. This is done in order for the large air bubble to run up and down collecting any air small air bubble in mercury.

* Refilling the tube

After inverting several times, the tube is refilled with mercury.

With Inverting the filled tube into a bowl.
With a finger on the open end, the filled tube is inverted into a bowl of mercury.
When the finger is removed, the mercury column falls until it is equal to atmospheric pressure.

From the above apparatus, when the air above the mercury in the bottle is pumped out, the column falls.

Testing the vacuum

If the vacuum is faulty and contains air or water-vapour, the barometer ratadthabdelkwe ating spheric pressure.

Testing for the vacuum of a mercury barometer.
This is done by tilting the tube until at a position when mercury was a vacuum.

When the tube is tilted as in the diagram, the vertical height of column "h" of mercury remains the same but the length of mercury increases.

When a mercury barometer is taken from sea level to the top of a mountain i.e. low altitude to high altitude, the mercury column falls.

This is because the atmospheric pressure decreases at the top of the mountain. The decrease in atmospheric pressure is due to density of air decreasing because air is less compressed above. Deep-sea divers must return slowly to the surface because the sudden decrease in pressure when they return fast from deep water is very painful

Pilots operating at great heights must have protective headgear to prevent nose bleeding because atmospheric pressure at great height is much smaller tan blood pressure.

Calculating the height of the reading of the mercury barometer at high altitude:

This is calculated from;
Pressure change for air=Pressure change for mercury

$$
\begin{aligned}
& \theta \theta \theta=(\hat{\theta} \theta-\theta\rangle) \\
& \hat{\theta}\rangle \hat{\theta}=(\hat{\theta}-\theta
\end{aligned}
$$

Where: is the height of altitude, is the density of air,
) \Leftrightarrow is the mercury column barometer at that altitude
Q is atmospheric pressure before rising.

Example; 1
Example; 1
A barometer is taken to the top of a mountain 440 cm high. If
$\begin{aligned} & \text { the atmospheric pressure is } \\ & \text { average density } \\ & \text { of }\end{aligned} \underset{\text { air }}{=} 1.2 \mathrm{Kg} / \mathrm{mg}$ at sea level, the average density of air $=1.2 \mathrm{Kg} / \mathrm{m}^{\circ}$ and mercury is $13600 \mathrm{Kg} / \mathrm{m}^{3}$. Calculate the barometer reading.

Solution:
$\mathrm{P}_{\mathrm{atm}}=76 \mathrm{~cm}=\frac{76}{100}$

$$
=0.76 \mathrm{mHg}
$$

$\rho_{\text {mer }=13600 \mathrm{kgm}^{-3}}$
$\rho_{\text {air }}=1.2 \mathrm{kgm}^{-3}$
$h_{\mathrm{Hg}}=$?
$h_{\text {air }}=440 \mathrm{~m}$
$\binom{$ Pressure change }{ for air }$=\left(\begin{array}{c}\text { Pressure change } \\ \text { for mercury }\end{array}\right.$
$\begin{aligned} \mathrm{h}_{\mathrm{a}} \rho_{\mathrm{a}} \mathrm{g} & =\left(\mathrm{H}_{\mathrm{atm}}-\mathrm{h}_{\mathrm{m}}\right) \rho_{\mathrm{m}} \mathrm{g} \\ \mathrm{h}_{\mathrm{a}} \rho_{\mathrm{a}} & =\left(\mathrm{H}_{\mathrm{atm}}-\mathrm{h}_{\mathrm{m}}\right) \rho_{\mathrm{m}}\end{aligned}$
$440 \times 1.2=(0.76-\mathrm{h}) \times 13600$
$528=13600 \times(0.76-\mathrm{h})$

DOWNLOAD MORE RESOURCES LIKE

APPLICATIONS OF ATMOSPHERIC PRESSURE:

1.The Lift Pwmplebooks.com

Lift pumps are used to raise water from deep under ground wells.

Structure

It consists of a long cylindrical barrel, inside which is a plunger (piston). It has two valves one at the entry point to the barrel and the other at the plunger.

Action
The action of the lift pump is explained in terms of what happens when the plunger is moving upwards (up stroke) and when moving downwards (down stroke).

Up stroke.

- Valve A closes due to the weight of water above it.
- The weight above valve B reduces. This causes the atmospheric pressure acting on the surfsce of water in the well, to push the water up through the pipe into the burrel.
- Consquently, water above the plunger is lifted upwards and it flows out through the spout.

Downstrek. closes due to the pressure on it, while valve A
 above the plunger.

Limitations of the lift pump

It can only raise water to a maximum height of 10 metres. This is because the atmospheric pressure can only support a water column of 10 metres.

2.The Force Pump:

The force pump is designed to overcome the limitations of the lift pump. It can raise water to heights greater than 10 metres.

Structure

The action of the force pump is also explained in terms upstroke and down stroke.

Up stroke.

- Valve B closes and the atmospheric pressure forces the water into the barrel through valve A .

Down stroke.

- Valve A closes due to the weight of the water above it.
- The water in the barrel is forced through valve B into the reservoir, C and out of the spout D .
- The air trapped in the reservoir is compressed and as aresult, it keeps on pushing the water out of the reservoir through the spout even when in upstoke.

3.Other Applications of atmospheric Pressure:

(i)

Drinking straw
(ii) Sunction pad
(iii) Siphon
(iv) Rubbersuckers
(v) Bicycle pump
(vi) Water supply system

Rubber Sucker

This is circular hollow rubber cap before it is put to use it is

atmosphericpressure will hold it firmly against surface as

Uses of rubber sucker;

-It is used printing machines for lifting papers to be fed into the printer.

The siphon;

This is used to take the liquid out of vessels (eg. Aquarium, petrol tank)

How a siphon works

The pressure at A and D is atmospheric, therefore the pressure at E is atmospheric pressure plus pressure due to The column of water DE. Hence, the water at E can push its way out a gainst atmospheric pressure..
NB: To start the siphon it must be full of liquid and end A must be below the liquid level in the tank.

Applications of siphon principle

1. Automatic flushing tank:

This uses siphon principle.
Water drips slowly from a tap into the tank. The water therefore rises up the tube until it reaches and fills the bend In the pipe siphon action starts and the tank empties (the water level falls to the end of the tube).The action Is then repeated again and again.

2. Flushing tank of water closet:

This also uses the siphon principle.
When the chain or handle is pulled, water is raised to fill the bend in the tube as shown below:

The siphon action at once starts and the tank empties.

Comparison of densities of liquids

(i) Miscible liquids

Here, a third liquid usually mercury is used to separate the two miscible liquids.

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Liquids of different densities are placed in glass pots as When shown above.
the gas tap is opened each liquid rises to different supply,
height h_{1} and h_{2}. Since they are subjected to the same gas

$$
\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}}
$$

-Measure the height of the liquids in the two arms, h_{1} and h_{2}.

$$
\begin{aligned}
H+h_{1} \rho_{1} g & =H+h_{1} \rho_{1} g \\
h_{1} \rho_{1} & =h_{1} \rho_{1}
\end{aligned}
$$

Water and kerosene are placed in U-tube containing
kerosene? mercury as shown above. Determine the density of

Pressure of kerosene $=$ Pressure of water (since both tube are

$$
\begin{gathered}
\mathrm{H}+\mathrm{h}_{1} \rho_{1} \mathrm{~g}=\mathrm{H}+\mathrm{h}_{1} \rho_{1} \mathrm{~g} \\
\mathrm{P}_{\mathrm{A}}=\mathrm{P}_{\mathrm{A}} \\
\mathrm{~h}_{1} \rho_{1 \rho} \rho_{\mathrm{N}} \neq 1 \$ \mathrm{~m}_{1} \mathrm{kgm}^{-3} \\
8(1000)=10 \rho_{1}
\end{gathered}
$$

Example 2

 have risen in an inverted U-tube, when some air has been
$800 \mathrm{kgm}^{-3}$.[Ans: $\geqslant=640 \mathrm{kgm}^{-3}$]

ÉcoleBooks

Example 3

The atmospheric pressure at the bottom of a mountain is 100000 Pa . If the mountain is 800 m high, and the density of air is $1.25 \mathrm{kgm}^{-3}$. Find the pressure at the top of the mountain.
Solution:

$100000=\mathrm{P}_{\mathrm{ttp}}+800(1.25)(10)$

$$
P_{\text {top }}=90000 \mathrm{~Pa}
$$

Exercise:

1. Using Hare's apparatus, with water a nother liquid A in a container, water rises $t 9$ a height of 60 cm and
liquid A rises to a height of 48 cm . If liquid A weighs liquid A rises to a height of 48 cm . If liquid A weighs

5 g , determine the volume of liquid A .

2. See UNEB

1999 Qn. 17	1994 Qn. 3
1989 Qn. 12	2002 Qn. 9
1990 Qn. 17	2007 Qn.17 and Qn.30
1991 Qn. 3	2000 Qn. 2
1993 Qn. 2 and Qn.20	2003 Qn.43
1994 Qn. 16	1995 Qn. 2
1997 Qn.11	

MOTION IN FLUIDS

When a body falls through a fluid it will be acted on by three forces namely:
i) weight of the body
ii) viscous force (Viscous drag)
iii) up thrust

Directions of the above forces.

i) Weight of body: down ward direction towards earth.
ii) Up thrust: upward direction
iii) Viscous force; direction opposite to that of motion

Direction of motion

The direction of motion is determined by direction of the pWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOQi\$SAs Cord 2 hich is a force that opposes motion like in
the above body the direction of motion is down ward because the viscous force is acting in upward direction.

Ecolebooks.com

Describing motion of a body falling in a fluid

-As the body falls, it accelerates first with a net force (resultant force) given by the equation.

$$
\mathbf{F}=\mathbf{W}-(\mathbf{v}+\mathbf{u}) \quad \text { Or } \quad \mathbf{F}=\mathbf{W}-\mathbf{v}-\mathbf{u}
$$

-As the body continues to fall, it attains a maximum uniform velocity called terminal velocity when weight of body $(\mathrm{W})=$ Viscous force (v) + up thrust (u)

$$
\mathbf{W}=\mathbf{v}+\mathbf{u} \quad \text { Or } \quad \mathbf{W}-\mathbf{v}=\mathbf{u}
$$

Terminal velocity is the uniform velocity attained by a body falling through a fluid when the net force on the body is zero such that: Weight $=$ Viscous force + up thrust

Velocity and accelerationgraphs for a body falling in a fluid.

BERNOULLI'S PRINCIPLE

It states that when the speed of the fluid increases, the pressure in the fluid decreases and vice versa.

Liquids flowing in a pipe have three kinds of energies, namely;
\checkmark kinetic energy
\checkmark potentialenergy
$\checkmark \quad$ pressure energy
the sum of these three energies is a constant.
a) Liquid

When the liquid flows through the uniform tube, the level goes on decreasing as shown in the diagram, the faster the liquid, the lower the pressure.

The pressure falls in the in the narrow part B but rises again in the wider part C. This is because, since B is narrow, the speed at which the liquid moves through it is higher, hence the fall in pressure.
Note:
\checkmark Fluid pressure changes with the rate of flow in the pipe
\checkmark Speed of water is greater at the constriction
$\checkmark \quad$ The order of pressure in the tubes decreases in the order A, C and B .
b) Gases

Bernoulli Effect in an air stream can be shown by blowing air between two sheets.

When air is blown the two sheets come together because the air between them moves faster resulting in decrease of pressure between them.

Application of Bernoulli's principle

i) When the fluid comes out of a jet, the speed increases as the pressure decreases.
ii) At the jet the gas comes out at high speed so the pressure is low at the jet. This results in air to be drawn in.
iii) A spinning ball takes a curved path because the ball drag air around causing air to pass more rapidly over one side than the other. This results in pressure difference that causes a resultant force on the ball.

iv) An aero plane wing called aero foil is shaped so that air has to travel farther and so faster on the top than underneath. This results in a pressure difference that causes a resultant up ward force on the wing, thus it lifts.

v) When two large vehicles pass each other, a force of attraction is experienced. This is because:
The speeding vehicles drag layers of air along with them. As these layers of air pass each other at high speed, they cause a pressure decrease.

($\left.\left.\hat{\theta}_{0}\right)_{0}\right)$

This results in the vehicles being pushed towards each other.

Fluid flow

A fluid is a liquid or gaseous substance.
There areStrea myes flof fid flow namely:
ii) Turbulent flow

pass a given point follow the same path at the same speed.
Stream line flow occurs where the slope falls gently so that

Turbulent flow

Is type of fluid flow in which the speed_and direction of the fluid particles passing any given point vary with time.
Turbulent flow occurs where the slope is so steep, such as at
a water fall and when there is a constriction.

It is Bianticerroy thenipetharrow
\checkmark Flexidylow very fast and disorderly, by lying the pipe
Differences between streamline and turbulent flow.

Turbulent	Streamline
Is due to steep slope or constriction so that water flows very fast and disorderly throughout.	Is due to falling gently so that the water flows slowly and uniformly throughout.

Up thrust is an upward force due to the fluid resisting being compressed. When any object is immersed or submerged into fluid its weight appears to have been reduced because it experiences an up thrust from the fluid.

Archimedes principle states that when a body is either wholly or partly submerged in a fluid the up thrust is equal to the weight of fluid displaced. i.e

Experiment: To verify Archimedes principle

An abieghis waighedjentair driring a spring balance to obtain *. Weight W_{w} of object in water

The object is weighed when completely immersed in water

* Weight of displaced water

* Up thrust " U " $=\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{w}}$

 fo Theriag isubnhergetidiscadledhits baparanteweighth.pletely immersed or
 thrust.
iii) According to Archimedes Principle;

Where are the volume and density of the displaced fluid.
Fdecalleddo odemplotity immersed or submerged fully, according to the displacement method,

Weight $=\mathrm{mg}$ and $\mathrm{m}=\rangle$ where " m " is mass in kg , V is volume, and \rangle is density.
But up thrust = weight of displaced fluid.
$=\mathrm{m}_{\mathrm{f}} \mathrm{g}$ (where m_{f} is mass of displaced fluid)
Up thrust $=\left(V_{f} \widehat{\rightharpoonup}_{f}\right) \boldsymbol{g}$

fluid.
Example: 1
A glass blocks weight 25 N . When wholly immersed in water, the block appears to weigh 15 N . Calculate the Up
thrust
$\mathrm{W}_{\mathrm{a}}=25 \mathrm{~N} ; \mathrm{W}_{\mathrm{f}}=15 \mathrm{~N}$;
Upthrust $=\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{f}}$
Upthrust $t=25{ }^{10}{ }^{15}{ }^{15}$
Example 2:
A metal weighs 20 N in air and 15 N when fully immersed in
ii) We thrust displaced water
iii) Volume of Displaced Water

Solution

Weight 0 会

$$
\begin{aligned}
& 5=\times 1000 \times 10 \\
& 5=10000 \\
& =500 \\
& 0=5 \times 10^{-4}{ }^{3}=0
\end{aligned}
$$

iv) Volume of the metal

Volume of the metal= Volume of displaced fluid
v) Density of the metal
$W^{8}=20 \mathrm{~N}$
$20=\left(5 \times 10^{-4}\right) \times \rho_{b} \times 10$
$20=0.005 \rho_{\mathrm{b}}$
$\rho_{\mathrm{b}}=\frac{20}{0.005}$
$\rho_{\mathrm{b}}=4000 \mathrm{kgm}^{-3}$

Example 3:

An iron cube of vol
O日́conlistorabliosmersed in
(a)Water (b) oil of density $0.8 \mathrm{gcm}^{-3}$. Calculate the up thrust in each case. Density of water $=1000 \mathrm{kgm}^{-3}$

Solution
(a) Upthrust in water
$\rho_{\mathrm{f}}=1 \mathrm{gcm}^{-3}=1000 \mathrm{kgm}^{-3}$
$\left.\left.\mathrm{V}_{\mathrm{f}}=\mathrm{V}_{\mathrm{b}}=800\right\rangle\right\rangle^{-3}=800 /(100 \times 100 \times 100) \mathrm{kgm}^{-3}$;
Up thrust $=$ weight of displaced water

(b) Upthrust in the oil $\rho_{\mathrm{f}}=0.8 \mathrm{gcm}^{-3}=0.8 \times 1000 \mathrm{~kg} \mathrm{~m}^{-3}=800 \mathrm{kgm}^{-3}$

Up thrust = weight of displaced water
Upthrust $=V_{f} \rho_{\mathrm{f}} \mathrm{g}$
Upthrust $=\left(\frac{800}{100 \times 100 \times 100}\right) \times 800 \times 10$
Upthrust $t=6.4 \mathrm{~N}$

Note: the greater the density, the greater the up thrust. The apparent weight of a body is less in fluids of greater density

Example 3:

An iron cube, mass 480 g and density $8 \mathrm{~g} / \mathrm{cm}^{3}$ is suspended by a string so that it is half immersed in oil of density $0.9 \mathrm{~g} / \mathrm{cm}^{3}$. Find the tension in string.

Solution

$$
\left.\mathrm{W}_{\mathrm{a}}=\mathrm{mg}=4 \mathrm{~B}_{0} \quad\right) \times 10=4.8 \mathrm{~N}
$$

$\rho_{f}=0.9 \mathrm{gcm}^{-3 \overline{10} 0}=0.9 \times 1000=900 \mathrm{kgm}^{-3}$
$\mathrm{V}_{\mathrm{b}}=\underset{\mathrm{m}_{\mathrm{b}}}{\mathrm{b}}=\frac{480}{8}=603^{3}$
Since its half -immersed then: V_{f} of oil $=2 \times 60=30 \mathrm{~cm}^{3}$
Up thrust $=\underset{V_{f \rho}}{\text { eight }}$ of displaced fluid
Upthrust $=V_{f} \rho_{f} \mathrm{~g}$

$$
\text { Upthrus } \mathrm{t}=\begin{array}{ll}
\text { Upthrust } \frac{30}{100.24}\left(1 \mathrm{p}^{0} \times 100\right. &) \times 900 \times 10 \\
\hline
\end{array}
$$

Tension in string
$\widehat{\vartheta} \hat{\vartheta}=$ Apparent weight $\left(W_{f}\right)$

$$
\begin{aligned}
0.27 & =4.8- \\
& =4.8-0.27 \\
& =4.53
\end{aligned}
$$

Thus Tension in string $=4.53 \mathrm{~N}$
Application of Archimedes principle
(a) Relative density of a solid

By Archimedes principle, the apparent weight is equal to the
weight of water displaced by the solid. The volume of this weight of water displaced by the solid. The volume of this
$\begin{aligned} & \text { water displaced is the same as the volume of the solid } \\ & \text { But appdrentloss in weight of solid in water }\end{aligned}=W a-W w$
\qquad

$\mathrm{W}_{\mathrm{a}^{-}} \mathrm{W}_{\mathrm{w}}=$ Upthrust：Where； W_{a} is weight of solid in air． W_{w} is weight of solid in water

Example

A glass block weighs 25 N ．When wholly immersed in water the block appears to weigh 15 N ．Calculate the relative density．

Solution

$\mathrm{W}_{\mathrm{a}}=25 \mathrm{~N} ; \mathrm{W}_{\mathrm{f}}=15 \mathrm{~N}$ ；
Upthrust $=\mathrm{W}_{\mathrm{a}}-\mathrm{W}_{\mathrm{f}}$

$$
=25-15
$$

Upthrus $\mathrm{t}=10 \mathrm{~N}$

$$
\begin{aligned}
& \text { R. } D=\frac{\mathrm{W}_{\mathrm{a}}}{\mathrm{~W}_{\mathrm{a}-} \mathrm{W}_{\mathrm{w}}} \\
& \text { R. } \mathrm{D}=\frac{25}{10} \\
& \text { R. } \mathrm{D}=2.5
\end{aligned}
$$

（b）Relative density of liquid

This is determined by using a solid．This solid sinks in water and in the liquid for which the relative density is to be determined．
A solid of weight W_{a} is weighed when completely immersed in the liquid to obtain W_{1} ．The solid is then weighed when completely immersed in water to obtain Ww．

R．$D=\overline{\text { Apparent loss in weight of solid in water }}$

$$
=\frac{\text { Up } h \text { hrus } t \text { in liquid }}{\text { Upthrust in water }}
$$

Example

A metal weighs 25 N in air．When completely immersed in liquid it weighs 15 N and it weighs 20 N when completely immersed in water．Calculate the relative density of the liquid．

Solution

$\overline{\mathrm{W}_{\mathrm{a}}}=25 \mathrm{~N} ; \mathrm{W}_{\mathrm{l}}=15 \mathrm{~N} ; \mathrm{W}_{\mathrm{w}}=20 \mathrm{~N}$ ：
Relative density of liquid $\left.=\frac{w_{a}-w_{\perp}}{w_{a}-w_{w}}=\int_{25-20}\right)=\frac{10}{5}=$

全人े人े人े人े 535N when

When a stone is placed on water，it sinks because its weight is greater than the up thrust．When a cork is held below the surface of water，it rises on release．This is because the up thrust on the cork is greater than its weight．

A piece of wood neither rises nor sinks but floats because the up thrust on the piece of wood and its weigh just balance so it experiences no net force．

In general a body floats because up thrust is equal to weight of the body．A body will sink because up thrust on it is less than the weight of the body．

The principle of flotation states that：A floating body displaces its own weight of fluid i．e．for a floating body；
weight of body $=$ weight of displaced fluid
WNLOAD MRE SESURCES LIKE THIS ON ECOLEBIOOKS．COM

Procedure

* A test tube is placed in a measuring cylinder containing water and the original reading of the water level $\left(\mathrm{V}_{1}\right)$ is noted.
* Lead shots are added to the test tube until it floats up right and the new water level $\left(\mathrm{V}_{2}\right)$ is noted.

Volume of displaced water $=\left(V_{2}-V_{1}\right) \mathrm{cm}^{3}$
Weight of displaced water $=\rho_{w}\left(V_{2}-V_{1}\right)$

* The test tube together with the shots is removed from the cylinder and weighed using a spring balance. (The
metignt hage helpsed, attach it to the balance hook). Their (Weight of lead shots + testtube) $=\mathrm{W}_{\mathrm{a}}$

Qbseryationght of lead shots and test tube is equal to the weighted \quad displaced water $)$

Conctusipthe above observation, it is noticed that the law of floatation is verified.

Application of the law of floatation
(i) A hydrometer
(iii) Ships
(ii) Submarines
(iv) Balloons

(i) A hydrometer

The relative density of any liquid may be found using a hydrometer.
-It is used to test the purity of milk.
-It is used to test R.D of a car battery acid.
This consists of a float with along stem. A heavy weight is placed beneath the float to keep the hygrometer up right. The higher the hydrometer float the higher the relative density of the liquid.

(Enable the lyydrometer)

(ii) Submarines

The average density of submarines is varied by means of ballast tanks. For the submarines to float, the ballast tanks are filled with air. To sink the submarines, the tanks are filled with water causing average density to rise higher than that of water.

(iii) Ships

Why ships float.
Ships flbat on water, although they are made from iron and
steel which are denser than water. This is because a steel or iron ship is made hollow and contains air. So the average density of the ship is less than that of water.
The loading lines called plimsoul marks on the sides show the level to which it can be safely loaded under different
mengitions ${ }^{\text {displaced water }\left(W_{w}\right)=\text { weight of the ship }\left(W_{s}\right)+~+~+~+~}$ weight of the cargo $\left(W_{c}\right)$.

(iv) Balloons

The iniut displacesing greater than its weight, a resultant up
ward force on the balloon causes it to rise.
The balloon continues to rise up until the upthrust acting on it is equal to the weight of the balloon plus its content and then it floats.
The lifting power of the balloon is calculated from the formula:
$\hat{\theta}=\hat{\theta}$
$\hat{\nu}=\hat{\nu}\rangle+\hat{\nu}_{h} \hat{\nu}_{h} \hat{\nu}+$
Upthrust in air $=$ Weight of displaced air
Upthrust in air $=\rho_{\mathrm{a}} \mathrm{V}_{\mathrm{a}} \mathrm{g}$

Example: 1

A balloon has a capacity $10 \mathrm{~m}^{3}$ and is filled with hydrogen. The balloon's fabric and the container have a mass of 1.25 kg . Calculate the maximum mass the balloon can lift.
$\left\{\right.$ Density of hydrogen $=0.089 \mathrm{kgm}^{-3}$: density of air $\left.=1.29 \mathrm{kgm}^{-3}\right\}$

Solution:

Volume of balloon, $\mathrm{V}_{\mathrm{b}}=10 \mathrm{~m}^{3}$
Density of hydrogen, $\rho_{\mathrm{h}}=0.089 \mathrm{kgm}^{-3}$
Density of air, $\quad \rho_{a}=1.29 \mathrm{kgm}^{-3}$
Volume of air displaced, $V_{a}=$ Volume of balloon, $V_{b}=10 \mathrm{~m}^{3}$
Volume of hydrogen, $\quad V_{h}=$ Volume of balloon, $V_{b}=10 \mathrm{~m}^{3}$
Mass of balloon and container, $=1.25 \mathrm{~kg}$
Let the mass of the load = x

Upthrust $=$ Weight of balloon + weight of $\mathrm{H}_{2}+$ load

$$
\mathrm{U}=\mathrm{m}_{\mathrm{b}} \mathrm{~g}+\mathrm{V}_{\mathrm{h}} \rho_{\mathrm{h}} \mathrm{~g}+\mathrm{m}_{\mathrm{l}} \mathrm{~g}
$$

$\mathrm{V}_{\mathrm{a}} \rho_{\mathrm{a}} \mathrm{g}=\mathrm{FB} \mathrm{g}$) HeVnodx 5.00 gm
$10 \times 1.29 \times \mathrm{g}=1.25 \times \mathrm{g}+0.089 \times 10 \times \mathrm{g}+\mathrm{x} \times \mathrm{g}$

$$
\mathrm{x}=10.76 \mathrm{~kg}
$$

Relationship between density of a floating body, density of a liquid and fraction submerged

Exercise:

1. A rubber balloon of mass 5 g is inflated with hydrogen and held stationary by means of a string. If the volume of the inflated balloon is $0.005 \mathrm{~m}^{3}$, find the tension in the string.
(Assume hydrogen is a light gas, and density of air $=$ $1.25 \mathrm{~kg}^{-3}$): [Ans: $1.25 \mathrm{X} \mathrm{10}^{-2} \mathrm{~N}$]

2.	UNEB: 1995.Qn. 7	5.	UNEB: 1989. Qn. 4
3.	UNEB: 1988.Qn. 11	6.	UNEB: 2001.Qn. 2
4.	UNEB: 2000.Qn. 40		

4. UNEB: 2000. Qn. 40

Distance: Is the space between two points.
Displacement: Is the distance moved in a specified direction.
The S.I unit of distance and displacement is metre or \mathbf{m}
Distance is a scalarquantity while displacement is a vector quantity.

Speed: Is the rate of change of distance. Or It is distance moved in a unit time.
Speed $=\xrightarrow{\text { Distance }}$
Time taken

Spedodity a spetdifierd tdiredtichmenge of displacement. Or It is
Velocity $=\frac{\text { DThingel tateen } \mathrm{e} \text { nt }}{}$
(Thes)Solr (unst ${ }^{1}$) $\mathrm{gf} \mathrm{speed} \mathrm{and}^{\text {selocity }}$ is metre per second.
Spapditys. a scalar quantity while Velocity is a vector

Velocity	speed
- Vector quantity	-scalar quantity
- displacement/time taken	-distance/time taken

Types of velocities

* initial velocity u'

Is the velocity with which a body starts motion in a given time interval.

Note;

1. For a body starting from rest the initial velocity "u' must be zero ie. $u=0 \mathrm{~ms}^{-1}$
2. For a stationary body starting motion means that the body is starting from rest $u=0 \mathrm{~ms}^{-1}$
3. For a body traveling with a certain velocity, x, the initial velocity for such a body will be x so, $\mathrm{u}=x \mathrm{~ms}^{-1}$ e.g. a car

* Final velocity ${ }^{\prime}$,

ÉcoleBooks
The velocity with which abody ends motion for a given time.
Note: if a body is brought to rest, then the final velocity is zero ie, $\mathrm{v}=0 \mathrm{~m} / \mathrm{s} . e g$; A body traveling at $20 \mathrm{~m} / \mathrm{s}$ is uniformly brought to rest in 2 s . Then; $\mathrm{v}=0 \mathrm{~m} / \mathrm{s}$.
The units of velocity must include m / s or $\mathrm{km} / \mathrm{hr}$ or cm / s.

Average velocity:

Average Velocity $=\frac{\text { Fina l vel oc ity }+ \text { Initia l vel oc ity }}{2}$
Average Velocity $=\frac{\mathrm{v}}{2}$

Uniform velocity

Is the constant rate of change of displacement.
OR
Uniform velocity is when a body makes equaldisplacements in equaltime intervals.
When a body moves with uniform velocity, initial velocity
(u) must be equalto final velocity, v. i.e. $V=u$.
E.g. A car traveling with uniform velocity of $20 \mathrm{~m} / \mathrm{s}$ has $u=20 \mathrm{~m} / \mathrm{s} . \mathrm{V}=20 \mathrm{~m} / \mathrm{s}$.

When a body moves with uniform velocity, its acceleration is zero. (i.e $a=0$).

Acceleration (a)

Is the rate of change in velocity with time.

$$
\text { Acceleration }=\frac{C \text { hange in velo cit } \mathrm{y}}{\text { Time taken }}
$$

Uniform acceleration

Uaiform nadtcaloration is the constant rate of change in
ORiform acceleration is when a body moves with equal change in velocity in equaltime intervals.
wnen a ooay moves witn uniorm acceleration, the inaı velocity is not equal to initial velocity.

Example.

A car starts from rest and it accelerates to $10 \mathrm{~m} / \mathrm{s}$. Calculate the change in velocity.
$\mathrm{U}=0 \mathrm{~m} / \mathrm{s}$
$\mathrm{V}=20 \mathrm{~m} / \mathrm{s}$
Change in velocity $=\mathrm{v}-\mathrm{u}$
Change in velocity $=20-0$

$$
=20 \mathrm{~ms}^{-1}
$$

Note: the velocity to which a body is accelerating becomes the final velocity for that given time interval.

Differences between velocity and acceleration EC(OqtEBOOKS.COMAcceleration

i）S．I unit is ms^{-1} ii）Is the rate of change of displacementer colebooks．	i）S．I unit is ms^{-2} ii）Is the rate of change of

ii）Is the rate of change of
ii）Is the rate of change of displacemen雨colebooks．doyqlocity with time？

Equations Of Motion

The units of acceleration must always be $\mathrm{m} / \mathrm{s}^{2}$ and units m / s or $\mathrm{km} / \mathrm{hr}$ are for velocity．

$1^{\text {st }}$ Equation of motion

From the definition of acceleration．
Acceleration $=\frac{\text { Change in velocity }}{\text { Time taken }}$
，$\quad a=\frac{V-u}{t}$
at $=\mathrm{v}-\mathrm{u}$
$\hat{\nu}=+$
This is called the first equation of motion．

Example1

A car started from rest it accelerates uniformly for 5 s at a rate of $4 \mathrm{~m} / \mathrm{s}^{2}$ ．Calculate the final velocity．

Solution

Example 2.
A body starting from rest is accelerated to $30 \mathrm{~m} / \mathrm{s}$ in two seconds．Calculate the acceleration of the bodv．
Solution

Given $\begin{aligned} & \hat{\imath}=\hat{\gamma}+\hat{v}=30 \mathrm{~m} / \mathrm{s} \\ & 30=0+\hat{\mathrm{p}}(2) \mathrm{t}=2 \mathrm{~s} \\ & 30=2 \hat{2} \end{aligned}$	From； $\mathrm{u}=0 \mathrm{~m} / \mathrm{s}$ $15=$
	人 $=15$ 人 ${ }^{-2}$

A body starts from rest and accelerated uniformly at $2 \mathrm{~m} / \mathrm{s}^{2}$ for 3 s ．Calculate the final velocity．
Solution

$\begin{aligned} & \hline \overline{\text { Given }} \\ & \mathrm{u}=0 \mathrm{~m} / \mathrm{s} \\ & \mathrm{a}=2 \mathrm{~m} / \mathrm{s}^{2} \\ & \mathrm{t}=3 \mathrm{~s} \end{aligned}$	From；

Example 4.

Sritatimond．

Given $\begin{aligned} & \mathrm{u}=10 \mathrm{~m} / \mathrm{s} \\ & \mathrm{a}=5 \mathrm{~m} / \mathrm{s}^{2} \\ & \mathrm{t}=3 \mathrm{~s} \end{aligned}$	From；

A body traveling at $20 \mathrm{~m} / \mathrm{s}$－is accelerated for 4 s at $5 \mathrm{~m} / \mathrm{s}^{2}$ ． Calculate the a verage velocify．ÉcoleBooks
Solution

$\begin{aligned} & \hline \hline \mathrm{Given} \\ & \mathrm{u}=20 \mathrm{~m} / \mathrm{s} \\ & \mathrm{a}=5 \mathrm{~m} / \mathrm{s}^{2} \\ & \mathrm{t}=4 \mathrm{~s} \end{aligned}$	From；	Then from； Average Velocity $=\frac{\mathrm{v}+\mathrm{u}}{2}$ Average Velocity $=\frac{40+20}{2}$ Average Velocity $=\frac{60}{2}$ A vera ge Vel oc ity $=30 \mathrm{~m}$

Example： 5.

A car travels with a uniform velocity of $20 \mathrm{~m} / \mathrm{s}$ for 6 s ． Calculate its acceleration．
Solution

Example： 6.

A car traveling at $90 \mathrm{~km} / \mathrm{hr}$ is uniformly brought to rest in 40 seconds．Calculate the acceleration．
Solution

Given $\begin{aligned} & u=90 \mathrm{~km} / \mathrm{hr}=\frac{90 \times 1000}{1 \times 60 \times 60}=25 仓 / \hat{\imath} \\ & \mathrm{a}=? \\ & \mathrm{t}=40 \mathrm{~s} \\ & \mathrm{v}=0 \mathrm{~m} / \mathrm{s} \end{aligned}$	From； $\begin{aligned} & \hat{Q}=\hat{?}+ \\ & 0=25+(\hat{\beta})(40) \\ & 0=25+ \\ & -40\rangle=25 \\ & \hat{y}=-0.625 \hat{y} \end{aligned}$
Note：If the value obtained for acceleration is negative，it implies that the body is decelerating or retarding．This occurs when there＇s a decrease in velocity．	

$2^{\text {nd }}$ Equation of motion

Displacement：＂ \boldsymbol{S} or \boldsymbol{x}＂is length moved in specified direction
From the definition of Displacement．

$\left.\left.\left.\left.\left.\rangle=\left(\frac{\rangle}{2}\right) \times\right\rangle\right\rangle\right\rangle\right\rangle\right\rangle=v=u+a t$
$\left.\hat{\theta}=\frac{\hat{\nu}+\hat{\nu}}{+2 \hat{\nu}}\right) \times$
$\hat{\theta}=\overline{2 \hat{2}+\theta^{2}} \hat{\theta}^{x}$
$\hat{\theta}=\bar{\lambda} \hat{\Omega}_{2} \Delta^{2}$

This is called the second equation of motion．This equation is mainly used when the question involves distance and time．

A body starts from rest and accelerates uniformly at $2 \mathrm{~ms}^{-2}$ for 3s．Calculate the total distance travelled．
Solution Ecolebooks．com

Given
$\mathrm{u}=0$
2 12
$\mathrm{a}=2 \mathrm{~ms}^{-2}$
$\mathrm{t}=3 \mathrm{~s}$
$\mathrm{s}=$ ？

Calculations involving deceleration or Retardation
When calculating a problem involving deceleration；it should be remembered that the value of＂a＂should be negative．

Example 2：

A body moving at $40 \mathrm{~m} / \mathrm{s}$ decelerates uniformly for 20 s at $3 \mathrm{~m} / \mathrm{s}^{2}$ ．Calculate distance covered．

Solution

$\begin{aligned} & \begin{array}{l} \text { Given } \\ \mathrm{u}=40 \\ 3 \\ 3 \mathrm{~ms}^{-2} \\ \mathrm{t}=20 \mathrm{~s} \\ \mathrm{~s}=\text { ? } \end{array} \end{aligned}$	From； $\begin{aligned} & \hat{2}=\hat{2}+{ }^{2} \\ & \hat{2}=(40)(20)+(-3)\left(20^{2}\right. \\ & \hat{2}=800-600^{2} \\ & \hat{y}=200 \end{aligned}$

Example 3：
A car traveling at $40 \mathrm{~m} / \mathrm{s}$ is uniformly decelerated to $25 \mathrm{~m} / \mathrm{s}$ for 5 s ．Calculate the totaldistance covered．

Solution

Given $\mathrm{u}=40 \mathrm{~m} / \mathrm{s}$ $\mathrm{v}=25 \mathrm{~m} / \mathrm{s}$
$\mathrm{a}=$ ？
$\mathrm{t}=5 \mathrm{~s}$
$\mathrm{s}=$ ？

$$
\begin{array}{|l|}
\hline \text { From; } \\
\rangle=\rangle+仓\rangle \\
25=40+5\rangle \\
5\rangle=25-40 \\
5\rangle=-15 \\
\frac{\rangle}{\varphi}=-3 \\
\hline
\end{array}
$$

Third Equation of motion
From：

Making＇t＇the subject of the formula in the first equation of motion and substitutingit in here we get；

$\overline{(\hat{\beta}+\hat{\theta})(\hat{\beta}-}$
$2 \hat{2}=\hat{2}{ }^{2}$
$\hat{\theta}=\hat{2}$
This equation is applied when time is not given and not
This is called the third equation of motion
requacteld te the final（maximum）velocity of a body traveling
Exatmple 1：

Note：
$\mathrm{s}=5 \mathrm{~m}$

Example 2：

A body traveling at $90 \mathrm{~km} / \mathrm{hr}$ is retarded to rest at $20 \mathrm{~m} / \mathrm{s}^{2}$ ． Calculate the distance covered．

Solution

$\begin{aligned} & \text { Given } \\ & u=90 \mathrm{~km} / \mathrm{hr}=\frac{90 \times 1000}{1 \times 60 \times 60}=25 仓 / \geqslant \\ & a=-20 \mathrm{~m} / \mathrm{s}^{2} \\ & \mathrm{v}=0 \mathrm{~m} / \mathrm{s} \\ & \mathrm{~s}=? \end{aligned}$	From；

Graphical presentation of uniform velocity and uniform acceleration．
Uniform velocity can be represented on a 2 type of graphs．
i）Velocity against time graph
ii）Distance a gainst time．
i）velocity against time graph

When a body maintains the same speed，it implies that it moves with uniform velocity．

$$
\mathrm{v}\left(\mathrm{~ms}^{-1}\right)
$$

AB－uniform velocity
t（s）
GR＝unifamm decelefation or uniform retardation

＊The slope elocity time graph gives the graph gives the distance covered during that time．

Drawing a velocity against time graph

E（Tis）InvoBerefisumscAps：
$\checkmark \quad$ Divide the motion into stages basing on the timing.
\checkmark Obtain the initial velocity (u) and final velocity (v) fecerchstagks.com
\checkmark The final velocity forone stage becomes the initial for the next stage.

Example 1:
A cyclist starts from rest and accelerate uniformly at $1 \mathrm{~m} / \mathrm{s}^{2}$
for 20s. Then he maintains the maximum speed so reached for 1 minute and finally decelerates to rest uniformly for 10s.
i) Draw a velocity against time graph for the body.
ii) Calculate the totaldistance travelled.

Solution

Stage 1 $\mathrm{u}=0 \mathrm{~ms}^{-}$ $\begin{aligned} & \mathrm{a}=1 \mathrm{~ms}^{-2} \\ & \mathrm{t}=20 \mathrm{~s} \\ & \mathrm{v}=? \end{aligned}$	$\begin{aligned} & \text { Stage } 2 \\ & u \\ & = \\ & 20\rangle\rangle^{-1} \\ & a=0 \mathrm{~ms}^{-2} \\ & t= \end{aligned}$	Stage 3 $\begin{aligned} & u=20\rangle^{-1} \\ & v=0 \\ & t=10 s \end{aligned}$	Then from;

(i) A velocity against time graph for the motion.

ii) Totaldistance travelled

Stage 1:

Distance $=\frac{1}{2} \mathrm{bh}$
Stage 2:

Distance $=\frac{1}{2} \times 20 \times 20$
Distance $=200 \mathrm{~m}$

Stage 3:

Distance $=\frac{1}{2} \mathrm{bh}$
Distance $=\frac{1}{2} \times 10 \times 20$
Distance $=100 \mathrm{~m}$

Distance $=l w$
Distance $=60 \times 20$
Distance $=1200 \mathrm{~m}$

Then Total Distance is;
$=$ Stage $1+$ Stage $2+$ Stage 3
$=200 \mathrm{~m}+1200 \mathrm{~m}+100 \mathrm{~m}$
$\equiv 1500 \mathrm{~m}$

Example 2:

A car traveling at $10 \mathrm{~m} / \mathrm{s}$ is uniformly accelerated for 4 s at $2 \mathrm{~m} / \mathrm{s}^{2}$. It then moves with a constant speed for 5 s after which it is uniformly brought to rest in another 3s.
i) Draw a velocity against time graph.
ii) Calculate the total distance tra velled.

Solution

i) Stage A	Stage B	Stage C
$u=10 \mathrm{~ms}^{-1}$	$\mathrm{u}=18\rangle\rangle^{-1}$	$\mathrm{u}=18\rangle^{-1}$
$\mathrm{a}=2 \mathrm{~ms}^{-2}$	$\mathrm{a}=0 \mathrm{~ms}^{-2}$	$\mathrm{v}=0 \boldsymbol{}^{-1}$
$\mathrm{t}=4 \mathrm{~s}$	$\mathrm{t}=5 \mathrm{~s}$	$\mathrm{t}=3 \mathrm{~s}$

$\mathrm{u}=10 \mathrm{~ms}^{-1}$
$\mathrm{t}=4 \mathrm{~s}$
Stage B
$u=18 \geqslant\rangle^{-1}$
$a=0 \mathrm{~ms}^{-2}$
$t=5 \mathrm{~s}$

$$
\begin{gathered}
u=18 \\
v=0
\end{gathered}
$$

Then from;

i) Totaldistance travelled

Stage A:	Stage B: Distance $=\mathrm{lw}$ Distance $=\frac{1}{2} \mathrm{~h}(\mathrm{a}+\mathrm{b})$ Distance $=\frac{1}{2} \times 4 \times(10+18)$ Distance $=56 \mathrm{~m}$
Stage C:	Distance $=5 \times 18$ Distance $=90 \mathrm{~m}$
Distance $=\frac{1}{2} \mathrm{bh}$	Then Total Distance is; $=$ Area (A+B+C) $=56 \mathrm{~m}+90 \mathrm{~m}+27 \mathrm{~m}$ Distance $=\frac{1}{2} \times 3 \times 18$ Distance $=27 \mathrm{~m}$
$\underline{\mathbf{1 7 3 \mathbf { m }}}$	

Note: Distance covered during stage A can also be obtained by dividing the area A into a triangle and a rectangle and then finding the sum of the two areas.
ie; $\mathrm{A}_{1}=\frac{1}{2} h \stackrel{1}{2} \times 4 \times 8=$

$$
\left.\mathrm{A}_{2}=\hat{\rho}\right\rangle=4 \times 10=
$$

Thus: Area, $\mathrm{A}=$ Area $\mathrm{A}_{1}+$ Area A_{2}

$$
=16 \mathrm{~m} \quad+40 \mathrm{~m}
$$

$$
=56 \mathrm{~m}
$$

Example 3:

A body moving with uniform velocity:
A car travels at a velocity of $20 \mathrm{~m} / \mathrm{s}$ for 6 s . It is then uniformly brought to rest in 4 s .
i) Draw a velocity against time graph.
ii) Calculate the retardation
iii) Find the totaldistance traveled
iv) Calculate the average speed of the body

Solution

i) Stage \mathbf{A} $\mathrm{u}=20 \mathrm{~ms}^{-1}$
$\mathrm{a}=0 \mathrm{~ms}^{-2}$
$\mathrm{t}=6 \mathrm{~s}$
$\mathrm{v}=20 \mathrm{~ms}^{-1}$

Stage B $\mathrm{u}=20 \mathrm{~ms}^{-1}$

$$
\begin{aligned}
& \mathrm{a}=? \\
& \mathrm{t}=4 \mathrm{~s}
\end{aligned}
$$

Then from;
$\mathrm{v}=\mathrm{u}+\mathrm{at}$
$\mathrm{v}=20+(\mathrm{a})(4)$
$-4 a=20$
$\mathrm{a}=-5 \mathrm{~ms}^{-2}$

ii）The retardation
Retardation or deceleration occurs in region B．

$\begin{aligned} & \mathrm{u}=20 \mathrm{~ms}^{-1} \\ & \mathrm{v}=0 \mathrm{~ms}^{-1} \\ & \mathrm{t}=(10-6) \\ & \mathrm{t}=4 \mathrm{~s} \end{aligned}$	Then from； Thus the retardation is $\hat{\boldsymbol{\gamma}} \boldsymbol{\geqslant} \boldsymbol{\gamma}$

iii）Totaldistance tra velled

Stage B：
人े人े人 $\times 10$

Then Total Distance is；
$=$ Area（A + B）
$=60 \mathrm{~m}+20 \mathrm{~m}$
$=80 \mathrm{~m}$
iv）
Average speed $=\frac{\text { Total Distance travelled }}{\text { Total Time Taken }}$
Average speed $=\frac{80 \mathrm{~m}}{10 \mathrm{~s}}$
A vera ge s peed $=\hat{\geqslant} \geqslant-\hat{\nu}$

EXERCISE

Qn1．The graph below shows motion of a body of mass 2 kg accelerating from rest．

（i）totaldistance covered
（a）Describe vedonityion of the body
（b）Use the graph to calculate the：

（ii）Distance covered when moving with uniform

Then from;
Force $=$ mass \times acceleration
Average ret Fding furcolmaconretardation
$=2 \times 10$
$=20 \mathrm{~N}$
Qn2. The graph below shows motion of abody of mass 3 kg .Use it to answer the questions that follow.

a) Describe the motion of the body
b) Use the graph to calculate the:
(i) Distance covered during acceleration. (150 m)
(ii) Distance covered when moving at constant velocity. (320 m)
(iii) totaldistance covered. $(590 \mathrm{~m})$
(iv) acceleration. $\left.(\hat{\nu}=5 \hat{\rangle}\rangle^{-2}\right)$
(v) retardation. $\left.(\hat{\rho}=-6.67\rangle^{-2}\right)$
(vi) a verage accelerating force. $(\hat{\beta}=15$)

Qn3. The graphs below show motion of bodies. Use them to answer the following questions.
a) Describe the motion of the body
b) Use the graph to calculate the:
i) Total distance covered.
ii) Average velocity
iii) Acceleration.
iv) Retardation.
(A)

(B)

Qn4. A body accelerates uniformly from rest at $3 \mathrm{~ms}^{-2}$ for 4 seconds. Its velocity then remains constant at the maximum value reached for 7 seconds before retarding uniformly to rest in the last 5 seconds. Calculate the:
i) uniform velocity ($\rangle=12$
ii) totaldistance travelled $(=138 \geqslant)$
iii) retardation $\left.(\hat{\rho}=-2.4\rangle\rangle^{-2}\right)$
iv) average velocity for the journey. $\left.(\hat{\rho}=8.63\rangle\rangle^{-1}\right)$

Qn5. A body moves from rest at a uniform acceleration of $2 \mathrm{~ms}^{-2}$.
a) Sketch a velocity time graph for the motion of the body.
b) Find:
i) its velocity after 5 seconds. $\left.(\rangle=10\rangle\rangle^{-1}\right)$
ii) how farit has gone in this time. $(\rangle=25\rangle)$
iii) how long it will take the body to be 100 m from the starting point. $(\rangle=10\rangle)$

Non-uniform acceleration is when the rate of change of velocity with time is not constant.

ii) Displacement against time graph

Describing the motion on a displacement time graph

Along：

OA－accelerating
AB －moving with uniform velocity a way from the origin
BC－Decelerating
CD－Stationary
DE－Accelerating and moving toward the origin
EF－Moving with uniform velocity
FG－Moving with uniform velocity in opposite direction to the original direction．
GH－Decelerating
At＂H＂－Momentarily stationary
HI－Accelerating and moving back towards the origin．

Example 1：
The graph below shows the variation of distance with time for a body．

a）Describe the motion of the body
b）Calculate the：
i）acceleration of the body
ii）maximum velocity attained by the body

Solution
For A
$\mathrm{s}=300 \mathrm{~m}$
$\mathrm{t}=8 \mathrm{~s}$

食令 -2

Speed，ú

$u=\underline{300}$
$\underline{u}=37.5 \mathrm{~ms}^{-1}$
$\hat{\theta}=\hat{2}+{ }^{1}$
Then from；

2

－The body starts from A and moves 300 m with a
－It then a rests for the next 16 seconds．
－It finally returns to A with the uniform velocity of 37.5 Exerinislee last 8 seconds．

Qn：1；［UNEB 1997 Paper II Qn．2］

Two vehicles A and B accelerate uniformly from rest
 while B attains a maximum velocity of 40\rangle^{-1} in the same
（i）Sketch on the same axes，velocity time graphs they are decelerated to rest in 6 s and 4 s respectively．

$$
\text { the start. } \left.\left.\left.\left.(\hat{\rho}=20\rangle \hat{\theta}^{-1}\right\rangle\right\rangle\right\rangle\right\rangle
$$

（iii）
to sar ${ }^{1}$ will the two vehicles be from one
（

1993．Qn． 25 and Qn． 5 PII	1994．Qn． 10 and Qn． 26
1996．Qn．1 Paper II	
2000．Qn．1 Paper I	

MOTION UNDER GRAVITY（FALLING BODIES）

In a vacuum，all bodies fall at the same rate．However，in atmosphere different bodies fall at different rate because the air resistance is greater to light objects．

Acceleration due to gravity，g．
Acceleration due to gravity is the change in velocity with time for body falling freely under the force of gravity．
Note：Acceleration due to gravity varies from place to place because：

> The earth is not a perfect sphere
> \star The earth is always rotating

All bodies thrown upwards or falling freely in the earth＇s surface，have a constant acceleration called Acceleration

Since the gravitationalforce acts vertically down wards，ie accelerates all objects down wards towards the earth＇s surface．Thus for downward motion（falling objects），$\rangle=$ $+\geqslant=+仓\rangle\rangle-\stackrel{\rightharpoonup}{\phi}$ ．And for upward motion（objects
ECOU世思OOFS．COU

Projectile motion
A projectiledolebartikls. exbigh has both vertical and horizontal motions when thrown in air.
Consider a body thrown vertically upwards from A.

In projectiles, the horizontal and vertical motions are handled separately but simultaneously. The horizontal velocity of the body in motion remains the same throughout since there is no acceleration due to gravity in the horizontal.

First equation of motion
(\rangle

$+\geqslant\rangle$
Second equation of motion

Third equation of motion

2 -
Where $\boldsymbol{\geqslant}=+\geqslant \geqslant-$ for downward motion (freely falling (s)
used for a freely falling body.
objects or objects dropped from a height), If a body is dröpped from a height, then $\hat{\boldsymbol{\beta}} \boldsymbol{\rho}\rangle$
hence.

Time of Flight, T: Is the total time taken for a projectile to
$\rangle=-\geqslant\rangle\rangle\rangle$ for upward motion (objects thrown upwards),

Maximum Height,
At $\mathrm{H}_{\text {max }}$,

Distance or Displacement (m)

EGsilelibegk

Distance- Time or Displacement -Time Graph for a body falling freely from rest.

$$
\begin{gathered}
\text { Distance or } \\
\text { Displacement }(\mathrm{m})
\end{gathered}
$$

$\hat{\vartheta}$

thrown vertically upwards.

Coming
0
Time (s)

If \mathbf{t} is the time taken to reach the maximum height, then

- A tape is passed through a ticker-timer and attached to a 10 g - mass.
- The ticker-timer makes dots on the tape at an interval determined by the frequency of the mains supply. i.e Q $=-$. This is the time taken to make one space (2 dots)
 metre-rule.
- The timet, taken make ${ }^{n-\text { spaces in distance } S \text { is }}$
- The acceleration due to gravity, g is then calculated

Experiment to measure acceleration due to gravity

- A pendulum bob is suspended from a clamp using an inextensible string as shown in the diagram above.
- The length of the string of the pendulum bob ' l ' is adjusted such that $l=0.3 \mathrm{~m}$.
- The bob is the slightly displaced through a small angle and released.
- The stop clock is started and the time taken to make 20 oscillations (20T) is measured and recorded.
- The period time T for a single oscillation is calculated and recorded.
- The experiment is repeated for other increasing values of l, and the corresponding values of 20T, T and T^{2} calculated and tabulated.

$\rangle(\stackrel{\rightharpoonup}{*})$	$20 \mathrm{~T}(\mathrm{~s})$	$\mathrm{T}(\mathrm{s})$	$\mathrm{T}^{2}\left(\mathrm{~s}^{2}\right)$

A graph of T^{2} against l is pletted, It is a straight line graph through the origin and its slopeleBoiskealculated. A gragh of T^{2} Against

The acceleration due to gravity,g. is then calculated from;

NOTE: Experiments have shon that the periodic time T does not depend on the mass of the bob, but it depends on the length of pendulum l bob and acceleration due to gravity g at that point.i.e:

 Calculate the velocity after 2 s .

Example 2:

An object is dropped from a helicopter. If the object hits the ground after 2 s , calculate the height from which the object was dropped.

Solution

Example 3:

An object is dropped from a helicopter at a height of 45 m above the ground.
a) If the helicopter is at rest, how long does the object take to reach the ground and what is its velocity on arrival?

Solution

$\mathrm{u}=0 \mathrm{~ms}^{-1}$
$a=g=10 \mathrm{~ms}^{-2}$
$\mathrm{l}=$!
$\mathrm{s}=45 \mathrm{~m}$

$\mathrm{s}=\mathrm{ut}+\frac{1}{2} \mathrm{gt}^{2}$
$45=0(\mathrm{t})+\frac{1}{2}(10)\left(\mathrm{t}^{2}\right)$
Then from:
$45=5 t^{2}$

$$
t=3
$$

$$
\begin{aligned}
& \hat{\nu}=\hat{\nu}+\hat{\nu} \\
& \rangle=0+(10 \times 3) \\
& \rangle=30 \\
& \mathrm{v}=30 \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

b) If the helicopter had a velocity of $1 \mathrm{~ms}^{-1}$ when the object was released, what would be the final velocity of the object?

Solution

$\mathrm{u}=1 \mathrm{~ms}^{-1}$
$\mathrm{a}=\mathrm{g}=10 \mathrm{~ms}^{-2}$
$\mathrm{t}=$?
$\mathrm{s}=45 \mathrm{~m}$
$\mathrm{v}=$?

$$
\begin{aligned}
& \hat{\theta}^{2}=\hat{\theta}^{2}+2 \boldsymbol{2}=1^{2}+2(10) \\
& \hat{2}^{2}=1^{2}+2(10)(45) \\
& \psi^{2}=901 \\
& \hat{\beta}=\sqrt{901}
\end{aligned}
$$

Example 4:

An object is released from an aircraft tra veling horizontally with a constant velocity of $200 \mathrm{~ms}^{-1}$ at a height of 500 m .
a) Ignoring air resistance, how long it takes the object to reach the ground?
Solution

For vertical motion	Then from:
$\begin{aligned} & \mathrm{u}=0 \mathrm{~ms}^{-1} \\ & \mathrm{a}=\mathrm{g}=10 \mathrm{~ms}^{-2} \end{aligned}$	$s=u t+\frac{1}{2} g t 2$
$\begin{aligned} & \mathrm{t}=? \\ & \mathrm{~s}=\stackrel{5}{5} 00 \mathrm{~m} \end{aligned}$	$500=(0) \mathrm{t}+\frac{1}{2}(10)(\mathrm{t} 2)$
$\mathrm{v}=$?	$\begin{aligned} 500 & =5 t^{2} \\ 100 & =\mathrm{t}^{2} \\ \mathrm{t} & =10 \mathrm{~s} \end{aligned}$

b) Find the horizontal distance covered by the object between leaving the aircraft and reaching the ground.
Solution

ror verticaı motion $\begin{aligned} & \mathrm{u}=200 \mathrm{~ms}^{-1} \\ & \mathrm{a}=\mathrm{g}=0 \mathrm{~ms}^{-2} \\ & \mathrm{t}=10 \mathrm{~s} \\ & \mathrm{~s}=500 \mathrm{~m} \\ & \mathrm{v}=? \end{aligned}$	inen trom: $\begin{aligned} & \left.\hat{\nu}=2^{1}+2^{2}\right\rangle \\ & \hat{\nu}=200(10)+\frac{1}{2}(0)\left(10^{2}\right. \\ & \hat{y}=2000+0 \end{aligned}$

Note: For a body thrown vertically up ward, the time taken to reach the maximum vertical height is equal to the time taken for the body to fall from maximum height.

Note; If a body is not falling freely but there is air resistance R then the acceleration of the body can be calculated from:$\mathbf{m a}=\mathbf{m g}-\mathbf{R}$, where m is the mass of the body

force, F Then
from:
$\mathrm{F}=\mathrm{ma}$
From equations (i) and (ii)
$\mathbf{m a}=\mathbf{m g}-\mathbf{R}$

Exampirat 4: W=mg
An object of 2 kg is dropped from a helicopter at a height 45 m above the ground. If the air resistance is 0.8 N , calculate the:
i) acceleration of the body
ii) velocity with which the body hits the ground

Solution

For vertical motion

$$
\begin{aligned}
& \mathrm{m}=2 \mathrm{~kg}^{\mathrm{u}=0 \mathrm{~ms}^{-1}} \\
& \mathrm{~g}=10 \mathrm{~ms}^{-2} \\
& \mathrm{R}=0.8 \mathrm{~N} \\
& \mathrm{~s}=45 \mathrm{~m} \\
& \mathrm{a}=? \\
& \mathrm{v}=?
\end{aligned}
$$

(i) Then from:

$$
\mathbf{m a}=\mathbf{m g}-\mathbf{R}
$$

$2 \mathrm{a}=2(10)-0.8$
$2 \mathrm{a}=19.2$
$\mathrm{a}=9.6 \mathrm{~ms}^{-2}$
(ii) Then from:
$\left.\hat{\nu}^{2}=\hat{\nu}^{2}+2 \hat{\nu}\right\rangle$
$\hat{3}^{2}=0^{2}+$
$)^{2}=864$

Exercise

Qn: 1. The table below shows the variation of velocity with time for a body thrown vertically upwards from the surface of a planet.

Velocity $\left(\mathrm{ms}^{-1}\right)$	8	6	4	2	0	-2
Time(s)	0	1	2	3	4	5

(a) What does the negative velocity mean?
(b) Plot a graph of velocity against time.
(c) Use the graph in (b) above to find the
i) Acceleration due to gravity on the planet. $\left(=2 \mathrm{~ms}^{-2}\right)$
ii) Totaldistance travelled. . $=17 \mathrm{~m}$)
(d) If the body weighs $34 n$ on earth, what is its weight on the planet? $(=6.8 \mathrm{~N})$
2. An aeroplane travelling at $200 \mathrm{~ms}^{-1}$ at a height of 180 m is about to drop an aid package of medical supplies onto an IDP camp in northern Uganda.
(a) At what horizontal distance before the target should the

(b) Find the time taken by the package to hit the target.[$\mathrm{t}=6 \mathrm{~s}$]

Ecolebooks.com

See UNEB

2000 Qn. 20
1992 Qn. 23
1995 Qn. 10
1987 Qn. 12
1996 Qn. 24

1989 Qn. 1
1991 Qn. 2

THE TICKFR- TAPE TIMER

DETERMINING THE VELOCITY AND ACCELERATION OF A BODY USING A TICKER TAPE TIME R:

COMPENSATION FOR FRICTION

Before each experiment with a trolley, it is necessary to compensate for friction.
This can be done by tilting the runway with suitable packing pieces until it moves with uniform velocity after having been given a slight push.

- A paper tape is driven through a ticker timer connected to a mains supply of known frequency e.g 50 Hz by a trolley running freely on an inclined plane.
- After the trolley has reached the end of the run way, the tape is removed and marked every after 5dots.The first mark made is the zero tme.

- The speed or velocity at different times is the calculated by measuring the distances $\left.\left.\left.\left.\rangle_{1}\right\rangle\right\rangle\right\rangle\right\rangle 2$ covered in thos ϕ times. Thus: $\hat{\nu}_{1}=$ and $\hat{\theta}_{2}=$
- The acceleration of the trolle then calculated from:

The slope of the graph gives the acceleration of the determined and a graph of velocity against time plotted. Using the ticker tape timer to determine Acceleration After it hafrinte polkNoqup MORE RESOURCES LIKE THIS ON

Frequency: These are yibrations per second or number of dots per second. The S I unifis
Example: A frequency of 60 Hz mean 60 dots per second.
NB: Frequency is also number of dots printed per second.
Period: This is the time taken for a dot to be printed on a tape. The SI unit of period is seconds.
Period, $\mathrm{T}=\frac{1}{\text { frequency }, \mathrm{i}} \Leftrightarrow \mathbf{T}=-$
Ticker tapes showing dots for bodies in motion

\left.| State of motion | Sample tape | |
| :--- | :--- | :--- |
| Direction of | | |
| motion | | |$\right]$

Example:

Calculate the period for a frequency of 60 Hz
Frequency, $f=60 \mathrm{~Hz}$
$\begin{aligned} \text { Period time, } \mathrm{T} & =\frac{1}{\mathrm{f}} \\ \mathrm{T} & =\frac{1}{60} \\ \mathrm{~T} & =0.0167\end{aligned}$

Calculating time taken from a tape

\rangle ime taken, $t=$ number of spaces $(n) \times$ Periodic time (T)
Time taken, $\mathrm{t}=\mathrm{nT}$

Example: 1

Below is a tape printed by ticker- tape timer vibrating at 100 Hz . Find the time taken to print these dots.

Calculating the average speed

Average speed $=\frac{\text { Distance, }}{\text { Time taken, }(\mathbf{d})} \underset{(t)}{(t)} \quad \begin{gathered}\mathrm{d}\end{gathered}$

Example: 2

Below is a tape printed by a ticker -tape timer vibrating at 50 Hz . Calculate the average speed.

$1 \bigcirc \bigcirc$	$\bigcirc \bigcirc$
Solation	
Frequency, $\mathrm{f}=50 \mathrm{~Hz}$	Timpocm number of , Periódic,
Period time, $\mathrm{T}=\frac{1}{\mathrm{f}}$	Time taken, $\mathrm{t}=\mathrm{nT}$
	Time taken,t=10(0.02)
$\begin{gathered} \mathrm{I} \\ \mathrm{~T}=\begin{array}{c} 50 \\ \mathrm{~T}=0.02 \end{array} \end{gathered}$	Time taken, $\mathrm{t}=0.2 \mathrm{~s}$
	$\text { Distance }=200 \mathrm{~cm}=\frac{200}{100}=2 \mathrm{~m}$
	Distance, (d)
	$\text { Average speed }=\frac{\text { Time taken, }(\mathrm{t})}{\text { and }}$
	$\text { Average speed }=\frac{d}{f}$
	Average speed $=0.2$
	Average speed $=10 \mathrm{~m}$ 》-1

Calculating the initial velocity " u " and final velocity " v " from the tape.

Initial velocity, $u=$ Average speed for initial distance =initial distance "d d_{1} " divided by time taken " t_{1} " Initial speed, $u=\frac{d_{1}}{t_{1}} ;$ where, Time taken, $t=n T$

Final velocity (v) = Average speed for finaldistance $=$ finaldistance " d_{1} " divided by time taken " t_{2} " i.e.

Final speed, $v=\frac{\mathrm{d}_{2}}{\mathrm{t}_{2}}$; where, Time takent $=\mathrm{n} T$

Example:3

Below is a tape printed by a timer vibrating at 50 Hz

Calculate the;
i) Initial velocity
ii) Final velocity
iii) Acceleration

For the above, the following steps should be involved.
\checkmark identifying the frequency
\checkmark finding the periodic time from $\mathrm{T}=1 / \mathrm{f}$
\checkmark finding the time taken to cover given distances
\checkmark calculating the required velocities
\checkmark finding the time taken to cover distance between mid points of the distances
\checkmark calculating the required acceleration

Solution

Frequency，
f＝20HEcolebooks．com
Final speed，$v={ }_{t_{2}}=\frac{\mathrm{d}_{2}}{0.2}$
$=15 \mathrm{~ms}^{-1}$
Time taken， $\mathrm{t}_{3}=\mathrm{n}_{3} \mathrm{~T}$
Time taken， $\mathrm{t}_{3}=7.5(0.05)$
Time taken， $\mathrm{t}_{3}=0.375 \mathrm{~s}$
When， $\mathrm{d}_{1}=1 \mathrm{~m}$
Time taken， $\mathrm{t}_{1}=\mathrm{n}_{1} \mathrm{~T}$
Time taken， $\mathrm{t}_{1}=2(0.05)$
$\underline{\text { Time taken，} \mathrm{t}_{1}=0.1 \mathrm{~s}}$
Initial speed，$u=\frac{d_{1}}{t_{1}}=\frac{1}{0.05}$

$$
=10 \mathrm{~ms}^{-1}
$$

When， $\mathrm{d}_{2}=300 \mathrm{~cm}$ ，

$$
=\frac{300}{100}=3 \mathrm{~m}
$$

Time taken， $\mathrm{t}_{2}=\mathrm{n}_{2} \mathrm{~T}$
Time taken， $\mathrm{t}_{2}=4(0.05)$
Time taken， $\mathrm{t}_{2}=0.2 \mathrm{~s}$

Acceleration；

Acceleration calculated
Applying：$v=u+a t$
$\mathbf{a}=\underset{\text { Time for the change }}{\text { changeinvelocity }}$
Acceleration， $\mathrm{a}=\frac{\hat{\theta}}{}$
Acceleration， $\mathrm{a}=$
Acceleration，$a=13.330=-2$

Example III

The timer is vibrating at 20 Hz ．Calculate the acceleration

Solution

Frequency， $\mathrm{f}=20 \mathrm{~Hz}$	
$\begin{aligned} & \text { Period time, } \mathrm{T}=\mathrm{T} \\ & \mathrm{~T}=\begin{array}{l} \mathrm{f} \\ \underline{1} \end{array} \\ & \mathrm{~T}=0.05 \mathrm{~s} \end{aligned}$	
$\hat{\nu}_{1}=150 \hat{2}^{2}-$	9
$5 \hat{2} \rightarrow 100 \geqslant>$ trolley， $\left.\hat{\omega}_{1}=\frac{100}{100}=1\right\rangle$	$\begin{aligned} & \hat{\nu}=0.15 \\ & \hat{\theta}=60 仓\rangle-1 \\ & \hline \end{aligned}$
$\hat{\beta}_{1}=\hat{\beta}_{1} \hat{\nu}^{2}$	Time taken，$\hat{3}_{3}=0_{3} T(0.05)$
$\begin{aligned} & \hat{P}_{1}=2(0.05) \\ & \hat{R}_{1}=0.1 \end{aligned}$	Timetaken，$\underline{\nu}_{3}=1.575 \mathrm{~s}$
$\hat{\rho}=\frac{\hat{\theta}_{1}}{\hat{\theta}_{1}}$	Acceleration calculated applying Aecelderation；
$\rangle=1$	Time for the change
$\hat{\theta} \theta .110\rangle)^{-1}$	Acceleration， $\mathbf{a}=$ fangeinvelocity \square Acceleration $=\hat{\theta}$
$\left.\left.\rangle_{2}=9000\right\rangle\right\rangle$	

If there are n－dots，then there are（ $n-1$ ）spaces．
i．e：$\rangle=(\geqslant)$ ÉcoleBooks
Where $\mathbf{n}_{\mathbf{s}}$ is the number of spaces and $\mathbf{n}_{\boldsymbol{d}}$ is the number of dots．

Example：

A ticker timer is vibrating at 10 Hz ．Calculate the time taken if the timer prints 21 dots．

Solution

Number of dots， $\mathrm{n}_{\mathrm{d}}=21$ dots	$\begin{aligned} & \mathrm{t}=\mathrm{nT} \\ & \mathrm{t}=20(0.1) \\ & \underline{\underline{t}=2 \mathrm{~s}} \end{aligned}$
Number of spaces，$=$	
（ ）．Number of spaces，\rangle （ \rangle 人 $-\hat{\beta})$ ．Number of spaces， $\hat{\nu}\rangle$ spaces	
Frequency， $\mathrm{f}=10 \mathrm{~Hz}$	
Period time， $\mathrm{T}_{\text {¢ }}^{\text {¢ }}={ }_{\underline{1} 0}=0.1 \mathrm{~s}$	
$\binom{\text { Time }}{\text { taken }}=(\underset{\text { Number of }}{\text { spaces }}) \times\left(\begin{array}{c} \text { Period } \end{array}\right)$	

Example：

A ticker timer prints 11 dots at 20 Hz in a space of 2 m ． Calculate the a verage speed．

Solution

Number of dots， $\mathrm{n}_{\mathrm{d}}=11$ dots	$\mathrm{t}=\mathrm{n}_{\mathrm{s}} \mathrm{T}$
Number of spaces，	$\mathrm{t}=10(0.05)$
人）．Number of spaces，$\rangle^{2}=$	$\underline{t=0.5 s}$
（ \rangle 人 $-\hat{2}$ ）．Number of spaces， $\hat{\nu} \hat{\nu}\rangle$ spaces	Average speed， Dis ta nc e
Frequency， $\mathrm{f}=20 \mathrm{~Hz}$	$\mathrm{v}=$ Time taken
Period time， $\mathrm{T}=\underset{\mathrm{f}}{\overline{1}}=\frac{\overline{1}}{20}=0.05 \mathrm{~s}$	$\mathrm{v}=0.5$
$\binom{\text { Time }}{\text { taken }}=\binom{\text { Number of }}{\text { spaces }} \times\binom{\text { Period }}{\text { time }}$	$\mathrm{v}=4 \mathrm{~ms}$

Note：

In experiments with ticker timer being pushed by a the first dots are ignored because they are overcrowded for
accurate measurements．

$\frac{\text { Calculating Acceleration from given number of dots．}}{\text { th }}$

Number of spaces，$=(\hat{\nu}\rangle-$

（2）

Period time， $\mathbf{T}=$

$$
1
$$

Example：frequency，f
ticker timer is vibrating at 20 Hz ．Calculate the；
The distance between $15^{\text {th }}$ dot and $18^{\text {th }}$ dot is 10 cm ．

Number of spaces,
Frequency, 歫CQHWooks.com
Period time, $T=\frac{1}{f}$
$\mathrm{T}=\frac{1}{20}$
$\mathrm{T}=0.05 \mathrm{~s}$

Time taken, $\mathbf{t = N u m b e r}$ of spaces, \times Period time, \mathbf{T} Time taken, $\mathbf{t = 3 (0 . 0 5)}$
$\mathrm{t}=0.15 \mathrm{~s}$
ii) average speed

Distance covered $=10 \mathrm{~cm}=0.1 \mathrm{~m}$
Average speed, $\mathrm{v}=$ Dis ta nc

$$
\begin{aligned}
& \frac{\mathrm{e} 0.1}{\text { Time taken }} \\
& = \\
& ==0.67 \geqslant-1
\end{aligned}
$$

Example:
A trolley is pulled from rest with a constant force down an inclined plane. The trolley pulls a tape through a ticker timer
from the tap.
Bistatince between 50 The following measurements were made

Distance hetween $40^{\text {th }}$ dot and $50^{\text {th }} \mathrm{dot}=\boldsymbol{d}=62 \mathrm{~cm}$
Calculate the acceleration of the trolley.
Solution

Number of	$\left.\rangle_{2}=\right\rangle_{2}{ }^{2}$
$\hat{\beta}$	$\underline{2} \rightarrow 2$
$=\left(\mathrm{n}^{\text {th }} \operatorname{dot}-\mathrm{m}^{\text {th }} \operatorname{dot}\right)$	10(0.02)
$\begin{aligned} & =(20-16) \\ & =4 \text { spaces } \end{aligned}$	$\hat{\nu}=\underline{\hat{r}}_{2}$
N umber of s pa ces	- 0.62
$=4 \text { s_paces }$	
Frequency, $f=50 \mathrm{~Hz}$	For \mathbf{d}_{1} dast dot is $20^{\text {th }}$
Period time, $\mathrm{T}=$	Time taken for change;
$\mathrm{T}=$	For \mathbf{d}_{2} last dot is $5 \chi^{\text {t }} 0.02$
$\frac{\mathrm{T}=0.02 \mathrm{~s}}{\mathrm{~s}_{1}=20 \mathrm{~s} \mathrm{~s}}$	$(\text { for change; })_{3} \neq\left(50^{h}-20^{h}\right)$
$\hat{\beta}_{1}=20$	Time taken
$\begin{aligned} & \mathbf{P}_{1}=0.200 \end{aligned}$	Acceleration; Acceleration leuもacers a pplying
$\rangle_{1}=>_{1}{ }^{2}$	$\mathrm{v}=\mathrm{u}+\mathrm{at}$
$81=4(0.02)$	$\text { Acceleration, } \mathbf{a}=\frac{\text { changeinvelocity }}{}$
$\rangle_{1}=0.08$?	Acceleration, $\mathrm{a}=$ Time for the change

Exercise

1. A paper tape dragged through a ticker timer by a trolley has the first ten dots covering a distance of 4 cm and the next ten dots covering a distance of 7 cm . If the frequency of the ticker timer is 50 Hz , calculate the acceleration of the trolley. (Ans: $=\mathbf{7 5} \mathbf{c m s}^{-2}$ or $\mathbf{0 . 7 5} \mathbf{m s}^{-2}$)
2. The ticker timer below was pulled by a decelerating trolley. The tape consists of 3 five dot spaces and the frequency of the timer is 50 Hz .

Exercise: See UNEB

2003.Qn.26	2001.Qn. 25
1998.Qn.1(b)	2006.Qn. 9

Circular motion is motion in which a body moves in a circle about a fixed point.

For a body moving in a circle;
ECOItstibstio
thas and accelerationcatfed centripetal a cceleration.
$\checkmark \quad$ It has a force called Centripetal force acting towards the centre of the circular path.

Ecolebooks.com
Direction of

$\mathrm{T}=\mathrm{Tension}$ in the string which produces the centripetal force
Note: When the object is released, it moves such that the direction of motion at any point is along a tangent to the circular path.

Forces acting on the body describing circular motion.
(i) Tension: Force acting towards the centre of the circular path. It provides the centripetal force.
(ii) Centripetal force: Force acting towards the centre of the circular path.
(iii) Centrifugal force: Force acting a way from the centre of the circular path.
(iv) Weight: Force acting vertically down wards towards the centre of the earth.

Examples of circular motion

-Pendulum bob tied to a string whirled in a vertical or horizontal plane
-Planetary motion etc
Exercise: See UNEB
1999 PaperII Qn. 1

These are three laws that summarize the behavior of particles in motion.

1:12:1. Newton's First Law of motion

Newton'sfirstla wofmotionstatesthatabody continues in its state of rest or uniform notionomolestraghke unless acted upon by an externalforc

Inertia

Inertia is the reluctance of a body to move, when at rest or to stop when moving.

Thus, when a force acts on a body, the body;
\checkmark Starts or stops moving.
\checkmark Increases or reduces speed depending on the direction of the force.
$\checkmark \quad$ Changes direction of motion.

1:12:2. Newton's second law of motion

Newton's second law states that the rate of change in momentum is directly proportional to the force acting on the body and takes place in the direction of the force.
$\mathrm{F} \alpha \frac{\mathrm{mv}-\mathrm{mu}}{\mathrm{t}} \Leftrightarrow \mathrm{F} \alpha \mathrm{m}\left(\frac{\mathrm{v}-\mathrm{u}}{\mathrm{t}}\right) \Leftrightarrow \mathrm{F} \alpha \mathrm{ma} \Leftrightarrow \mathrm{F}=\mathrm{kma}$
When we consider a force of 1 N , mass of 1 kg and acceleration of $1 \mathrm{~ms}^{-2}$, then, $\mathbf{k}=\mathbf{1}$.Therefore;

A newton; Is the force which acts on a mass of 1 kg to produce an acceleration of $1 \mathrm{~ms}^{-2}$.

1:12:3. Newton's third law of motion
It states that action and reaction are equal but opposite.
When a body, A exerts a force on body B, body B also exerts an equal force in the opposite direction.

The block exerts a weight, $\mathrm{W}=\mathrm{mg}$ on the table and the table also exerts an equal reaction R on the block. $R=m g$, so that the net force on the block is zero and therefore there is no vertical motion.

Applications of Newton'sthirdlawofmotion

(a) Rockets and jets

Rockets and jet engines are designed to burn fuel in oxygen to produce large a mounts of exhaust gases.
These gases are passed backwards through the exhaust pipes at high velocity (large momentum).

This in turn gives the Rocket or jet a high forward momentum which is equal but opposite to that of the exhaust gases.

Where is the momentum of the exhaust gases, and) is momentum of the Rocket.
i) Lift is stationary or moving with uniform velocity

ii) Lift is moving upwards with acceleration, a.

个R		In this case, three forces act on the lift. i.e, the resultant accelerating force (ma), the
	产	weight, (mg) and the normal reaction or Apparent weight (R).
		Accelerating force $=$ Net force $\mathrm{ma}=\mathrm{R}-\mathrm{mg}$
		$\begin{aligned} & \mathrm{R}=\mathrm{mg}+\mathrm{ma} \\ & \mathbf{R}=\mathbf{m}(\mathbf{g}+\mathbf{a}) \end{aligned}$
mg		

Thus, the reaction on the person (apparent weight, R) is greater than the actual weight of the person, mg .
This is why one feels heavier when the lift is just beginning its upward journey.
iii) Lift is moving down wards with acceleration, a.

Thus, the reaction on the person (apparent weight, R) is less than the actual weight of the person, mg.
This is why one feels lighter when the lift is just beginning its downward journey.

Example:1

A person of mass 78 kg is standing inside an electric lift.
What is the apparent weight of the person if the;
d) Lift is moving upwards with an acceleration of $2 \mathrm{~ms}^{-2}$?
e) Lift is descending with an acceleration of $2 \mathrm{~ms}^{-2}$?

Solution

(a)

Linear Momentum:

Impulse:

Impulse is the change in the momentum of a body.

Impulse can also be defined as the product of force and time Efömp Newton's second law of motion,

$$
\mathrm{F}=\frac{}{\mathrm{mvt} \mathrm{mu}} \Leftrightarrow \mathrm{Ft}=\mathrm{mv}-\mathrm{mu}
$$

The S.I unit of momentum and impulse is $\mathbf{K g m s}^{\mathbf{- 1}}$
Note: Momentum and impulse are vector quantities.

principie or conservation or momentum

It states that when two or more bodies collide, the total momentum remains constant provided no external force is acting.

It states that when two or more bodies collide, the total momentum before collision is equal to the total momentum after collision.

Suppose a body of mass m_{1} moving with velocity u_{1} collides with a nother body of mass m_{2} moving with velocity u_{2}. After collision, the bodies move with velocities v_{1} and v_{2} respectively, then;
ECOLEBOÔRS COON

Types of collisions

\checkmark Elastic collifimlebooks.com

Elastic collision is the type of collision whereby the colliding bodies separate immediately after the impact with each other and move with different velocities.

In short, for elastic collision,

 Inelastic collisionInelastic collision is when the colliding bodies stay together and move with the same velocity after collision.

$6.2=V$
Écvele2Bnsoks

Example: 2
A body of mass 8 kg traveling at $20 \mathrm{~ms}^{-1}$ collides with a

Comparisons between Elastic collision and Inelastic collision

Elastic collision	Inelastic collision
(i) Bodies separate after collision	Bodies stick together after collision.
(ii) Bodies move with different velocities after collision	Bodies move with same velocity after collision
(iii) Kinetic energy of the bodies is conserved	Kinetic energy of the bodies is not conserved
Momentum is conserved Total momentum before collision= Total momentum after collision $\mathbf{m}_{\mathbf{1}} \mathbf{u}_{\mathbf{1}}+\mathbf{m}_{\mathbf{2}} \mathbf{u}_{\mathbf{2}}=\mathbf{m}_{\mathbf{1}} \mathbf{v}_{\mathbf{1}}+\mathbf{m}_{\mathbf{2}} \mathbf{v}_{\mathbf{2}}$	Momentum is conserved Total momentum before
mpmentum after collisign	

$m_{1} u_{1}+m_{2} u_{2}=\left(m_{1}+m_{2}\right) ?$
NOTE; For any stationary body or body at rest, the initial velocity is zero so the initial momentum of such a body
before collision is zero.
Example $:$: 1 mass 3 kg traveling at $5 \mathrm{~ms}^{-1}$ collides with a 2 kg
the two bodies moved together, Calculate the velocity with body moving at $8 \mathrm{~ms}^{-1}$ in the same direction. If aftercollision
which the two bodies move after collision.
Solution

$\mathrm{m}_{1}=3 \mathrm{~kg}, \quad \mathrm{~m}_{2}=2 \mathrm{~kg}$
$\mathrm{u}_{1}=5 \mathrm{~ms}^{-1}, \mathrm{u}_{2}=8 \mathrm{~m} \mathrm{~s}^{-1}$
$\mathrm{v}_{1}=\mathrm{V}=?, \quad \mathrm{v}_{2}=\mathrm{V}=$?
$m_{1} u_{1}+m_{2} u_{2}=\left(m_{1}+m_{2}\right) V$

315 V
(Ans: $\mathbf{V}=\mathbf{1 . 7} \mathbf{m s}^{-\mathbf{1}}$ in the direction of the $2^{\text {nd }}$ tank)
3. A bodyEocgebso Oks moring at $20 \mathrm{~ms}^{-1}$ hits a nother body of mass 5 kg moving in the same direction at $10 \mathrm{~ms}^{-1}$. After collision, the second body moves separately forward with a velocity of $30 \mathrm{~ms}^{-1}$. Calculate the velocity of the first body after collision. .(Ans: $\mathrm{v}_{1}=10 \mathrm{~m} \mathrm{~s}^{-1}$)
4. A car X of mass 1000 kg travelling at a speed of $20 \mathrm{~ms}-\mathrm{I}$ in the direction due east collides head-on with a nother car Y of mass 1500 kg , travelling at $15 \mathrm{~ms}-1$ in the direction due west. If the two cars stick together, find their common velocity after collision.

EXPLOSIONS

Momentum is conserved in explosions such as when a riffle is fired. During the firing, the bullet receives an equal but opposite a mount of momentum to that of the rifle.

Total momentum before collision $=$ Total momentum after collision

$$
\begin{gathered}
\mathrm{m}_{\mathrm{g}} \mathrm{u}_{\mathrm{g}}+\mathrm{m}_{\mathrm{b}} \mathrm{u}_{\mathrm{b}}=\mathrm{m}_{\mathrm{g}} \mathrm{v}_{\mathrm{g}}+\mathrm{m}_{\mathrm{b}} \mathrm{v}_{\mathrm{b}} \\
\mathrm{~m}_{\mathrm{g}}(0)+\mathrm{m}_{\mathrm{b}}(0)=\mathrm{m}_{\mathrm{g}} \mathrm{v}_{\mathrm{g}}+\mathrm{m}_{\mathrm{b}} \mathrm{v}_{\mathrm{b}} \\
0=\mathrm{m}_{\mathrm{g}} \mathrm{v}_{\mathrm{g}}+\mathrm{m}_{\mathrm{b}} \mathrm{v}_{\mathrm{b}} \\
\mathbf{m}_{\mathbf{g}} \mathbf{v}_{\mathbf{g}}=-\mathbf{m}_{\mathbf{b}} \mathbf{v}_{\mathbf{b}}
\end{gathered}
$$

Where; m_{g} is mass of the rifle (or gun), V_{g} is velocity of the rifle which is also called recoil velocity. m_{b} is mass of the
buflet, V_{b} is velocity of the bullet. bullet, \sqrt{b} is velocity of the bullet.

For any explosion of bodies, the amount of momentum for one body is equalbut opposite to that of a nother body.

The negative sign indicates that the momenta are in opposite directions.

Example:1

A bullet of mass 8 g is fired from a gun of mass 500 g . If the missile velocity of the bullet is $500 \mathrm{~ms}^{-1}$. Calculate the recoil velocity of the gun.

Solution
$\left.\mathrm{m}_{\mathrm{b}}=8 \mathrm{~g}=\frac{100 \mathrm{n}}{2}=0.008 仓\right\rangle, \quad \mathrm{m}_{\mathrm{g}}=500 \mathrm{~g} \xlongequal{1000}=0.5 \mathrm{~kg}$ $\mathrm{v}_{\mathrm{b}}=500 \mathrm{~ms}^{-1}, \quad \mathrm{v}_{\mathrm{g}}=$?
From, $\quad m_{g} \mathrm{v}_{\mathrm{g}}=-\mathrm{m}_{\mathrm{b}} \mathrm{v}_{\mathrm{b}}$
$0.5 \mathrm{~V}_{\mathrm{g}}=-0.008(500)$

$$
0.5 \mathrm{~V}_{\mathrm{g}}=-4
$$

$0.5 \mathrm{~V}_{\mathrm{g}} \quad-4$
$-0.5=0.5$

$$
\hat{\rho}=-8\rangle\rangle
$$

The negative sign indicates that the recoil velocity, V_{g} is in opposite direction to that of the bullet.

Example:2

 velocity.
$\mathrm{m}_{\mathrm{b}}=200 \mathrm{~g}=\frac{200}{1000}=0.2$
$\mathrm{v}_{\mathrm{b}}=400 \mathrm{~ms}^{-1}$,
From, $\quad m_{g} v_{g}=-m_{b} v_{b}$

$$
\begin{gathered}
4 \mathrm{~V}_{\mathrm{g}}=-0.2(400) \\
4 \mathrm{~V}_{\mathrm{g}}=-80 \\
\frac{4 \mathrm{~V}_{\mathrm{g}}}{4}=\frac{-80}{4} \\
\text { 人 }
\end{gathered}
$$

Example: 3

A bullet of mass 12.0 g travelling at $150 \mathrm{~ms}^{-1}$ penetrates deeply into a fixed soft wood and is brought to rest in 0.015 s . Calcu la te
(i) How deep the bullet penetrates the wood [1.125m]
(ii) the average retarding force exerted by the wood on the bullet. [120N]

ROCKET AND JET ENGINES

These work on the principle that in any explosion one body moves with a momentum which is equal and opposite to that of a nother body in the explosion. For the rocket and the jet engine, the high velocity hot gas is produced by the burning of fuel in the engine.
Note: Rockets use liquid oxygen while jets use oxygen from air.

How a rocket engine work:

Principle: the jet and rocket engines work on the principle that momentum is conserved in explosion.
High velocity: the high velocity of the hot gas results in the burning of the fuel in the engine.
Large momentum: the large velocity of the hot gas results in the gas to leave the exhaust pipe with a large momentum.
ECOLEBOOKS.COM

Engine: the engine itself acquires an equal but opposite momentum to that of the hot gas.

Ecolebooks.com

Note: when the two bodies collide and they move separately after collision but in opposite directions then. $\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}+\mathrm{m}_{2}\left(-\mathrm{v}_{2}\right)$
$\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}=\mathrm{m}_{1} \mathrm{v}_{1}-\mathrm{m}_{2} \mathrm{v}_{2}$

Example:

A body Q of mass 50 g collides with a stationary body "P" of mass 4 g . If a body " Q " moves backward with a velocity of $10 \mathrm{~ms}^{-1}$ and a body " P ", moves forward with a velocity of $6 \mathrm{~ms}^{-1}$. Calculate the initial velocity of a body Q .

Solution

Total momentum before collision $=$ Total momentum after collision

$$
\mathrm{m}_{\mathrm{Q}} \mathrm{u}_{\mathrm{Q}}+\mathrm{m}_{\mathrm{P}} \mathrm{u}_{\mathrm{P}}=\mathrm{m}_{\mathrm{Q}} \mathrm{v}_{\mathrm{Q}}+\mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{P}}
$$

$$
\begin{aligned}
0.05 \mathrm{u}_{\mathrm{Q}}+0.004(0) & =0.05(-10)+0.004(6) \\
0.05 \mathrm{u}_{\mathrm{Q}} & =-0.5+0.024 \\
0.05 \mathrm{u}_{\mathrm{Q}} & =-0.476 \\
0.05 \mathrm{u}_{\mathrm{Q}} & -0.476 \\
0.05 & =\frac{0.05}{0 .} \\
9.52 & =-
\end{aligned}
$$

Thus, the initial velocity of Q is $9.52 \mathrm{~ms}^{-1}$ to the left

Example: 2

A moving ball " P " of mass 100 g collides with a stationary ball Q of mass 200 g . After collision, P moves backward with a velocity of $2 \mathrm{~ms}^{-1}$ while Q moves forward with a velocity of $5 \mathrm{~ms}^{-1}$. Calculate the initial velocity of P .

Solution

$$
\mathrm{u}_{\mathrm{Q}}=0, \quad \mathrm{u}_{\mathrm{P}}=?
$$

$\mathrm{vQ}=5 \mathrm{~ms}^{-1}, \quad \mathrm{VP}=2 \mathrm{~m}{ }^{-1}$

Before colision

Total momentum before collision $=$ Total momentum after collision

$$
\mathrm{m}_{\mathrm{Q}} \mathrm{u}_{\mathrm{Q}}+\mathrm{m}_{\mathrm{P}} \mathrm{u}_{\mathrm{P}}=\mathrm{m}_{\mathrm{Q}} \mathrm{v}_{\mathrm{Q}}+\mathrm{m}_{\mathrm{p}} \mathrm{v}_{\mathrm{P}}
$$

WWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.C̄130

Note. The change in momentum is called Impulse.
A one tonne car traveling at $20 \mathrm{~ms}^{-1}$ is accelerated at $2 \mathrm{~ms}^{-2}$ Example:3
for five second. Calculate the;
(i) change in momentum
(ii) rate of change in momentum
(iii) Accelerating force acting on the body.

$=\mathrm{mv}-\mathrm{mu}$	$\equiv 2000 \mathrm{~N}$
$\begin{aligned} &=\rangle(\rangle-\rangle) \\ & \text { Ecolebooks.co } \end{aligned}$	m
$=1000(30-20)$	
$\begin{aligned} & =1000(10) \\ & =10,000 \mathrm{kgms}^{-1} \end{aligned}$	

NOTE: The S.I unit for the rate of change in momentum is a newton.
(iv) Accelerating force acting on the body.

Accelerating force, $F=$ Rate of change in momentum

$$
\begin{aligned}
& =\frac{m(v-u)}{t} \\
& =\frac{1000(30-20)}{5} \\
\mathrm{~F} & =2000 \mathrm{~N}
\end{aligned}
$$

From above, the force applied is equal to the rate of change in momentum. This leads to Newton's second law of motion.

Exercise

1. A body of mass 600 g traveling at 10 mls is accelerated uniformly at $2 \mathrm{~ms}^{-2}$ for four seconds. Calculate the;
(i) change in momentum
(ii) force acing on a body

Solution

(i)	(ii)
$\text { mass, } \begin{aligned} \mathrm{m} & =600 \mathrm{~g} \\ & =\underline{600} \end{aligned}$	Rate of change in momentum $=\underline{\mathrm{m}(\mathrm{v}-\mathrm{u})}$
$=0.6 \mathrm{~kg} \quad 1000$	$\underline{0.6(18-10)}$
$\begin{aligned} & \mathrm{u}=10 \mathrm{~ms}^{-1} \\ & \mathrm{v}=? \end{aligned}$	$4^{4} .8$
$\begin{aligned} & a=2 \mathrm{~ms}^{-2} \\ & \mathrm{t}=4 \mathrm{~s} \end{aligned}$	$=1.2 \mathrm{~N}$
From; $\hat{2}=2+2 ?$	(iii) Force acting on the body
$\begin{aligned} & ?=10+2(4) \\ & ?=18 ? \end{aligned}$	But $; \hat{p}=\hat{p}\rangle$ But; $18=10+4$
Change in Momentum $=m v-m u$	But ; ?
$=\rangle(2-\rangle)$	$\begin{aligned} & \mathbf{F}=\mathbf{m a} \\ &=0.6(2 \end{aligned}$
$=0.6(18-10)$	$\mathrm{F}=1.2 \mathrm{~N}$
$\begin{aligned} & =0.6(8) \\ & =4.8 \geqslant \geqslant \geqslant-1 \end{aligned}$	Thus, Force acting on the body is equal to the rate of change in momentum.

Example:4

A van of mass 1.5 tonnes travelling at $20 \mathrm{~ms}^{-1}$, hits a wall and is brought to rest as a result in 0.5 seconds. Calculate the;
(i) Impulse

Solution	
$\begin{aligned} \mathrm{m} & =1.5 \text { tonnes } \\ & =1.5 \times 1000 \\ & =1500 \\ \mathrm{u} & =20 \mathrm{~ms}^{-1} \\ \mathrm{v} & =0 \mathrm{~ms}^{-1} \\ \mathrm{t} & =0.5 \mathrm{~s} \end{aligned}$	(i) Impulseolebooks
	Impuse $=$ Change in Momentum
	$=\mathrm{mv}-\mathrm{mu}$
	$=\rangle(2-\rangle)$
	$=1500(0-20)$
	$=1500(-20)$
	$=-30,000 \geqslant$?

The Negative sign means that the direction of the impulse is opposite to that in which the van was moving.
(ii)Average force exerted on the wall:

From; Impuse $=$ Force \times Time $=$ Ft

$$
-30000=F \times 0.5
$$

$$
F=-60,000 \mathrm{~N}
$$

Example:5

A man of mass 60 kg jumps from a high wall and lands on a hard floor at a velocity of 6 ms . Calculate the force exerted on the man's legs if;
(i) He bends his knees on landing so that it takes 1.2 s for his motion to be stopped.
(ii) He does not bend his knees and it takes 0.06 s to stop his motion.

Solution

(1) $\mathrm{m}=60 \mathrm{~kg}$	(ii)
$\begin{aligned} & \mathrm{u}=6 \mathrm{~ms}^{-1} \\ & \mathrm{v}=0 \mathrm{~ms}^{-1} \end{aligned}$	$\underset{\substack{\mathrm{m}=6 \\=6 \mathrm{~ms}^{-1}}}{ }$
$\mathrm{t}=1.2 \mathrm{~s}$	$\begin{aligned} & \mathrm{v}=0 \mathrm{~ms}^{-1} \\ & \mathrm{t}=0.06 \mathrm{~s} \end{aligned}$
Force acting on the body But; $\rangle=\hat{\nu}+\boldsymbol{\rho}$	Force acting on the body
$\begin{aligned} & \text { But } ; 0=6+1.2 \\ & \text { But } ; \end{aligned}$	$\begin{aligned} & \text { But; } 0=6+0.06{ }^{\text {But }} ;=-100 \mathrm{~ms}^{-1} \end{aligned}$
$\mathbf{F}=\mathbf{m a}$	$\mathbf{F}=\mathbf{m a}$
$=60(-5)$	$\begin{aligned} &= 60(-100) \\ & \underline{E--6000 \mathrm{~N}} \end{aligned}$
Note: ${ }^{\text {The }}$ negative signs means the force acts to oppose that exerted by the man. * Landing in (ii) exerts a larger force on the knee which can cause injury compared to that in (ii).	

Exercise:

1. An athlete of 80 kg moving at $5 \mathrm{~ms}^{-1}$, slides trough a distance of 10 m before stopping in 4 seconđs. Find the work done by friction on the athlete.
2. A car of mass 1500 kg starts from rest and attains a velocity of $100 \mathrm{~ms}^{-1}$ in 20 seconds. Find the power developed by the engine.
A. 750 kW
B. $3,000 \mathrm{~kW}$
C. $30,000 \mathrm{~kW}$
D. $750,000 \mathrm{~kW}$
3. A ball of 3 kg moves at $10 \mathrm{~ms}^{-1}$ towards a volley ball player. If the player hits the ball and the ball moves
back with a velocity of $5 \mathrm{~ms}^{-1}$. Find the change in momentum.
A. $\frac{5 \times 3}{10}$ eolebooks.conB. $\frac{10 \times 3}{5}$
C. $3(10-5)$
D. $3(10+5)$
4. A rubber bullet of mass 100 g is fired from a gun of mass 5 kg at a speed of $200 \mathrm{~ms}^{-1}$. Find the recoil velocity of the rifle.
A. $\frac{5 \times 200}{100 \times 100}$
B $\frac{5 \times 1000}{100 \times 200}$
C.
D. $\frac{200 \times 1000}{}$
5×1000
5×100
much kinetic and potentialenergy the molecules of a body have.

Once heat has been transterred to a body, it become internal molecular energy.

Temperature is the degree of hotness or coldness of a body.
The S.I unit of temperature is a kelvin (K).

(a) THERMOMETERY

A thermometer is an instrument which is used for
temperature on the basis of certain physical properties whic h
change with changes in temperature.
These properties are called thermometric properties

Thermometric properties

A thermometric property is a property of a substance which continuously change with temperature and may be used for temperature measurements, these include:
-Increase in length.
-Change in potentialdifference
-Change in volume
-Change in pressure.

Thermometer scales.

There are 3 thermometer scales commonly used
(i) Celsius / centigrade scale $\left({ }^{\circ} \mathrm{C}\right)$
(ii) Fahrenheit scale $\left({ }^{0} \mathrm{~F}\right)$
(iii) Kelvin scale/absolute (k)

Relation between Celsius and Fahrenheit

$$
\mathrm{F}=\frac{9}{5}(\mathrm{C}+32)
$$

And if Celsius scale reads 1000c then

$$
\mathrm{F}=\frac{9}{5}(100+32)=212^{0} \mathrm{~F}
$$

Converting from Fahrenheit to Celsius.

$$
\mathrm{C}={ }_{9}^{5}(\mathrm{~F}-32)
$$

Relationship between Celsius scale and Kelvin scale.

Where C is temperature in Celsius scale and K is temperature in Kelvin scale.

Convert $0^{0} \mathrm{C}$ to Kelvin scale	Convert $100^{\circ} \mathrm{C}$ to Kelvin scale (Absolute scale)
$\mathrm{K}=273+{ }^{0} \mathrm{C}$	$\mathrm{K}=273+{ }^{0} \mathrm{C}$
$\mathrm{K}=273+0$	$\mathrm{K}=273+100$
$\mathrm{K}=273 \mathrm{~K}$	$\mathrm{K}=373 \mathrm{~K}$

To obtain a standard scale on a thermometer. Two fixed points must be marked out on it. The upper and lower fixed points.

2. HEAT

Heat is a form of energy, which results from the random

This is the temperature of pure melting ice at standard scale $=32^{\circ} \mathrm{F}$
-On Celsius scale $=0^{\circ} \mathrm{C}$
-On Kelvin scale $=237 \mathrm{~K}$

Ecolebooks.com

The expansion of liquids when the temperature rises is applied in thermometers.
A thermometer has two reference temperatures called fixed point. These are lower fixed point and upperfixed point.
The upper fixed point is the temperature at which pure water boils under normalatmospheric pressure.
The lower fixed point is the temperature at which pure water freezes under normalatmospheric pressure.

Marking upper and lower fixed points
a) lower fixed point

i) Placing thermometer in ice
-A thermometer to be marked is placed in pure ice melting
such that the bulb is packed round with ice.
-Adjust the thermometer so that the mercury thread is
clieallyrkeng lower fixed point

fixed point.

b) Upper fixed point

bottopsflandter is a two walled vessel made out of a round

(i). Placing thermometdinatreance

hypsometer.

un
because boiling water temperature is affected by dissolved The thermometer should be in steam not boiling water (ii). Double walls
impurities.

The double walls help to keepthe steam at exactly $100^{\circ} \mathrm{c}$ so that steam does cool and condensé ÉcoleBooks (iii). A manometer

The manometer is attached to the hypsometer to ensure that the pressure with in it is 76 cm Hg .
(iv). Marking upperfixed point

The thermometer is left in steam until the level of mercury remains stationery. This marked and it's the upper fixed point.

Properties of a liquid that make it suitable for thermometer (Qualities of a good thermometric liquid).

* It should be opaque so as to be readily seen.
* It's expansion should be regular, i.e. expansion per degree should be the same at different point on the temperature scale.
* It should have high boiling point and low melting point so that both high and low temperature can be measured.
* It should be able to expand so much for a small temperature change.
* It should be a good conductor so that it responds rapidly to the temperature change.
* It must not stick to the inside of the tube.
* Must not be very expensive.
* Must not be poisonous.
* It should be a vailable.

Reasons why water is never used in thermometer
It has a small range of expansion because its freezing

* perne finenis and boiling geint is $100^{\circ}{ }^{\circ}$ grent to read since
* iwatersis 8 elexplersa anfldytathe glass.
* It is notopaque.

Advantages of mercury over alcohol when used as

If melting ice, is the length of the mercury thread of steam at 760 mmHg and is length of mercuy
thread for the object being measured.
Then the required temperature $\theta^{\circ} \mathrm{c}$ is given by

In other words is also the length of mercury
$100^{\circ} \mathrm{c}$, is the length of mercury thread at $0^{\circ} \mathrm{c}$ and
號 the length of mercury thread at the un known
$\theta=(2)_{0} \times 100^{\circ} \mathrm{C}$
Note:

is the temperature range of the
thermometer. In short the difference between the upper fixed
bixtere preircturis threalld the fundamental interval. This is The interval between the upper fixed point and the lower
divided into a hundred equal parts and each is called a tixgraple 1:
mercury thread above the bulb is 18 mm at a temperature of In an un calibrated mercury thermometer, the length of the Hg . When placed in a hot liquid the length of the mercury melting ice and 138 mm at a temperature of steam at 760 mm Solution
thread is 118 mm .calculate the temperature of the liquid.

$\theta=\left(\frac{\hat{\nu}_{\theta}-\hat{\nu}_{00}-\hat{\vartheta}_{0}}{118-18}\right)^{0} \times 100^{\circ} \mathrm{C}$
$\theta=\left(\frac{138}{}\right)-1800^{\circ} \mathrm{C}$
100
120

Exaratile: 2

from the ice point, if the fundamental interval is 5 cm , The top of a mercury thread of a given thermometer is 3 cm

Solution

determine the unknown temperature θ.

Boay $(-) \times 100^{\circ} \mathrm{C}$

[^1]$\theta=60^{\circ} \mathrm{C}$

Example: 3

The length of a mercury thread at a low fixed point and upper fixed point are 2 cm and 8 cm respectively for a certain liquid X. Given that the length of mercury thread at un known temperature θ is 6 cm determine the value of θ.
$\hat{\nu}_{0}=2 \mathrm{~cm} ; \boldsymbol{\rho}_{\theta}=6 \mathrm{~cm} ; \boldsymbol{\rho}_{100}=8 \mathrm{~cm} ;$

$\theta=(\overline{4}) \times 100^{0} \mathrm{C}$
$\theta=66.7^{\circ} \mathrm{C}$

Example: 4

Find the temperature in ${ }^{\circ} \mathrm{C}$ if the length of mercury thread
Sohufirom the point and fundamental interval is 20 cm .

$8 \equiv 65^{\circ} \mathrm{C} \times 100^{\circ} \mathrm{C}$

Example: 4

of mercury.
Find the unknown temperature θ given the following lengths
-Length of ice point $=1 \mathrm{~cm}$
-Length of steam $=25 \mathrm{~cm}$
Solution
-Length of known temperature $\theta=19 \mathrm{~cm}$

$$
\begin{aligned}
& \hat{\beta}_{100}- \\
& \theta=(\quad) \times 100^{\circ} \mathrm{C} \\
& \overline{25-1} \\
& \theta=\left(\frac{18}{24} \quad\right) \times 100^{\circ} \mathrm{C} \\
& \theta=\mathcal{F 5}^{\circ} \mathrm{C} \times 100^{\circ} \mathrm{C}
\end{aligned}
$$

THE CLINICAL THERMOMETER:

temperature.

-The thermometer has a very fine bore (narrow capillary tube) which makes it sensitive.

-The glass from which the tube is made is very thin which enables heat to reach the mercury quickly to read body's temperature.
-The bulb is the fluid reservoir. Thus it should be large enough to hold all the fluid. It is thin walled for quick response to heat.
-The glass stem is thick to act as a magnifying glass for the temperature readings.
-When thermometerbulb is placed into the mouth or armpit, the mercury expands and it is forced past the constriction along the tube.
-When removed, the bulb cools and the mercury in it contracts quickly
-The mercury column breaks at the constriction leaving
mercury in the tube. The constriction prevents flow back of mercury to the bulb when the thermometer is temporary
removed from the patients mouth or armpits.
The thermometer is reset by shaking the mercury back in the bulb.

Properties/qualities of a thermometer.

Quick action
This refers to the ability of a thermometer to measure temperature in the shortest time possible. This is attained by
usinferin walled bulb and using a liquid which is a good conductor of heat e.g. mercury.

Sensitivity

This is the ability of a thermometer to detect very small changes in temperature. It is attained by:
-Using a thermometer with a big bulb
-Using a liquid which has a high linear expansivity.
-Using a narrow bore or reducing the diameter of the bore hole.

Effect of heat on matter:

-When a solid is heated, the cohesive forces between its molecules are weakened and the molecules begin to vibrate vigorously causing the solid to (expand or) change into a
liquid state terature at which a solid changes into liquid is

gheotismerateature at which a liquid changes into gaseous
state is called the boiling point. At boiling point temperature
the theheriquiri fretmedinf attraction in liguida moleshleer weakens
time as shown below.
-ff the heated substance is water its temperature rises with

INTERNAL COMBUSTION ENGINE

A Heat engine is a machine which changes heat energy obtained by burning fuel to kinetic energy (Mechanical energy).

Engines are always less than 100% efficient because
(i) Some of the energy is lost in overcoming friction
between walls of the cylinder and pistons.
(ii) Some heat energy is lost to the surrounding due to conduction.
(iii) Some of the energy is also wasted in lifting useless loads like pistons.

Petrol gingine

 Bir and petrol vapour order intake, compression, power and exhaust.

-As the pintake moves down the cylinder due to the starter pretariniasfar the kiglingtart in a motor cycle) it reduces the
 Hresshret intake involves the piston moving down the mixifureer, intigthe cylinder
-Both $)^{\text {valusclose }}$ and the piston moves up compressing the
-Near the end of the stroke, the fuel is ignited by a spark mixture to about a sixth of its original volume.

from cthe sparkeplyq

A spark jumps across the points of the sparking plug and explodes the mixture, forcing the piston to move down.
d) Exhaust stroke

The outlet value opens and the piston rises, pushing the exhaust gasses out of the cylinder.

Ecolebooks.com

DIESEL ENGINE

The operation of a diesel engine is similar to that of a petrol engine.
However, there are some differences.

Diesel engine	Petrol engine
-Diesel is used as fuel	-Petrol is used as fuel
-No spark plug	-Has a spark plug
-Has fuel injector	-Has a carburettor
-Reliable and economical because its 40\% higher	-Not reliable and economical
-Heavier	-Lighter
In	

In a diesel engine air is drawn into the cylinder on down stroke of the piston. On upstroke of the piston, it compresses reducing the volume of the cylinder. The very high compression increase the stroke, oil is pumped into the cylinder by a fuel injector, it ignites automatically. The resulting explosion drives the piston down on its power stroke.
Note: Diesel engine is also called compression ignition (CI). It is heavier than a petrol engine. Diesel engine is reliable and economical. The efficiency is about 40% higher than any other heat engine.

(b) HEAT TRANSFER

Heat flows from a region of high temperature to a region of low temperature. There are three ways by which heat can be transferred, namely;
(i) Conduction
(ii) Radiation
(iii) Convection

(i) CONDUCTION

Conduction is the flow of heat through matter from a region of higher temperature to one of lower temperature witfout movement of matter as a whole.
Conduction in solids

 theay theevsotorcolderrregidneing carried by these electrons as

Note:

that are loosely held.
because metals are made up of atom having free electrons

1. Aluminium

Examplefr 8 f metals which are good conductors are;
New utensils or kettles, saucepans boilers, radiators are 3. Copper
as their atoms have free electrons that are loosely held. Nonmade of metals because metals are good conductors of heat electrons that are loosely held so that heat does not pass thebalgh theandinsily tohrsinetiohytheonymdtalsnote bawed fred conductors or insulators e.g plastics, cork, wood.

Rate of heat transfer

The rate of heat transfer tincal \oplus arceplesds on the following factors;
(i) The temperature difference between the ends.
(i) The length and area of cross in short time when the cross section of the metal bar. Much heat is passed across in a short time when the cross sectional area of the bar is large and when the bar is short.
(ii) Materialfrom which the solid is made of.

Comparing the conductivities of different metals.

-The rate of conduction is compared by dipping the ends of four rods coated with wax in hot water.
-The rods are identical but made of different materials.
-After a short while, the wax begins to melt a a ong the rods. It melts fastest along the copper rod and slowest along wood.
-This shows that copper is the best conductor and wood is the poorest of them.

Bad and good conductors and their applications.
(i) Good conductors like aluminium are used in cooking utensils because they allow heat to pass through them.easily.
Copper is one of the best condicor but ammium is usuatberused in making cooking utensils because it is much

 warquadingosersy fastit from the body and transfer it to the

Explain why metals feel colder when touched than bad

conduct heat.
to high degree of conduction while bad conductors do not carpeted floor.
This also explains why a cemented floor feels colder than a

Liquids conduct heat very slowly. This is because their N.B
molecules are apart.
heat
Experiment to show that water is a poor conductor of

Procedure

-Water is put in a test tube slanted as shown in the diagram above.
-The upper part of the tube is heated and convection currents are seen at the top of the tube, water begins to boil.
-Ice at the bottom does not melt. This shows that water is poor conductor of heat.

(ii) CONVECTION

Convection is the flow of heat through fluid from a region of higher temperature to one of lower temperature by the movement of the fluid itself.
It is the heat transfer which involves bulk movement of molecules of the medium.
Convection cannot occur in vacuum because it requires a material medium. It occurs in fluids (liquid and gases) because they flow easily.

When a liquid is heated it expands and becomes less dense than the surrounding cold liquid.

Convection current.

Convection current is the cyclic motion of rising hot fluid and falling itself. The hot fluid rises because when heated it becomes less dense.

Explanation of convection current

-When the fluid is heated it expands and becomes less dense.
-The heated fluid is forced upward by the surrounding cooler fluid which moves under it.
-As the warm fluid rises, it gives heat to the surrounding cooler fluid.

Experiment to demonstrate convection current.

-The solution rises because on heating, it expands and becomes less dense, so it is free equhedß oplear rby cooler (denser) water.

Difference between convection and conduction

Conduction	Convection
-Involves no movement of matter itself.	-Involves movement of matteras a whole.

Application of convection current to hot water domestic supply system.

How it works

-Cold water is supplied to the boiler along the cold water supply pipe.
-In the boiler the cold water warms up, expands and becomes less dense, so it rises up.
-As more cold water is applied to the boiler, hot water is displaced upwards and supplied to the hot water taps along hot water pipes A and D.
-The ventilation pipe, D is used to release steam.
The expansion pipe A allows pipe D allows escape of:
(i) Dissolved air which comes out of the water when it is heated.
(ii) Steam, if the water is boiled.

If the expansion pipe is not there;
(i) The dissolved air which comes out when water is heated causes air lock in the pipe.
(ii) The steam if the water is boiled causes explosion.
a) Boiler

When working convection current of less dense hot water from boiler raises up through pipe A to the hot water tank. At the same time the more
b) Circulation
yatercurandams setupard he hot water involving filling hot and on reaching the top; it spreads as shown in the diagram.
-When a volume of hot water flows to the hot water tank through pipe A, an equal volume of cold water flows to the boiler threxd piseooks.com
-At the same time an equal volume flows through pipe C to the hot watertank.
-Pipe A leaves the boiler at the top and enters the hot water tank at the top because it carries more dense hot water.
-Pipe B is connected to the bottom of the hot water tank and to the bottom of the because it carries more dense cold water.

Convection in gases

Experiment to demonstrate convection in gases

-The hot air above the candle rises up and gets out through B.
-A lighted piece of paper will produce smoke at point A.
-Cold air enters at point A and sweeps all the smoke to go and replace the hot air.
thitu mgernents of smoke from A across the box and out

Explanationof how smokempxes
-The air above the candle warms up, becoming less dense andethen rises mp_{a} th froyshthre paper (smoke) enters X through Ebimperioncuffenteplace the risen air (smoke) causing

=Ventilation piposuise ${ }^{\text {SIP }}$ IP latrines
-Land and sea breezes
Land landzsea breezes

a) Cooling of land

At night land cools faster than sea because land is a better emitter of heat and has lower specific heat capacity than sea water.

Good and bad absorbers

Shiny surface are bad absorbers of radiation while dull black Heat energy is transferfrom the sun to the earth by means of radiation. Radiation is the means by which heat can travel
threusherge frafrithe hot body is called radiant energy.

fhatektinnfeanswafmbdattramellsfas fastcas lighved nthrouighta
vacuum.
Factors affecting the rate of radiation of heat energy

Factor	
$\checkmark \quad$Temperature of the body	A hotter body radiates heat faster.
$\checkmark \quad$ Surface area of the body	Large surface area allows much heat energy to be radiated persecond.
$\checkmark \quad$ Nature of the body	Dull surfaces radiate heat energy faster than highly polished surface.

reflects most of the heat radiations instead of absorbing. The dull black surface absorb most of the heat radiations and reflect very fewolebooks.com

Experiment to show absorbing of radiation in surface

Some surfaces absorb heat radiation better than others as illustrated below;

Method I

-Stick two pieces of cork using molten wax onto two vertical metal plates.

- The heat source is placed midway between the vertical
plates so that the same a mount of radiations are received by

Observation:

-It will be observed that after a few minutes the wax on the dull black plate melts and the cork falls off before that on
fhe shiny pblishe pate.

Conclusion:

-This indicates that dull black surfaces are better absorbers.

Method II:

Requirements -in At Leslie cube cill (instrument energy). A galvanometer.

-One side of the cube is dull black, the other is dull white and the last one is made shiny polished.
-The cube is filled with hot water and radiation from each surface is detected by a thermopile.
-When the radiant heat falling on the thermopile is much, it registers a large deflection of the point.
With different surfaces of the tube made to face the thermopile one at a time.

Observation:

-The greatest deflection of the pointer is obtained when dull dark surface faces the thermopile.
-The least deflection is obtained when a highly polished shiny surface faces the thermopile.

Conclusion:

-The dull and black surface is a good radiator or emitter of heat radiation while a polished shiny surface is a poor emitter of heat radiation.

Application of absorber
(i) Building in hot co surfaces are shinny because white and shinny surface are bad absorbers of heat radiation.
(ii) Reflection on electric devices are made up of polished metals because they have good reflecting properties.

Good and Bad emitter.

If the backs of the hands are held on either sides of the sheet, one first feels much heat from the black surface.
This shows that a black surface is a better emitter of heat than a shiny one.
-In short, black surface are good absorbers as well as good emitters of heat radiations.
-Shinny surfaces or polished surfaces are bad absorbers as well as bademitters of radiations.

Applications

(i) Cooling fins on the heat exchanger of refrigerator are painted black so that they emit heat more quickly.
(ii) Tea pots and kettles are polished so that they keep heat radiation.

Leawsifatiation , travels in a straight line.

at which it absorbs heat radiation is equal to the rate at
which it radiates heat energy.

* Bodies only radiate heat when their temperatures are

Application of radiation:

Black and dull surfaces

(i) Carradiators are painted black to easily emit heat
(ii) Cooling fins of a refrigerator are black to easily emit heat.
(iii) Solar plates or panels are black to easily emit heat.

Polished and white surfaces

(i) White washed buildings keep cool in summer.
(ii) Roots and petro tanks are aluminium painted to reflect radiantheat.
(iii) White coloured clothes are won in summer to keep us cool.
(iv) Silver tea pots, kettles and saucepan retain heat for a long time.
Thermos/vacuum flasks

THE VACUUM FLASK

It is a flask with two silvered walls enclosing a vacuum. It is used for keeping contents at a fairly constant temperature.

-A thermos flask also called vacuum flask keeps hot liquids hot and cold liquids cold.
-This is because heat losses are minimized. There are three ways by which heat can be lost namely: Conduction, convection and radiation.

Heat losses by the above ways are minimized by the vacuum flask as follows:
-Conduction and convection are minimized by the vacuum since for heat to be transferred by these ways, a material medium is required.
-Convection from the hot liquid upward to the outside is reduced by the cork which also reduces heat loses by conduction because it is a poor conductor of heat.
-Radiation is also minimized by the two silvered surfaces since they are bad emitters.

However when a hot liquid is kept in the vacuum flask for a long time, it cools because at a small rate, heat is lost by conduction, convection and radiation.

Choice of dress

The choice of dress one puts on depends on conditions of the environment. On hot days, a white dress is preferable because it reflects most of the heat radiations falling on it.

On cold days a dull black woolen dress is preferred because it absorbs most of the heat incident on it and can reta in for a longer time.

(c) THERMAL EXPANSION OF MATTER

Whisndvethanatefareated size of matter in all directions

1. Expansion of solids.

Expansion of solids can be illustrated using a metalball with a ring as shown below.

-The metal ball passes through the ring when it is cold, but when heated, the ball doesp tradetboogksthe ring any more, showing that it hasexpanded.
-It passes through the hole again when it cools, meaning that the metalcontracts when it loses heat.

Bi- metallic strip

Different metals expand at different rates when equally heated;
This can be shown using a metal strip made of two metals such as copper and iron bounded tightly together (bimetallic strip) when the bi metallic strip is heated, the copper expands more than iron and the strip bends as shown.

(a) Before heating

(b) After heating
-When the bimetallic strip of iron and Brass is heated, it bends with brass on the outside of the curve.
-This is because Brass expands more than iron.
Uses of a metallic strip (application of expansion of solids)
Bimetallic strips are useful in the following devices by completing the metallic circuit.
i) Ringing alarm bells
ii) Thermostats

a) Fire alarm

Heat from the source makes the bi metallic strip bend and completes the electric circuit and the bell rings.

Thishermostatice that makes temperature of appliances or

-Setting the temperature: The control knob is set to the required temperature.
-Bimetallic strip heating: On reaching the required temperature, the bimetallic strip bends away breaking the circuit at contacta
-Cooling bimetallic strip: On cooling just below the required temperature, the bimetallic strip makes contact and switches on the heater again. So a nearly steady temperature results.
-Knob: If the control knob is screwed more, the bimetallic snmip has to bend more in order to break the heating circuit
thus giving a high temperature
Disadvantage of expansion of expansion in our every day

- Steel bridges
$\frac{\text { life }}{-1}$
Bridges are constructed with one end fixed and the other side is placed on rollers in order for the structure to expand or contract freely with changing Fixerflerdture without damaging the bridge.

Railway lines are constructed with gaps between the - Railways:
is the temperature increases.
consecutive rails in order to allow free expansion of the rails day.
If no gaps are left between rails, the rails buckle during a hot
If no gap is left in the rails, they bend on hot days.

Cold day
Hot day

- Electricity Transmission cables

The wires which are used for the transmission of electricity or telephone wires are usually left sagging in order to allow them free expansion and contraction.

Linear expansivity

Linear expansivity of a material is the fraction of its original lengar byxannehijityexp ands per Kelvin rise in temperature. Linear expansion

$$
\propto=\frac{\text { Original length } \times \text { Temperature rise }}{\Delta \diamond}
$$

Where ; $\hat{\beta}_{0}=$ original $_{\text {after }}$

的e le Finhaistesmperature

Examples:

1. In an experiment to measure linear expansivity of a metal, a rod of this metal is 800 mm long is found to expand 1.36 mm when the temperature rise from $15^{\circ} \mathrm{c}$ to $100^{\circ} \mathrm{c}$.

Solution

$\Delta\rangle=(\hat{\nu}-\rangle)=1.36$
$\hat{\nu}_{0}=$
$\left.\rangle\rangle_{0}=15^{\circ} \mathrm{C} ; \geqslant\right\rangle_{1}=100^{\circ} \mathrm{C} ; \Delta \theta$
$\overline{\bar{\alpha}} 85 \mathrm{~K}$
$800 \times 85=0.00002 \mathrm{~K}$
1.36

Exercise:

1. A metal rod has a length of 100 cm at $200^{\circ} \mathrm{c}$. At what temperature will its length be 99.4 cm if the linear expansivity of rod is $0.00002 \mathrm{~K}^{-1}$. [Ans: $\theta_{1}=173 \mathrm{~K}$]
2. A steel bridge is 2.5 m long. If the linear expansivity of the steel is $1.1 \times 10^{5} \mathrm{C}^{-1}$. How much will it expand when the temperature rises by $5^{\circ} \mathrm{C}$? [Ans: $\Delta \hat{\rho}=1.375 \times 10^{-2} \mathrm{~cm}$]
3. Exphasidifforququalount when equally heated.

Liquids expand when they are heated. Different liquids the kinetic theory, liquid molecules are far apart compared
Liquids expand much more than solids because according to liquids.
to the solids and the intermolecular forces are weaker in Experiment to demonstrate expansion of water.

-Fill the flask completely with coloured water. Pass the
 tightly to the flask.
water on the capillary tube. Initially there will be a
-Heat the bottom of the flask and observe the new level of
-Theremeretaty droperfathe whater hexaldin infee there then a ward s
-When the flask is heated, the flask first receives heat before

causing the slight fall in level. -However, when heat reaches the water, the volume of water expands more than the increase in yalumpeftheflaskom

Comparingexpansion of different liquids

-Three identical flasks A, B and C are filled with alcohol, kerosene and water respectively.
-Fit a narrow capillary tube in each flask through the cork, cool flasks to the same temperature, adjust the levels such
that they are equal and mark the original levels.
-Place the flasks in a trough of hot water

 order.
Application of expansion property of liquids
This property is used in thermometer; the liquids used
include alcohol and mercury.

Anomalous expansion of water

(Unusual expansion of water)

For all solids expect ice, when heated, they melt to form liquids. They expand just after melting but ice which melts

Sketch of volume against temperature.

From the sketch, it is neted thaturater ${ }_{C}$ has its minimum
$A B$: As the temperature pises ice expands.
CB : The ice is melting to form Extelat Books
CD: As the temperatue fises, the formed water at $0^{\circ} \mathrm{c}$ contracts until $4^{\circ} \mathrm{c}$.
DE: At $4^{\circ} \mathrm{c}$ the water expands just like other liquids do.
Sketch of density against temperature.

-Since density is mass/volume but mass is unaltered by warming.
-It is only volume which decreases between 0° c to $4^{\circ} \mathrm{c}$.
-It follows that water has its maximum density at $4^{\circ} \mathrm{c}$. From
thencketch itcis neted that ice is lin mass densegachawater me of ice ifesseaternthanthe volume of water. This is why ice is less
 decreases until $4^{\circ} \mathrm{c}$. Therefore, ice is less dense than water.
 occurs resulting in increase in volume.

Biological importance of abnormalexpansion

 weather.
a) Water at the top cooling

During cool weather, water at the top of the sea cools first, contracts and being denser to the bottom. The warmer and less dense water rises to the surface to be cooled.
bhenallodhe water is at $4^{\circ} \mathrm{c}$ the circulation stops.
c) Temperature below $4^{\circ} \mathrm{c}$
becomes less dense and remains at the top, eventually When the taymperature tofo water surface falls below $4^{\circ} \mathrm{c}$, it The lower layer of water at $4^{\circ} \mathrm{c}$ can only lose heat by conduction. So in deep water there will be always water beneath the ice in which fish and other aquatic life can thrive.

Explanation of unusualexpansion of water by kinetic theory
-The expansion of water between $4^{\circ} \mathrm{c}$ and $0^{\circ} \mathrm{c}$ is due to the breaking up of groups of water molecule below $4^{\circ} \mathrm{c}$ and formation of groups of water molecules above $4^{\circ} \mathrm{c}$ which require a large volume. -So the anomalous expansion of water at $4^{\circ} \mathrm{c}$ is because water molecules bond together

Expansion of gases

A gas expands when heated almost 10,000 times more than solids. Ecolebooks.com
The greater expansion of gasses is due to very weak intermolecular forces which can be broken easily.

Experiment to demonstrate expansion in gases

In the above set up the flask is slightly heated.
Air bubbles will be seen coming out from the other end of the tube
This shows that air expand when heated.
In the second set up, when the source of heat is removed and the flask is allowed to cool by pouring cold water, the level of water will rise. This shows that air contracts when cooled.

Alternatively

When hands are rubbed together thoroughly and held around the flask as shown above, bubbles of air start coming out of water. This is because the heat produced by the hands was enough to cause the air in the flask to expand. When the hands are removed and flask left to cool, the water rises in the tube. This is because cooling the air contracts and pressure of the inside are becomes less than the atmospheric pressure.

Application of expansion of air.
Hot air balloon
Expansion of air is used in hot air balloon. When air in the balloon is heated, it expands and becomes less dense and as a result the balloon rises up.

Exercise 1: See UNEB Past papers.

1.1988 Qn.12	6.1999 Qn.9	11.1989 Qn. 2
2.1900 Qn. 18	7.2004 Qn. 11	12.1994 Qn. 1
3.1988 Qn.31	8.2004 Qn.33	13.1998 Qn.3
4.1991 Qn.4	9.2006 Qn.17	14.1998 Qn. 5
5.1994 Qn.33	10.2007 Qn.36	15.

(d) GAS LAWS

Gases when heated will shgétcosignfacoleschange in pressure volume and temperature unlike solids and liquids which show insignificant change in volume.
Gas laws are laws which express the relationships between Pressure, (P), Volume (V) and Temperature (T) of a fixed mass of a gas.

1. Boyle's law

Boyle's law states that the volume of fixed mass of gas at contact temperature is inversely proportionalto its pressure.

Mathema tically;

$$
\mathrm{P} \propto \frac{1}{\mathrm{~V}} \text { at constant temperature. }
$$

Example: 1
The pressure of a fixed mass of gas is 5artmospheres when its volume is $200 \mathrm{~cm}^{3}$. Find its pressure when the volume
(i) Is halved
(ii) Is doubled
(iii) Is increased by $1 \frac{1}{2}$ times provided temperature remains constant.

Solution

(i) $P_{1} V_{1}=P_{2} V_{2}$
$5 \times 200=\mathrm{P}_{2}(100)$
$\mathrm{P}_{2}=10$ atmospheres
(ii) $P_{1} V_{1}=P_{2} V_{2}$
$5 \times 200=\mathrm{P}_{2}(400)$
$\mathrm{P}_{2}=2.5$ atmospheres
(iii) $P_{1} V_{1}=P_{2} V_{2}$
$5 \times 200=\mathrm{P}_{2}(300)$
$\mathrm{P}_{2}=3.333$ atmospheres
When pressure is doubled the volume is halved or vice versa

Experiment to verify Boyle's law

Trap dry air in the capillary tube using the mercury column. -The pressure is varied using a bicycle pump and its value, P read from the Bourdon gauge and recorded.
-For each vale of P , the length, 1 of the air column is measured from the scale and recorded. This is the volume of the air.
-The procedures are repeated for different values of P and the results tabulated.
Pressure, $\mathrm{P}(\mathrm{Pa}) \quad$ Volume, $\mathrm{V}\left(\mathrm{m}^{3}\right)$
-A graph of P against V is plotted

Example 1:
The volume of a fixed mass of gas at constant temperature when the pressure is 76 mHg . Calculate the volume when the pressure is 38 cmHg .
the volume when the pressure is 38 cmHg .

Solution

(i) $P_{1} V_{1}=P_{2} V_{2}$
$150 \times 76=V_{2}(38)$

$$
V_{2}=300 \mathrm{~cm}^{3}
$$

Note: from the above example, it is found when pressure halved the volume doubles.

Example:2

The volume of a fixed mass of gas at constant temperature increases from $300 \mathrm{~cm}^{3}$ to $500 \mathrm{~cm}^{3}$. Find the new pressure if the initial pressure was 70 cmHg .

Solution

$\mathrm{v}_{1}=300 \mathrm{~cm}^{3}, \mathrm{P}_{1}=70 \mathrm{cmHg}$,
$\mathrm{v}_{2}=500 \mathrm{~cm}^{3} ; \mathrm{P}_{2}=$?
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \Leftrightarrow 70 \times 300=\mathrm{P}_{2} \times 500$
$21000=500 \mathrm{P}_{2}$
$\mathrm{P}_{2}=42 \mathrm{cmHg}$

Example:3

The pressure of a fixed mass of 0.5 litres of a gas is 30 cmHg . Find the volume if the pressure increases to 70 cmHg .

Solution

$\mathrm{v}_{1}=0.5$ litres, $\mathrm{P}_{1}=30 \mathrm{cmHg}$,
$\mathrm{v}_{2}=$? ; $\quad \mathrm{P}_{2}=70 \mathrm{cmHg}$
$\mathrm{P}_{1} \mathrm{~V}_{1}=\mathrm{P}_{2} \mathrm{~V}_{2} \Leftrightarrow 30 \times 0.5=70 \times \mathrm{V}_{2}$

$$
15=70 \mathrm{~V}_{2}
$$

$\mathrm{V}_{2}=0.211$ litres

2. Charles' Law

Charles' law states that the volume of a fixed mass of a gas at constant pressure is directly proportional to the absolute temperature.
$\mathrm{V} \propto$ Tat constant pressure.
$\frac{2}{2}$
$\underline{V}_{\underline{1}}=\underline{V}_{\underline{2}}=$ constant
$\mathrm{T}_{1} \quad \mathrm{~T}_{2}$

Experiment to verify Charles's law

EcoleBooks

-Trap dry air using the index of concentrated sulphuric acid in a capillary tube. Tie the tube on the metre-rule using a rubber band.
-Place the apparatus in a metal can containing water and heat the water slowly while stirring gently.
-Read and record the length, 1 of the trapped air column and
the temperature, T .
-Repeat the procedures for different temperatures and tabulate the results.
-Plot a graph of 1 a gainst temperature, T .

Observation:

-The graph is a straight line through the origin.
-In the second graph, at 273°, the occupies zero volume.
This temperature is called absolute zero.

Conclusion:

-The graph shows that 1 (which is proportionalto volume), is directly proportional to the
absolute temperature at constant pressure. This verifies cnarles law.

Absolute temperature is the Kelvin temperature scale which has zero value coinciding with $-273^{\circ} \mathrm{C}$.
Absolute temperature is also called thermodynamic temperature. On this scale temperature is measured in Kelvin (K)

Where temperature $0^{\circ} \mathrm{C}$ in Kelvin is from
e.emparptarnure $\boldsymbol{7 月}^{0}(\theta+273) \mathrm{K}$
$\mathrm{T}=\left(-73^{0} \mathrm{C}+273\right)$

Absolute zero is the temperature of $273^{\circ} \mathrm{c}$ at which the volume of the gas would become zero as the gas is cooled. HoweverEtherebmelef the 1 as can not actually shrink to zero. This is because the gas first liquidifies, then turns to solid before the temperature of $273^{\circ} \mathrm{c}$ is reached.

The volume-temperature and pressure-temperature graphs for a gas are straight lines. This is because gasses expand uniformly with temperature. So equal temperature increase cause equal volume or pressure increases.

Example 1

The volume of a fixed mass of gas at constant pressure is $400 \mathrm{~cm}^{3}$ at a temperature of $-73^{\circ} \mathrm{c}$. Calculate the volume when the temperature is raised to $27^{\circ} \mathrm{c}$.
Solution
$\mathrm{v}_{1}=400 \mathrm{~cm}^{3}, \mathrm{~T}_{1}=(-73+273)=200 \mathrm{~K}$,
$\mathrm{v}_{2}=? ; \quad \mathrm{T}_{2}=(27+273)=300 \mathrm{~K}$
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \Leftrightarrow \frac{400}{200}=\frac{\mathrm{V}_{2}}{300} \Leftrightarrow \mathrm{~V}_{2}=600 \mathrm{~cm}^{3}$

Example 2

The volume of a fixed mass of gas at a given pressure is $1.5 \mathrm{~m}^{3}$ at a temperature of 300 K . Calculate the temperature when the volume will be $0.5 \mathrm{~m}^{3}$ at the same pressure.
Solution
$\mathrm{v}_{1}=1.5 \mathrm{~m}^{3}, \mathrm{~T}_{1}=300 \mathrm{~K}$,
$\mathrm{v}_{2}=0.5 \mathrm{~m}^{3}, \mathrm{~T}_{2}=$?
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}} \Leftrightarrow \frac{1.5}{300}=\frac{0.5}{\mathrm{~T}_{2}} \Leftrightarrow \mathrm{~T}_{2}=100 \mathrm{~K}$

3. Pressure law.

The pressure of a fixed mass of gas at constant volume is directly proportional to its absolute temperature.
$\mathrm{P} \propto \mathrm{T}$: at constant Volume.

$\frac{2}{2}=$
 $\frac{\hat{\theta}_{1}}{\hat{\theta}_{1}}=\frac{\hat{\theta}_{2}^{2}}{\hat{\theta}_{2}}=$

Experiment to verify Pressure law

-The apparatus is set up as shown above. The rubber tubing

Ppscibdture:

-The can is heated from the-bottom while stirring and the pressure, P is then recorded fordifcehetiopelasure values. -The heating is stopped to dhow steady gauge reading for each reading taken.
-The results are tabulated and a graph of pressure against temperature plotted.

For temperature in K	For temperature in ${ }^{\circ} \mathrm{C}$
$\mathrm{P}(\mathrm{~Pa})$	$\mathrm{P}(\mathrm{~Pa})$

Ohservation-
-A straight line graph touching the temperature axis at $273^{\circ} \mathrm{C}$ verifies pressure law.

Example 1

The pressure of gas in a cylinder is 15 atm at $27^{\circ} \mathrm{C}$.
(i) what will he the nrescure at $177^{\circ} \mathrm{C}$?
(ii) at what temperature will the pressure be 10
atmospheres?

Solution

(i)

$\mathrm{P}_{1}=15 \mathrm{~atm} ., \mathrm{T}_{1}=27+273=300 \mathrm{~K}$,
$\mathrm{P}_{2}=?, \mathrm{~T}_{2}=177+273=450 \mathrm{~K}$
$\frac{\mathrm{P}_{1}}{\mathrm{P}_{1}}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \stackrel{15}{\Leftrightarrow} \frac{\mathrm{P}_{2}}{\Longrightarrow}{ }^{\circ} \mathrm{P}_{2}=22.5 \mathrm{~atm}$.

(ii)

$\mathrm{P}_{1}=15 \mathrm{~atm} ., \mathrm{T}_{1}=27+273=300 \mathrm{~K}$	
$\mathrm{P}_{2}=10 \mathrm{~atm} .$,	$\mathrm{T}_{2}=$?

Equation of state

The combination of the three gas law equations forms a single equation called the equation of state. Or the general gas law.
It is an equation that expresses the relationship between Volume, V, pressure, P and temperature, T. It is given by the formula;

Exampld pert if contained in a 4 litre vessel at $-73^{\circ} \mathrm{c}$.
Air in a 2.5 litre vessel, at $127^{\circ} \mathrm{c}$ exert a pressure of 3 Solutigneres Calculate the pressure that the same mass of

$$
\begin{array}{|l}
\hline \mathrm{P}_{2}=? \\
\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\text { Ifco }} \frac{3(2.5)}{\mathrm{b} 900 \mathrm{ks}}=\frac{4 \mathrm{P}_{2}}{c} \frac{1000}{} \Leftrightarrow \mathrm{P}_{2}=1.08 \mathrm{~atm} . \\
\hline
\end{array}
$$

Example 2

A bicycle pump contains $50 \mathrm{~cm}^{3}$ of air at $17^{0} \mathrm{C}$ and a pressure of one atmosphere. Find the air pressure when it is compressed to $10 \mathrm{~cm}^{3}$ and its temperature rises to $27^{\circ} \mathrm{C}$.
Solution
$\mathrm{V}_{1}=50 \mathrm{~cm}^{3} ., \mathrm{T}_{1}=17+273=290 \mathrm{~K}, \mathrm{P}_{1}=1 \mathrm{~atm}$
$\mathrm{V}_{2}=10 \mathrm{~cm}^{3}, \mathrm{~T}_{2}=27+273=300 \mathrm{~K}, \mathrm{P}_{2}=$?
$\underset{\mathrm{P}_{1}}{\underline{\mathrm{P}_{1}}} \underline{V}_{1}=\frac{\mathrm{P}_{2}}{\mathrm{~T}_{2}} \stackrel{\mathrm{~V}_{2}}{\Leftrightarrow} \frac{1(50)}{\underline{=}} 300 \stackrel{10 \mathrm{P}_{2}}{\Longleftrightarrow} \mathrm{P}_{2}=5.17 \mathrm{~atm}$.

Standard temperature and pressure (S.T.P)
This is the physical condition of temperature equal to $0^{\circ} \mathrm{C}$ and pressure is equal to 76 cmHg at S.T.P, one mole of any gas occupies a volume of $22.4 l$.

Gas laws and kinetic theory.

Kinetic theory of matter states that, matter is made up of small particles called atoms or molecules that are in a constant random motion and the speed of movement of the particles is directly proportional to temperature.
-The theory considers the molecules of a gas to be like elastic spheres.
-Each time one of the molecules strikes the wall of the container it rebounds.
-The force produced on the on the wall by a molecule is the momentum change per second. So the gas pressure due to all
bombarding molecules is proportional to their average total momentum per second (Force) normal to the wall.

Kinetic theory can be used to explain the cause of; -Gas pressure
-Boyle's,law
-Charles's law
-Pressure law

a) Causes of gas pressure.

-Gas molecules are in constant random motion colliding with each other and bombarding the walls of the container. -As they bombard the walls of the container, they exert a force on the walls. These forces cause gas pressure.

Boyle's law

-At constant temperature, the average speed of gas molecules is constant.
-When the volume of the container decreases, the rate of collision and bombardment increases resulting in increase of force exerted on the walls and increase in pressure.
-Likewise increase in volume at constant temperature result in decrease in pressure.

Charles 's law.

-When temperature of gas molecules increases, they move faster.
-To maintain the pressure constant, the volume of gas must increase so that molecules travel further between collisions with the walls.
-This results in fewer collisions per second.
-When the temperature of gas increases, molecules move faster

ÉcoleBooks
-Raising the temperature onefred mass of gas at constant volume increases tne average кinetic energy or the molecules so that the molecules make more frequent collisions with walls at high velocity.

- This decreases the rate of bombardment (few molecules collide), resulting in decrease in gas pressure.

D) Eifectoi 1 emperature on pressure

-When a gas is heated and its temperature rises, the average kinetic energy of the molecules increases and the average speed of the molecules increases.
-The fremuencv of the collisions of the molecules with the walls of the container increases hence the pressure of the gas increases.
-If the container is flexible, the volume of the gas increases in order to maintain the pressure constant.
-If the volume of the gas is to remain constant the pressure of the gas increases due to more frequent and more violent collisions of the molecules with the walls.
-The above explanation is used to explain why a balloon inflated with air bursts when left in sunshine.
-This is because the temperature rises yet volume remains constant so the pressure increases due to more frequent and more violent collision of the molecules with the walls.

Absolute zero is the temperature at which the molecules have their lowest possible kinetic energy.

Exercise 2: See UNEB Past papers.

1.1997 Qn. 3	6.1989 Qn. 13	11.2006 Qn. 15
2.1998 Qn.6	7.1992 Qn.	12.1989 Qn. 7
3.2003 Qn. 4	8.2000 Qn.33	13.1991 Qn. 10
4.2007 Qn. 43	9.2002 Qn.12	14.
5.2001 Qn.3	10.1993 Qn.3	15.

(e) MEASUREMENT OF HEAT (QUANTITY OF HEAT)

Ecolebooks.com

(a). Heat Capacity

Heat capacity is the quantity of heat required to raise the temperature of a body by 1 Kelvin.
In general, the amount of heat required to raise the temperature of a substance by one Kelvin. The S.I. unit of heat capacity is Joules per Kelvin
(\rangle^{-1}).

$$
\begin{aligned}
\text { Heat Capacity, } \left.\rangle \frac{\text { Quantity of Heat }}{\text { Temperature Channge }}=-\right\rangle
\end{aligned}
$$

 property.
Specific Heat Capacity is the quantity of heat required to raise the temperature of a 1 Kg inassof a substance by 1 K .
The S.I unit of specific heat capacity is Joules per kilogram Kelvin () or Joules per kilogram per Kelvin $\left.(\geqslant\rangle\rangle^{-1} \boldsymbol{\nu}^{-1}\right)$. slowly.
Specific Heat Capacity $=$

$$
\begin{aligned}
& \text { Quantity of Heat } \\
& \text { Mass \& } \\
& \mathrm{m} \Delta \theta \\
& \mathrm{~m}=\mathrm{mp} \text {. Channge }
\end{aligned}
$$

Ovitarinabtemparatuemplerature rise from initial temperature

Heat capacity $=$ mass \times Specific Heat Capacity

NめqEusing $H=\rangle\rangle \Delta$

1. The mass, m must be in in S.I unit (Kg).
2. In questions with the phrase "the temperature rises by
$=\hat{\nu}\rangle \Delta \hat{\nu}$
$\ldots{ }^{0} \mathrm{C}$ or the temperature rose by $\ldots{ }^{0} \mathrm{C}$; the temperature value given is the change in temperature, $\Delta\rangle$.

Example:

If the temperature of substance change from $20^{\circ} \mathrm{c}$ to $40^{\circ} \mathrm{c}$. Then the temperature rise is;
$\Delta \hat{\nu}=\left(\theta_{2}-\theta_{1}\right)=(40-20)=20^{\circ} \mathrm{C}$
Note: The value of C is different for different substances. The table shows values of specific heat capacities of some conmon substanc\&s.

	$(\mathbf{J} \hat{\geqslant})^{-1} \boldsymbol{\vartheta}^{-}$
Substance	Specific Heat Capacity
2.Ice	2100
1.Water	4200
4.Copper	400
3.Aluminium water a very good liquid for cooling machines.	

N.B:The high specific heat capacity of water makes

Importance of the high specific heat capacity of water The high specific heatópaoty Bobavaser makes the temperature rise and fallo be slower for water.
-This is one of the major reasons why water is used in the cooling system of engines and radiator of central heating system.
-The other reason why water is used is because it is cheaper and a vailable.

The specific heat capacity of water is $4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$ and that of soil is about $800 \mathrm{Jgg}^{-1} \mathrm{~K}^{-1}$. This results in the temparature of the sea to rise and fall more slowly than that

The specific heat capagity of water being $4200 \mathrm{Kg}^{-1} \mathrm{~K}^{-1}$
means its temperature by 1 K .
Islands are surrounded by water as they experience much smaller changes of temperatures from summer to winter because the specific heat capacity of water is high so that temperature rises and falls more

Examphech heat is needed to rise the temperature from 30° c to $0^{\circ} \mathrm{c}$ for an iron of 5 kg . Specific heat capacity of iron is

440J/KgK.

Example 2: (2000 Qn. 4)

Selution:

$19000 \mathrm{C}=2500 \mathrm{Kt} \mathrm{T}^{1} \mathrm{~K}^{-1}$

$$
19000=20 C
$$

Example 3: (2003 Qn. 13)
Eipda dite afisalusblhetaionequfollojKgaisk the temperature of a 0.5 Kg salt solution from $-5^{0} \mathrm{C}$ to $15^{\circ} \mathrm{C}$. Specific heat

Solution $=\left(\theta_{2}-\theta_{1}\right)=(15--5)=20^{\circ} \mathrm{C}_{0}$ $\mathrm{Q}=? \mathrm{~m}=0.5 \mathrm{Kg} ; \theta_{1}=-5 \mathrm{C}, \theta_{2}=15^{\mathrm{C}} \mathrm{C}$;

$$
=0.5 \times 4000 \times 20
$$

$$
=40000 \mathrm{~J}
$$

Find the a mount heat required to raise the temperature of a
Example 4: (1992 Qn. 4)
water is $42000 \mathrm{Kg}^{-1} \mathrm{~K}^{-1}$
20 g of water from $30^{0} \dot{\mathrm{C}}$ to $60^{\circ} \mathrm{C}$. Specific heat capacity of

Soluelon? $\mathrm{m}=20 \mathrm{~g}=-=0.02 \mathrm{Kg} ;$

capacity of a
Ecolebooks0．9zix 4200×30
$=2520$ J

Example 5：UNEB 1997．On． 15

Calculate the specific heat capacity of paraffin if 22000 joules of heat are required to raise the temperature of 2.0 Kg of paraffin from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ ．

CALORIMETRY

Calorimetry is the measurement of heat exchanged．
The device used in calorimetry is a calorimeter．It is usually made of copper．
The calorimeter is lagged with an insulator and placed in a jacket with a plastic cover which has two holes for a thermometer and a stirrer．

Methrifs of Meacthbiag SRecififfeseat Capacity
（ii）Electrical Method（not on syllabus）
－ 9 screribing the methad of mixtures mixing a solid with a
liquid at different temperature but the specific heat capacity of either solid or liquid should be known．
－In this method a hot substance is mixed with a cold substance and then stirred．Then heat will flow from a hot
substance to the cold substance until both are at the same temperature．
－If no heat is lost to the surrounding then heat lost by the hot substance $=$ heat gained by cold substance ．

NOTE．

1．－If the heat capacity of the calorimeter（or container）is NOT neglected，then heat lost by the hot object is gained by both the calorimeter and its content．
－Both the calorimeter and its content always have the same temperature values．Thus

$\binom{$ Heat lost by }{ hot body }$=\binom{$ gained }{ by cold }$+\binom{$ Heat }{ gained by }

（ $\langle\rangle-,\Delta\rangle)$ $+$

2．If the heat capacity of the calorimeter is neglected，then the heat gained by the calorimeter is neglected and is not included in the calculation．

$$
\begin{gathered}
\binom{\text { Heat lost by }}{\text { hot body }}=\binom{\text { Heat gained }}{\text { by cold body }} \\
(>)=
\end{gathered}
$$

Where，食食＝masses of hot body，cold body and calorimeter respectively
人）
body，cold body and calorimeter respectively

Experiment to determine the specific heat （SÉcoleBooks

Priqcedure of mass m_{1} in a container of heat capacity c_{1}
redtraducimatitarlate nitseraqueemts in a calorimeter jacket and
 Record the boilipg point $\theta_{\text {dickly }}$ franster fhe solid boiling water to the calorimeter using a string． －Begin to stir until the final steady temperature θ_{3} is obtained（the heat shield is to prevent the heating from boiling water to reach the calorimeter）．
－Assume negligible heat to the surrounding．

changes，specific heat capacity of a solid C_{s} can be obtained Knowing values of $\mathrm{C}_{1}, \mathrm{M}_{1}, \mathrm{M}_{2}, \mathrm{C}_{2}, \mathrm{M}$ and temperature from the above expression．

Precautions

－The specimen must be transferred as fast as possible but with care to a void splashing of water from calorimeter．
－The calorimeter must be insulated and placed on an insulating stand in a constant temperature bath．
－The calorimeter must be polished on its inner and outer surface to reduce heat loss by radiation．
－Stirring must be done to ensure uniform distribution of 10 detatmine the speciric heat capacity or the ıquia，the same procedure above is used．However in this case，a solid of known specific heat capacity is used and C_{l} is made the subject of the formula．
$m_{s} C_{S}\left(\theta_{3}-\theta_{2}\right)=m_{i} C_{1}\left(\theta_{2}-\theta_{1}\right)+m_{c} C_{c}\left(\theta_{2}-\theta_{1}\right)$

$$
\mathrm{C}_{1}=\frac{\mathrm{m}_{\mathrm{s}} \mathrm{C}_{\mathrm{s}}\left(\theta_{3}-\theta_{2}\right)-\mathrm{m}_{\mathrm{c}} \mathrm{C}_{\mathrm{c}}\left(\theta_{2}-\theta_{1}\right)}{\mathrm{m}_{1}\left(\theta_{2}-\theta_{1}\right)}
$$

Example 1:

A piece of metal of mass 0.5 kg is heated to $100^{\circ} \mathrm{c}$ and then placed in \mathbb{C} Aty the mixture is $30^{\circ} \mathrm{c}$. calculate the specific heat capacity of the metal.
(The S.H.C of water is $4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$)

Solution:

$\theta_{3}=100^{\circ} \mathrm{C} ; \mathrm{m}_{\mathrm{s}}=0.5 \mathrm{~kg}$
$\theta_{2}=30^{\circ} \mathrm{C} ; \mathrm{m}_{\mathrm{w}}=0.4 \mathrm{~kg}$
$\theta_{1}=10^{\circ} \mathrm{C}$;
Assume negligible heat to the surrounding.

$$
\left.\begin{array}{l}
\text { Heat lost by } \\
\text { hot body }
\end{array}\right)=\binom{\text { Heat gained }}{\text { by cold water }}
$$

Note:
Liquid take up the volume of the container when filled so when a liquid is filled in a container the volume of the container is equal to the volume of liquid filling it.

$$
\binom{\text { Mass of }}{\text { liquid }}=(\underset{\text { liquid }}{\text { volume of }}) \times\binom{\text { density of }}{\text { liquid }}
$$

Example 2: UNEB 1993, On, 3(d)
A copper block of mass 250 g is heated to a temperature of $145^{\circ} \mathrm{C}$ and then dropped into a copper colorimeter of mass
(i) Calculate the maximum temperature attained $\underset{\text { water. }}{\text { time by }}$ $4200 \mathrm{JKg}^{-1} \mathrm{~K}^{-1}$).
(ii) Sketch a graph to show the variation of temperature of water with time.

Solution:

Finding Specific Heat Capacity by Mechanical method

-Lead shots of measured temperature \rangle_{1} and mass " m " are pdastadin a tube as shown above. When the tube is inverted,
thed sfodtstrongh distance " h ". so potential energy of the

 $\hat{\nu} \hat{\beta}_{1}$ to $\hat{\theta}_{2}$.
Heat energy gained by the lead shots is equal to the

When the tube is inverted N times then the tal potential energy is calculated as Nng so thacheBgoindsis equal to potentialenergy lost.

$$
\begin{gathered}
\operatorname{mc}\left(\theta_{2}-\theta_{1}\right)=\mathrm{Nmgh} \\
\mathrm{c}\left(\theta_{2}-\theta_{1}\right)=\mathrm{Ngh} \\
\hat{}=\frac{}{(1-1)}
\end{gathered}
$$

Where \mathbf{N} is the number of time the tube is inverted. \mathbf{g} is acceleration due to gravity and \mathbf{h} is the distance through which the lead shots have fallen.

The distance " h " is the same as the length of the tube. This method is more advantageous than the method of mixtures because here the mass of substance is not required.

Example:

A tube length 10 cm contains leads shots. If the tube is inverted 1000 times such that the temperature of the shots
changes from $40^{\circ} \mathrm{c}$ to $100^{\circ} \mathrm{c}$. calculate the specific heat capacity of the lead shots.

$$
\begin{aligned}
& \mathrm{h}=10 \mathrm{~cm}=0.1 \mathrm{~m} ; \mathrm{g}=10 \mathrm{~ms}^{-2} ; \mathrm{N} \\
& \mathrm{c}=\frac{\mathrm{gh}}{\left(\theta^{2}-\theta^{1}\right)}=\frac{1000 \times 10 \times 0.1}{100-40} \\
&=\frac{1000}{60} \\
&=16.7 \mathrm{Jgg}^{-1} \mathrm{~K}^{-1}
\end{aligned}
$$

Example:

A tank holding 60 kg is heated by 3 KW electric immersion. If the specifie heatcapacity is $4200 \mathrm{~J} / \mathrm{kgk}$. Calculate the taken for the temperature to rise from $10^{\circ} \mathrm{c}$ to $60^{\circ} \mathrm{c}$.

Solution:

```
\(\mathrm{m}=60 \mathrm{~kg} \mathrm{P}=3 \mathrm{KW}=3 \times 1000 \mathrm{~W}=3000 \mathrm{~W}\)
    Energy \(=\) Power \(\times\) Time
    \(\mathrm{mc}\left(\theta_{2}-\theta_{1}\right)=\mathrm{Pt}\)
\(60 \times 4200 \times(60-10)=3000 t\)
    \(\mathrm{t}=4200 \mathrm{~s}\)
```


LATENT HEAT (HIDDEN HEAT)

(a) Latent Heat

Latent heat is the quantity of heat absorbed or released at constant temperature by a substance during change of state.
Specific latent heat is the heat required to change one kilogram of substance from one state of matter to a nother without changing its temperature.

When a substance changes state from solid to liquid or liquid to solid liquid to gas the temperature remains although heat is supplied.

This can be explained by the kinetic theory.
Whamge bsedidusis thleasuguphied heate ahergyisisnbetagnaseatuluy Mhelacinlegndostareak a way the intermolecular force holding

to solid or liquid to gas.

(a) HeatingCurve	(b) Cooling curve
$\begin{aligned} & m=\text { mass }, \\ & l_{v}=\text { Latent heat of vapouris } \\ & Q=\text { Quantity of heat, } \\ & \Delta \theta=\text { Change in temperatur } \\ & l_{f}=\text { Latent heat of fusion, } \end{aligned}$	sation e
$\hat{\theta}_{8}$:Temperature of c $=$ Speeifinctrestingacity $\theta=\theta\rangle \theta \theta \Delta \Delta$): Ice changing to water © : Temperature of water cooling increasing $\hat{\theta}\langle\Delta\rangle \Delta\rangle$) : water changing to vapour) :Temperature of steam decreasing (Steam condensing : water $\hat{0}=$ () water changing to ice $\hat{\theta}$
$\hat{\theta}=\hat{\theta}\rangle$:Temperature of steam Latent heatoffitusion is the $\hat{\theta}=\hat{\theta} \hat{\theta} \Delta \hat{\nu}$	人 quantity of heal required to

(b) Types of latent Heats
(i) Latent heat of fusion;
to change the state of a change the state of a substance from solid to liquid at Thenstant nitis à erature.

Specific Latent heat oبिundmIs fth quantity of heat required liquid at constant temperature.

Experiment to determine the specific latent heat of fusion by method of mixtresoleBooks

-Pour pure hot water of known mass, and specific heat capacity in a well lagged calorimeter of mass,
-Record the initial temperature of, θ_{1} of hot water.
specific heat capacify
calorimeter and stir the mixture gently until all the ice melts.
in the $\mathrm{Plocim} s t a \mathrm{all}$ pieces of pure melting ice at $0^{\circ} \mathrm{C}$ into
 -
-Re weigh the calorimeter and its content to determine the mass of melted ice from the formula;

 Electric imumersion heater
fusion by Electricatmethod.
Small pieces of ice

Procedures:

An electric heater of known power " p " is placed in filter
b) Packing small pieces of ice

The heater is slacing heater; on for a known time " t " and mass funnel.

Small pieces of ices are(packed around the elefctric hea)ter.
c) mstted ice on bapakiming;water beaker

The specific latent heat of fusion of ice, is calculated from

Ecoleboorem

Assumption;

 ice only.

Significance of high value of specific latent heat of fusion Ice gften $\#$ sed $)$ oling agent e.g. ice cubes are added $\hat{\nu}\rangle \hat{\nu}\rangle \hat{\nu}^{-1}$
to juice to keep it cold.

(ii) Latent heat of vapourisation

Latent heat of vapourisation is the quantity of heat required to change the state of a substance from liquid state to gas at constant temperature.

Specific Latent heat of fusion is the quantity of heat required Thelsalngethie state of a 1 kg mass of substance from liquid state to a gas at constanttemperature.

$$
\mathrm{Q}=\mathrm{mL}_{\mathrm{v}}
$$

of vapourization of steam
Ir
agent e.g. In cookers (cooking)
\checkmark Because of high value, steam is used as a heating blades, forceps, e.t.c.
\checkmark Can be used for sterilizing medical tools e.g.
vapourization by method of mixtures.
Experiment to determine the specific latent heat of

-Pour pure cold water of known mass, and specific heat
 at
specific heat capacity \rangle.
-Pass steam from boiling pure water at $100^{\circ} \mathrm{C}$ into cold water in the calorimeter for some time and stir the mixture in the calorimeter. temperatures are steady.

- Read and record the final temperature of, θ_{2} of the mixture
 mass of melted ice from the formula;

DOWNLOAD MORE RESOURCES LIKE THIS ON E

Specific latent heat of vaporization is always greater than L_{f} because for molecules of a liquid to escape, they require a lot of heatumbiquarekses. cherK.E in order to overcome the intermolecular forces of attraction.
While for latent heat of fusion very low amount of heat is required to weaken the intermolecular forces of attraction.

Effect of latent heat of vaporization

When steam at $100^{\circ} \mathrm{c}$ condenses on your body, it produces more serious burn than one would have from an equal mass
of water at $100^{\circ} \mathrm{c}$ because when steam condenses latent heat is given out.

How to apply the formula in calculations

The following should be noted;

1. When applying the heat formula for change of state from either solid to liquid or liquid to solid the value of specific latent heat of fusion should be used.
2. The substance must either be at the melting point

BoiFpr a solid at melting point changing to liquid at freezing

Solution

Heat $=\mathrm{mL}_{\mathrm{f}}$
Heat $=\left(\frac{10}{1000}\right) \times\left(3.36 \times 10^{5}\right)$
Heat $=336000 \mathrm{JKg}^{-1}$
b) When the solid is not at the melting point changing to a liquid at freezing point
In this case heat energy for changing the temperature to melting point is required. The heat for change the solid to liquid is applied, so heat energy required $=$ Heat for change of temperature to melting point.+ Heat for change of state
Heat $=m c \Delta \theta+\mathrm{mL}_{\mathrm{f}}$
Heat $=m c\left(\theta_{2}-\theta_{1}\right)+m_{L_{f}}$
where: m is mass the substance
C is the specific heat capacity of the solid
θ_{2} is the melting temperature of the solid
θ_{1} is the initial temperature of the solid.

Example 2:

How much heat is required to change 10 g mass of ice at $10^{\circ} \mathrm{c}$ to water at $0^{\circ} \mathrm{c}$. Given that the specific heat capacity of ice is $2100 \mathrm{~J} / \mathrm{KgK}$. and the special latent fusion of ice is 3.36 x $10^{5} \mathrm{~J} / \mathrm{Kg}$.

Solution

Heat required $=\mathrm{mc}\left(\theta_{2}-\theta_{1}\right)+\mathrm{mL}_{\mathrm{f}}$
Heat required $=\left(\frac{10}{1000}\right)(2100)(0--10)$

$$
+\left(\frac{10}{I U U U}\right)\left(3.36 \times 10^{5}\right)
$$

Heat required $=336000 \mathrm{~J}$
(c) For a solid not at melting point to a liquid not at freezing point.

+ Heat for change of temp-at melting point to a given temperature.
Heat $=\mathrm{mc}_{1} \Delta \theta_{1}+m L_{f}+m \varepsilon_{2} \Delta \theta_{2}$

WHERE

m is mass of the solid which is also the same as the mass of the liquid formed
$\Delta \theta_{1}$ is the change in temperature of the solid from its initial temperature to melting temperature.
$\Delta \theta_{2}$ is the change in temperature of the liquid formed from temperature to the final temperature of the liquid.
C_{1} is the specific heat capacity of a liquid
C_{2} is the specific heat capacity of the solid
L_{f} is the specific latent heat of fusion

Example

10 g of ice at $-10^{\circ} \mathrm{c}$ is heated to water at $30^{\circ} \mathrm{c}$ given that the S.H.C of ice is $2100 \mathrm{~J} / \mathrm{KgK}$, the S.H.C of water $4200 \mathrm{~J} / \mathrm{KgK}$. The specific latent heat of fusion of water is $3.36<10^{5} \mathrm{~J} /$

Kg. Calculate the heat energy supplied.

Solution:

Statefidnyolver ii) solid liquid at melting point $0^{\circ} \mathrm{C}$
iii) Liquid at $30^{\circ} \mathrm{C}$
$\mathrm{m}=10 \mathrm{~g}=0.01 \mathrm{~kg}$;
$\theta_{2}=0^{\circ} \mathrm{C}$;
$\theta_{1}=-10^{0} \mathrm{C}$;

$$
\begin{aligned}
& \binom{\text { Heat }}{\text { supplied }}=\mathrm{mc}_{1} \Delta \theta_{1}+\mathrm{mL}_{\mathrm{f}}+\mathrm{mc}_{2} \Delta \theta_{2} \\
& \binom{\text { Heat }}{\text { supplied }}=\begin{array}{c}
0.01(2100)(0+10) \\
\\
\quad+0.01(336000) \\
\\
+0.01(4200)(30-0)
\end{array}
\end{aligned}
$$

$\underset{\text { supplied }}{\text { Heat }}=210+3360+1260$

$$
=4830 \mathrm{~J}
$$

Example

A 3kw electrical heater is left on for two minutes when its placed in a container packed with ice. If 100 g of ice was melted to water, calculate the specific latent heat of fusion of ice.

Solution:

$\mathrm{P}=3 \mathrm{KW}=3000 \mathrm{~W} ; \mathrm{m}=100 \mathrm{~g}=0.1 \mathrm{Kg} ; \mathrm{t}=2 \mathrm{~min}$

Solution

$$
\text { Heat }=m L_{f}
$$

$$
\mathrm{pt}=\mathrm{mL}_{\mathrm{f}}
$$

$$
3000 \times 120=0.1 \times \mathrm{L}_{\mathrm{f}}
$$

$$
360000=0.1 \mathrm{~L}_{\mathrm{f}}
$$

$$
\begin{aligned}
\mathrm{L}_{\mathrm{f}} & =3600000 \mathrm{Jkg}^{-1}
\end{aligned}
$$

Note:

When the body changes state from liquid to solid, the same a mount of latent of fusion is given out.

When the 1.5 kw heater was switched on for 26 minutes, the top balance recorded that the mass of the beaker was reduced ExcollegboCalkesulatenthe specific latent heat of vaporization of water.
Solution:
$\mathrm{P}=1.5 \mathrm{KW}=1500 \mathrm{~W} ; \mathrm{m}=$ mass lostas steam $=1 \mathrm{~kg}$; $\mathrm{t}=26 \mathrm{~min}=1560 \mathrm{~s}$
Heat $=\mathrm{mL}_{\mathrm{v}}$
$\mathrm{pt}=\mathrm{mL}_{\mathrm{v}}$
$1500 \times 1560=1 \times \mathrm{L}_{\mathrm{v}}$ $2340000=L_{v}$

$$
\begin{aligned}
& L_{v}=2340000 \mathrm{Jkg}^{-1} \\
& \hline
\end{aligned}
$$

Note:

If it's a change of state from liquid to gas (vapour) or gas to liquid then the specific latent heat of vaporization should be used.

Exercise

1. Calculate the mass of steam at $100^{\circ} \mathrm{c}$ needed to raise temperature of water by 1 kg from $20^{\circ} \mathrm{c}$ to 80 oc . Specific heat capacity of water is $4000 \mathrm{~J} / \mathrm{Kgk}$.
[Ans: $\mathrm{m}=0.10 \mathrm{Kg}$]
2. Calculate the heat required to convert 5 kg of ice at $-20^{\circ} \mathrm{C}$ to steam at $100^{\circ} \mathrm{C}$.
[Given that the S.H.C of ice is $2100 \mathrm{~J} / \mathrm{KgK}$, the S.H.C of water $400 \mathrm{~J} / \mathrm{KgK} / \mathrm{Kg}$ The specific latent heat of fusion of water
is
and
specific

3. Musa was carrying out an experiment. He heated 200 g of

Galculate the finaltemperature of the mixture.
\{Specitic heat capacities of water and copper are 4200J/
KgK and $400 \mathrm{~J} / \mathrm{KgK}$ respectively $\}$
4. Two bath taps H and C deliver hot and cold water

 theeligitidfab a ssuming the heat capacity of the bath bat to be
A: 12.0
B: 24.0
C: 42.5
D. 56.5

5. See UNEB

1989 Qn. 33	2001 Qn.34	1988 Qn.3
2006 Qn. 8	2007 Qn.8	2000 Qn.3
1987 Qn.14	Section B	1992 Qn.8
1988 Qn.19	1988 Qn.5	
1999 Qn.15	1998 Qn. 2	

The heat received by a substance depends on the following factors:

* Temperature
* Mass
* Nature of substance

f). VAPOURS

 critical temperature i.e.
Critical temperature $\left(T_{c}\right)$ is the minimum temperature above which the gas cannot be liquidized no matter how much pressure is applied.
(ii) Saturated vapour is the vapour which is in thermal dynamic equilibrium with its own liquid i.e. whose rate of evaporation $=$ rate of condensation.
(iii) Un saturated vapour is the vapour which is not in thermal dynamic equilibrium with its own liquid i.e. whose rate of evaporation \neq rate of condensation.
(iv) Supper saturated vapour is the vapour whose rate of evaporation > its rate of condensation.
(v) Thermal dynamic equilibrium is the liquid's thermal state at which its rate of evaporation is equal to its rate of condensation.
(vi)Vapour pressure is the pressure exerted on the walls of the containerby the vapour molecules.
(vii) Saturated vapour pressure (s.v.p) is the pressure exerted by vapour which is in thermal dynamic equilibrium with its own liquid.
(viii) Un saturated vapour pressure is the pressure exerted by vapour which is not in thermo dynamic equilibrium with
its own liquid

(ix) Supper saturated vapour exessure $_{\text {is }}^{\text {is }}$ the pressure

 condensation. NB: A cloudy film forms on screens of cars being driven in
 point.

Wiimaticedthappyar pxplsunati(siv.pfior the occurrence of

\checkmark When a liquid in a closed container is heated, the energy which goes into it becomes mechanical energy to the molecules.
$\checkmark \quad$ Some of the liquid molecules get enough kinetic energy and break the intermolecular bonds and escape from the surface of the liquid and occupy the space just above it.
\checkmark These molecules constitute what we call vapour and the pressure they exert to the walls of the container as theyegrige with themselves and the walls of the Somerinetis called vapour pressure.

Vapour pressure is the pressure exterted by the escaping molecules of the vapour from the surface of the liquid.

Ecolebooks.com

\checkmark When these molecules bounce off from the walls of the container, they strike the liquid surface and re-enter the liquid until when a state of thermal dynamic equilibrium is attained i.e. (rate of evaporation = rate of condensation).
$\checkmark \quad$ In this state, the vapour is said to be saturated exerting saturated vapour pressure and before this state, vapour is un saturated (with rate of condensation > rate of evaporation) exerting un saturated vapor pressure.

Saturated vapour pressure (s.v.p) is the pressure exerted by vapour which is in thermal dynamic equilibrium with its own liquid.

NB:
Saturated vapours do not obey ideal gas laws because its mass changes due to condensation or evaporation as conditions change yet gas laws only apply to a constant mass of a gas.
It should be noted that saturated vapor occurs for a very short time and constant temperature (boiling point).

Comparison of vapour pressure

Saturated vapour.	Un saturated vapour.
It does not obey idealgas	It ${ }^{\text {abeysideal gas laws. }}$
laws.	
It is achieved at thermal dynamic equilibrium.	Its rate of evaporation fits rate of condensation.
Its pressure remains	Its pressure increases with
constant at particular temperature.	increase in temperature.

Determining saturated vapor pressure
Bhist-pipdtted nisetheed to determine the s.v.p of a volatile liquid at Pperdidulac.temperature.

Thescliquils awhessasnepe is l.to be determined is introduced

below.

Some of the liquid evaporates immediately and the mercury column falls by "h".

This is because the intreduced lquid evaporates and forms a vapour which exerts a pressiceodetheodeteury causing the column to fall.

When mercury has stopped dropping, the vapour is said to be in dynamic equilibrium, thus saturated vapour.
The pressure $\mathbf{h \rho g}$ is the s.v.p of the volatile liquid and $\boldsymbol{\rho}$ is its density.

Merits of mercury for this experiment

- Mercury is very dense compared to many liquids
- Mercury is opaque thus easily seen and read.

If too much water is introduced on top of mercury column

Observation

Some water evaporates and some remains on top of the mercury column.

Explanation

Some water remains on the top because the space above becomes a saturated vapour so that the rate at which molecules leave the liquid surface is equal to the rate at which other molecules return to the liquid.

Effect of compression on a saturated vapour

The saturated vapour is compressed by lowering the tube.

Observation

The height " h " of mercury column remains constant but amount of water on top of the mercury column increa ses.

Explanation

The height " h " remains constant because saturated vapour pressure is not affected when the vapour is compressed. However, the amount of water increases because more
vapour condenses when the vapour is compressed.
MordExplanatioing vapour volume of saturated vapour
mapionly nealdsutes saibeyentherliquidienrfincthe number of

\checkmark Thisilimfans. that the force per square meter (pressure)
due te an equalreduction, in the surface of the walls for
exerta on wat colliding molecules.

The saturated vapour is expanded by raising the tube

The height " h " of the column remains but the amount of water on top of the column decreases.

Ecolebooks.com

Explanation

The height " h " remains constant because the expansion of the saturated vapour becomes unsaturated on expansion so more waterevaporates.

Vapour pressure and temperature
 Effect of temperature on saturated vapour

When a saturated vapour is heated, it increases with temperature.
Although saturated vapour increases as temperature increases, a saturated vapour does not obey Boyle's law and Charles's law because;
\checkmark The mass of a saturated vapour is not fixed with temperature change but varies with temperature changes.
\checkmark The volume of saturated vapour is independent of pressure.
The mass of unsaturated vapour depends on the pressure. The mass of unsaturated vapour can be fixed while temperature changes.

More Explanation:

- Initially vapour pressure increase slowly with increase in temperature exponentially because fewer molecules are energetic enough to leave the liquid surface but as the liquid's boiling point is approached, vapour pressure rapidly increases i.e. un saturated vapour pressure.
- At boiling point vapour pressure remains constant (saturated vapour pressure) since vapour is saturated.
- Heating the liquid beyond its boiling point results into
 pressure (un saturated vapour pressure) increases
 of the container

Variation of pressure with temperature of saturated vapour

Explaining the graph
AB-Saturated vapour increases with increases in temperature, but does not obey the gas laws because:
(i) The volume of saturated vapour is independent of pressure.
(ii) The mass of a saturated vapourcannot be fixed as temperature changes.

BC-unsaturated vapour increase as temperature increases and obeys Boyle's law and Charles' law because:
(i) Volume of unsaturated vapour depends on the pressure
(ii) Mass of unsaturated yapour can be fixed when temperature changes.

Definition of saturated vapour pressure

A saturated vapour pressure is the pressure of a vapour which is in dynamic equilibrium with its liquid or solid.

Saturated vapourpressure and boiling point

A liquid will only boil when its saturated vapour pressure is equal to the atmospheric pressure.

What happens when a liquid boils?

When a liquid is heated its temperature rises. This makes the saturated vapour pressure to increase until it becomes equal to the atmospheric pressure.

At this stage further addition of heat, cause bubbles of the vapour to form inside liquid. This is boiling; therefore boiling point is the temperature at which saturated vapour pressure becomes equal to the external atmospheric pressure.

From the above it will be noted that the boiling point of a liquid depends on altitude because boiling occurs only when the saturated vapour pressure becomes equalto atmospheric pressure which depends on altitude.

Dew point

Dew point is the temperature at which the water vapourpresent in air is just sufficient to saturate it.

MELTING POINT, BOILING POINT AND

 EVAPORATION
(a) Melting

 Effect of pressure on melting point

When pressure is increased by the weighted copper wire

- Observation

The weighted copper wire passes through the block of ice without cutting it into two pieces.

- Explanation

This is because increasing pressure by the weighted copper wire lowers the melting point of ice, so the copper wire sinks through water and water which is no longer under pressure refreezes and gives out latent heat to the copper wire to enable melting of ice below.

In general increasing pressure decreases the melting point of solid and decreasing pressure increases the melting point.

Ecolebooks.com

Effect of impurities on the melting point
Impurities like salt lower the melting point of solid. E.g. the temperature of a well stirred ice water mixture is normally $0^{\circ} \mathrm{c}$ but when an impurity such as salt is added it may fall to $-20^{\circ} \mathrm{c}$.

(b) Boiling

Boiling is a change of state from liquid to vapour that occurs within the liquid at constant temperature called boiling point.

Boiling point is the constant temperature of a liquid at which its saturated vapour pressure is equal to external atmospheric pressure.

Steam point is the constant temperature at which (pure water \leftrightarrow vapuor) at 760 mmHg . It is 100 C .

NB:
It should be noted that boiling of any liquid occurs only when its saturated vapor pressure equalizes with external pressure implying that when a liquid is boiling, there is change of state thus occurring constant temperature called boiling point.

Experiment to show that boiling occurs at constant temperature (s.v.p = external pressure).

- When water in the beaker starts boiling, its vapour escapes and exerts pressure on water in the open limb of
- 能this shagedturethermometer reading remains constant and water in the J - shaped tube levels up indicating that
saturated vaporpressure is equal to extenalpressure.

Effect of pressure on boiling point

The boiling point of a liquid is directly proportional to the pressure above the liquid.

* If the pressure above the liquid is increased, the boiling point of the liquid rises. This is because more external pressure compresses the water molecules into the liquid. This requires more heat energy to break such molecules, hence increasing the boiling temperature.
* But if the pressure above the liquid is decreased the boiling Bointof the liguidis lowered
* In a pressure cookey food cooks more quickly because the pressure of stea abo vomater chokosor can rise to twice the normalatmospheric value.

Experiment to show the effect of pressure on boiling points

\checkmark When heating is stopped, the tube is closed and the flask is cooled by cold water.

Observation

$\checkmark \quad$ Water starts to boil again through there is no heating.

Explanation

\checkmark This is because when the flask is cooled the water vapour or steam above the water condenses resulting in
the pressure above to decrease. This decreases the boiling point.

NOTE: Cooking has nothing to do with whether water is boiling or not. Boiling here is just a mere physical phenomenon that can be seen.
Cooking depends on two factors; Time and temperature.

Thus from the above, cooking to occur;

* At reduced temperature, increase the cooking time

The Paressureldorkerease the cooking temperature.

 Pressuressure cookerker are useful in places where atmospheric pressure is low like at the top of a mountain (high altitudes).
pressure is low like at the top of a mountain (high altitudes).

Cooking with a pressure cooker is faster than ordinary cooking because most of its top surface is covered leaving

This covering reduces the space of escape for vapour molecules which increase the pressure inside due to random collisions of vapour molecules thus raising the boiling point to about $120^{\circ} \mathrm{C}$, hence faster cooking due to much heat.

Effect of impurities on boiling point

Impurities such as salt when added to a liquid e.g. water the boiling point of the liquid rises.
Addition of impurities raises the boiling point of a liquid. This is because; impurities absorb some of the supplied heat making the liquid to boil at a higher temperature than its normalboiling point thus faster cooking.

(c) Evaporation

This is defined as the process by which a liquid turns to vapour molecules which occurs at the liquid surface. It takes place at all temperatures but it is greatest when the liquid is at its boiling point.
So evaporation is the conversion of a liquid into its gaseous state.

Rate of evaporation
This is the rate at which molecules of a liquid escape from
the liquid surface per second
The rate of evapotation of a liquid is increased by;

- Increasing the surface area of the liquid e.g same same drought, one in a basin reduces faster than that in
- Increasing the temperature of the liquid since increase in temperature directly increases the average kinetic energy of the molecules escaping.
- Providing drought which removes the vapour molecules from the liquid surface before returning to it e.g. water exposed to direct sunshine evaporates faster than that undera shade.
- Reducing the pressure of the air above the liquid surface (atmospheric pressure) e.g. evaporation is faster on a mountain than on a leveled ground.

Factors affecting evaporation

Factor	Effect/Explanation
Surface area	Increasing the surface area increases the rate of evaporation. Explanation This is because the increased surface area makes more molecules to be at the surface of the liquid where they can easily escape.
Temperature	Increasing temperature increases the rate of evaporation. Decreasing temperature decreases the rate of evaporation.
Explanation This is because more molecules will move faster enough to escape from the surface of the liquid. This is because fewer molecules will move fast enough to escape from the surface of the liquid.	
Drought	The rate of evaporation increases when the

	liquid surfaee ExplanatiócoleBooks Because hine blows away the energetic molecules that have already escaped from the liquid. This gives chance for more molecules to escape.
Pressure	High pressure above the liquid surface means there is a high exertion on the liquid surface thus preventing molecules from escaping
Concentration of the liquid vapourin air	If the air already has a high concentration of the substance evaporating, then, such substance will evaporate very slowly.
Intermolecular forces	The stronger the forces keeping the molecules together, the more energy needed to put them apart and escape. Hence the slower the rate of evaporation.

Explanation of evaporation according to the kinetic theory

 (How evaporation causes cooling).\checkmark At a particular temperature, molecules of a liquid have an average speed but some molecules are moving faster than other.
\checkmark Evaporation occurs when faster moving molecules reach the surface and escape from the attractions of all
\checkmark the molecules.
$\checkmark \quad$ At the same time the slower molecules remain in the $\operatorname{liq}_{\text {molecules to }}$ call.
\checkmark This causes cooling as temperature falls with falling Cooling
This is defined as the continuous fall of temperature of a body placed in drought until when it attains an equilibrium state.
Cooling as a result of evaporation is seen in:

* Panting of dogs
* Makingice by evaporation of a volatile liquid
* Refrigerators

THE REFRIGERATOR

A refrigerator is a cooling appliance which uses the mechanism that transfers heat from it to the external

environment.

It is used in preservation of;
\checkmark Food - in homes and supermarkets.
\checkmark Blood - in blood banks in hospitals.
\checkmark Medicines - in pharmacies/hospitals/health centres.

How it works principle

A refrigerator works on the principle that heat is taken in at one point and given out at a nother point by the refrigerating substance (Freon) as it is pumped around the circuit.

Compressor/Pump:

1. Freon (a volatile liquid) or the refrigerant is compressed by the pump against the expansion valve, its pressure rises, and pushes it into the coils (cooling fins) on the outside of the refrigerator.

Condenser and cooling fins:
2. When the hot high pressure gas in the coils meets the cooler air temperature of the outside the cabinet, it is condensed to a liquid.
3. Now in liquid form at high pressure, the refrigerant cools down as it flows into the coils inside the freezer and the fridge. It dissipates all the latent heat to the surrounding by the cooling fins.

Evaporator:

4
contents
Thefrigerant
insperbs the the
freezing surrounding air and hence the contents.
5. Lastly, the refrigerant evaporates to a gas, and then flows back to the compressor, where the cycle starts again.

Functions of the main parts of refrigerator
PumphCompressor

* The pump forces the vapour into the heat exchanger.

Heat exchanger or Condenser

It is where the vapour is compressed and liquefies giving out
fatentheat of vaporization. ticntreat vazans.

Cooling fins

Thestingline ifing aive out the latent heat of vaporization to

Differences between evaporation and boiling

Evaporation	Books
i) Occurs at an	Occurs at arred fixed temperature called boiling point
ii) Occur at the surface of the liquid. No bubbles	Occurs within the liquid. Bubbles appear
iii) Depends on the surface area	Does not depend on the surface area
iv) Can occur even when atmospheric pressure is not equal to saturated vapour pressure	Occurs only when atmospheric pressure is equal to saturated vapour pressure
v) Causes cooling	Does not cause cooling

However evaporation and boiling are similar in that:

* Both evaporation and boiling need latent heat of vaporization.
* Both evaporation and boiling involve change of state from liquid to gas.

Making ice by evaporation of a volatile liquid like ether

Procedures:
\checkmark Place a metallic can filled with a volatile liquid like etheron a film of water at the top of a wooden block.
\checkmark Blow air current through a glass tube or straw as shown above.
Qbservation:
he water underneath the can freezes and turns to ice.

Explation:
a current of air is bubbled through ether, the ether
evaporates in the bubbles which carry it to the surface and burst.
\checkmark So the bubbling of air through ether results in increasing the rate of evaporation. This rapid change of state from iquid to vapour requires latent heat which is conducted through the beaker from the water below it causing it to cool and form ice.
Note: The metallic can may be replaced by a beaker.

1) Application gf good and bad conductors and metals because metals allow heat to pass through them easily.

Yhis fastws that metals are good conductors of heat as they draw the heat from the body
 pwnload more resources like this on ECOLEBOOKS.COM

2 Related explanations

\checkmark Metallic utensils being good conductors of heat, they absorb 耳eat by the volatile liquid to the cooling tins thus delaying the refrigerating process. Such utensils are not recommended to be used in refrigerators.
\checkmark Milk in a bottle wrapped in a wet cloth cools faster than that placed in a bucket exposed to a drought. This is because the wet cloth speeds up the rate of evaporation thus more cooling.
$\checkmark \quad$ It advisable for a heavily perspiring person to stand in a shade other than drought because drought speeds up evaporation thus faster cooling which may lead to over cooling of the body and eventually this over cooling may lower the body's resistance to infections.
$\checkmark \quad$ When taking a bath using cold water, the individual feels colder on a very shiny day than on a rainy day because on a shiny day, the body is at high temperatures such that on pouring cold water on the body, water absorbs some of the body's heat thusits cooling. Yet on a rainy day the body is at a relatively low temperature implying that less heat is absorbed from it when cold water is poured on it.

Two individuals; \mathbf{A} (suffering from serious malaria) and \mathbf{B} (normal) taking a bath of cold water at the same time of the day, \mathbf{A} feels colder than \mathbf{B} because the sick person's body is
at relatively higher temperature than of a normal person. When cold water is poured on the sick person's body, much
heat is absorbed from it compared to that absorbed from a normal person thus more coldness.

Two normal identical individuals; A (takes a bath of water

to it.
Water bottles are made of plastic other than glass and not failya Fided pbx daggerwhelm wa.tTheomsfille xypanadsissuohchtat

volume.
Exercise: See UNEB

1987 Qn. 15
1989 Qn. 35
1990 Qn. 10
1991 Qn. 31

1988 Qn. 10
1997 Qn. 9
1995 Qn. 4 2008 Qn. 41

3. OPIICS (LIGHT)

Definition:

Light is a form of energy which enables us to see. Or the form of energy that gives visual sensation.
Light can travel through a vacuum because light is in the
form of electromagnetic waves. All electromagnetic waves have a speed of $3.0 \times 10^{8} \mathrm{~ms}^{-1}$ in a vacuum, hence the speed of light.
An object is seen only when light from the object enters the eyes.

Sources of light.

(i) Luminous light sources:

These are objects which give their own light. Examples include the sun, stars, glow warms - these are natural. And the man made include electric bulbs, lamps, candles, etc.
(ii) Non-luminouslight sources:

These scatter or reflect light from other sources e.g the moon, mirror, reflecting surface.

Transmission of light:

Light travels from its source onto a nother place through a vacuum or a medium; the media include:

(i) TransparentMedium

A media which allows almost all of the light to pass through it and allows objects to be seen. E.g. colourless water, paraffin and colourless glass.
(ii) Translucent Medium

liquid, frosted glass and oily paper.
A(iiin) ediun@paque MediHor allow light to pass through it at
adt and we cannot see thru them. E.g wood, bricks, plastic N/B: incandescent bodies give off light because they are hot
 absorbed heat for some time.

RAYSistho directiphs of the path in which light is travelling. It is represented by a straight line with an arrow on it.

A beam is a collection of rays or a stream of light energy. There are three kinds:

Ecolebooks.com

RECTILINEAR PROPAGATION OF LIGHT

Definition:

This is the process by which light travels in straight lines when produced from a source.
It is propagated (sent outward) and it travels in straight lines.
Experiment to show that light travels in a straight line

Procedures

Arranging cardboards

Three cards A, B, and C are arranged with their holes in a straight line such that they are some distance apart.
This is ensured by passing a string through the holes of the cardboards and dra wing a string taut.(straight n tight)

Observation

When the eyes is placed at E , light from the source is seen.
The cardboards are displaced such that their holes are not in straight line, no light is seen at E.

Conclusion

This shows that light travels in a straight line

SHADOWS

A shadow is a region of darkness formed when an opaque gbject obstructs the path of light
Shadows are formed because light travels in a straight line.
Shadow formation

a) Point Source:

A point source is a very small source of light. It can be obtained by placing a cardboard with a small hole in front of a lamp as shown below.

Shadow formation by a point source of light.

For a point source, a sharp shadow is formed, i.e. the shadow is also equally dark all over.
For a point source: When the opaque object is moved near the source, then the size of the shadow increases. However, when the object is moved near the screen, the size of the shadow is decreased.

b) Extended Source

When the cardboard is removed then the lamp becomes an extended source

The shadow has the central dark patch called umbra surrounded by a lighter ring called penumbra.

Umbra

A region of shadow where no light reaches at all.

Penumbra

A region of the shadow where some light reaches.

Note:

For an extended source: When the opaque object is moved near the source the size of umbradecreases, but the size of
penumbra increases. When the object is moved near the screen, the size of umbra increases, but the size of penumbra
decreases.

The umbra may fail to reach the screen if the opaque object is very faraway from the screen

ECLIPSE:

Ecolebooks.com

An eclipse is the obscuring of light from the sun by either the moon or the earth.
An eclipse occurs when the sun, moon, and earth are in a straight line. There are two types of eclipses namely:
(a) Solar, annular (Eclipses of the sun)
(b) Lunar. (Eclipse of the moon)

a) Solar Eclipse:

Solar eclipse also called eclipse of the sun. It occurs when the moon is between the sun and the earth, such that both umbra and penumbra reaches the earth. The area on earth covered by umbra has total eclipse and the sun cannot be seen at all. The area covered by penumbra has partial eclipse and only part of the sun is seen.

* Annular Eclipse:

Annular eclipse of the sun occurs when the sun is very far from the earth and the moon is between the earth and the sun, such that the tip of the umbra is the one that reaches the earth's surface. From one place on the earth, the sun is represented by the appearance of a ring of light.

Note: The distance between the earth and the moon varies slightly since the moon's orbit around the earth is elliptical. This explains the variation in the moon's distance around the earth.

b) Lunar Eclipse:

Lunar eclipse is also called eclipse of the moon. Lunar eclipse occurs when the earth is between the sun and the moon. During the eclipse of the moon, the earth's shadow is casted on the moon such that when the moon is at position \mathbf{M}_{2}, total eclipse occurs. In position \mathbf{M}_{1}, partial eclipse occurs and when the moon is in position M_{0}, no eclipse occurs, but the moon is less bright than usual.

Note: Total eclipse of the moon lasts longer than total eclipse of the sun beca ricaledingelearth which is in the middle is larger thathe moon forthe sun.

Flourescence and phosphorence substance

(i) Fluorescence Substance:

A substance which absorbs energy and immediately release the energy in the form of light e.g. zinc sulphide. The screen of a T.V and C.R.O are made of a fluorescent substance.

(ii) Phosphorescence Substance:

A substance which absorbs the energy falling on it, store it, and when energy stops falling on it, it release energy in the form of light, e.g. calcium sulphide.

THE PIN WHOLE CAMERA

Pin hole camera consists of a closed box with a small hole(pin hole) on face and a screen of tracing paper on the opposite face.

Description of Image Formation:

The image is real and inverted. Each point of the image on the screen will be illuminated only by the light travelling in a straight line from a particular point.

Effect of image formation for pin hole camera if;

(i) Pin hole is enlarged; image become blurred and brighter

Explanation:

The blurring of the image is because the large hole will be the same as a number of pin holes put together, each forming their own image and overlap of these images causes a single blurred image.

Note:

The box is blackened inside to prevent reflection inside a camera. The image comes brighter because of increased quantity of light.
(ii) Moving the object closer to the pin hole: The size of the image increases the but the image becomes less bright.

Explanation:

The image becomes less bright as its size increases because the same a mount of light as before spread over large area of the screen.

MAGNIFICATION
 Definition:

Magnification is the ratio of image height to object height or image distance to object distance.
Mathematically, magnification is given by:

Magnification, $\mathrm{M}=\frac{\text { Image distance, } \mathrm{V}}{\text { EcOlebouks.comect distance, } \mathrm{U}}$
OR

$$
\text { Magnification, } \mathrm{M}=\frac{\text { Image height, } \mathrm{h}}{\text { Object height, } \mathrm{H}}
$$

Larger magnification is obtained when the object is nearer the pin hole and smaller magnification is produced when the object is fartheraway.

Example: 1

Calculate the height of a building 150 m away from a pinhole camera, which produces an image 5 cm high if the distance between the pinhole camera and screen is 10 cm .

Solution

Given; object distance $=150 \mathrm{~cm}$
Image height $=5 \mathrm{~cm}$
Image distance $=10 \mathrm{~cm}$
From definition of magnification
$\mathrm{M}=\frac{\text { Image height, } \mathrm{h}}{\text { Object height, } \mathrm{H}}=\frac{\text { Image distance, } \mathrm{V}}{\text { Object distance, } \mathrm{U}}$

$$
\begin{aligned}
\frac{\mathrm{h}}{\mathrm{H}} & =\frac{\mathrm{V}}{\mathrm{U}} \\
\frac{5 \mathrm{~cm}}{\mathrm{H}} & =\frac{10 \mathrm{~cm}}{150 \mathrm{~cm}} \\
10 \mathrm{H} & =5 \times 150 \\
\mathrm{H} & =75 \mathrm{~cm}
\end{aligned}
$$

Alternatively, you can first calculate magnification using first equation and then substitute in second equation to obtain object height; i.e.

Equating (i) and (ii)
$5 \mathrm{~cm}-1$
$\frac{5 \mathrm{~cm}}{\mathrm{H}}=\begin{gathered}1 \\ 45\end{gathered}$

$$
\stackrel{11}{\mathrm{H}}=5 \times 15
$$

$$
\mathrm{H}=75 \mathrm{~cm}
$$

Example: 2

The length of a pinhole camera is 25 cm . An object 2 m , high is placed 10 m from the pinhole. Calculate the height of the image produced and its magnification.

Solution:

Given;

$$
\begin{aligned}
& \text { Image distance }=25 \mathrm{~cm}=0.25 \mathrm{~m} \\
& \text { Object height }=2 \mathrm{~m} \\
& \text { Object distance }=10 \mathrm{~cm}=0.1 \mathrm{~m} \\
& \text { Image height }=\text { ? }
\end{aligned}
$$

From definition magnification;
$\mathrm{M}=\frac{\text { Image distance, } \mathrm{V}}{\text { Object distance, } \mathrm{U}}$

$$
\begin{aligned}
& \mathrm{M}=\frac{10 \mathrm{~cm}}{150 \mathrm{~cm}} \\
& \mathrm{M}=\frac{2.5}{}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\mathrm{h}}{\mathrm{H}} & =\frac{\mathrm{V}}{\mathrm{U}} \\
\frac{\mathrm{~h}}{2} & =\frac{0.25}{0.1} \\
0.1 \mathrm{~h} & =2 \times 0.25 \\
\mathrm{~h} & =0.5 \mathrm{~cm}
\end{aligned}
$$

See UNEB Paper I

1997	2000	2002	2006	2006
Qn.22	Qn. 34	Qn. 27	Qn. 29	Qn.27

1. A girl is 1.6 m tall and stands 4 m away from the pin hole camera which is 20 m long. Find the:
i) Image height
ii) The magnification if the camera is only 10 cm long.
2. UNEB 1992 Qn. 1
(a) What is meant by rectilinear propagation of light?
(b) An opaque object is placed in front of a source of light.

Draw ray diagrams to show the formation of shadows when;
(i) A point source is used
(ii) An extended source is used

3. . UNEB 1997 Qn. 4

(b) Draw diagrams to show the formation of total and partial solar eclipse.

4. . UNEB1998 Qn. 7

(a) Describe an experiment to show that light travels in a straight line.
(b) An object of height 4 cm is placed 5 cm away from a pin hole camera. The screen is 7 cm from the pin hole.
(i) Draw a scale ray diagram to show the formation of an image by a pin hole camera.
(ii) What is the nature of the image?
(iii) Find the magnification.
(iv) Explain what happens to the image if the pin-hole is made larger.

REFLECTION OF LIGHT

Definition:

Reflection is the process by which light energy falling on a body surface bounces off.
The surface from which reflection occurs is called the reflecting surface.

Types of Rays

(i) Incident rays; is a ray of light from the light source falling onto/striking the reflecting surface
(ii) Reflected rays; is a ray leaving/bouncing off the reflecting surface at the point of incidence.

Normal: is a line at 90 degrees with the reflecting surface the ray is incident

Types of Angle:

(i) Angle of incidence " i "; is the angle between the incident ray and the normal at the point of incidence i.e. it's the angle made by the incident ray with the normal at the point of incidence
(ii) Angle of reflection " \mathbf{r} "; is the angle between the reflected ray and the normal at the point of incidence i.e. it's the angle made by the reflected ray with the normal at the point of incidence.

\checkmark Point 0 (point of incidence)
This is the point on the reflecting surface where the incident ray is directed.
\checkmark Normal (0N)
Jarfdixe drawn from point 0 perpendicular to the reflecting
$\checkmark \quad$ Incidentray (A0)
Jenthereath along which light is directed on to the reflecting
$\checkmark \quad$ Angle of incidence (i)
This is the angle that the incident ray makes with the normal at the point of incidence.
$\checkmark \quad$ Reflected (0B)
Ifflecteed.ath along which light incident on a surface is
$\checkmark \quad$ Angle of reflection (r)
This is an angle between the reflected ray and the normalat the point of incidence.

The Laws of Reflection
The laws of reflection state that:
i) The incident ray, reflected ray, and normal at the point of incidence all lie in the same plane.
ii) The angle of incidence is equal to the angle of reflection.

Experiment to verify the laws of reflection of light

Procedure:

* A white sheet of paperséfixedeB @odtf board and a plane mirror is pladed vertically on the paper with its reflecting surface facing the object.
* The mirror line is traced and the mirror is removed and the line is drawn and labeled $A B$.
* A normalMN bisecting the mirror line $A B$ is drawn.
* A line RN is drawn at an angle θ to the normal.e.g $\theta=30^{\circ}$
* Pins P_{1} and P_{2} are fixed along line RN .
* The mirror is placed back on the board so that its reflecting surface coincides exactly with the mirror line AB .
* The images of P_{1} and P_{2} are viewed in the mirror and other pins P_{3} and P_{4} are fixed such that they are in line
* With the images $\beta_{3} P_{1}$ and P_{2}
* Angle r is measured and recorded.

Dbserygitiqi: a agle r.

\checkmark phinincidurnidenyethat motmeadand diarreflected ray at the
Conclusion: hence verifying the laws of reflection

1. Regular Refleqtisoof: Reflection

beam. Example of smooth plane surface is a plane mirror.

2. Irregular or Diffused Reflection:

Diffused reflection occurs when a parallel incident beam falls on a rough surface and the reflected beam is scattered in different directions.
(a) REFLECTION AT PLANE SURFACES:

Ecolebooks.com

Image formation by a plane mirror

Characteristics of the image formed
\checkmark Image is of the same size as the Object
\checkmark Laterally inverted
$\checkmark \quad$ Virtual (cannot be formed on the screen)
\checkmark Same distance behind the mirror as the Object is in front of the mirror

Definition:

Real image: Is the image which is formed by rays that actually intersect and can be formed on the screen.

Virtual image: Is the image formed by the apparent intersection of light rays. i.e the rays which have been extended and it cannot be formed on the screen.

Explanation of virtualimage in plane mirror:
The image in a plane mirror is virtual in that the rays from a point object are reflected at the mirror and appear to come from the point behind the mirror where the eyes imagine the reflected rays to meet when produced backward.

NB: virtual objects and images should be represented by dotted lines.

LateralInversion:

In a mirror image, right and left are interchanged and the image is said to be laterally inverted. The effect occurs whenever an image is formed by one reflection.

Post

The glancing angle and theangle of deviation.
Deviation of light at a plaestiffaceBooks

g - Glancing angle

The angle between the incident ray and the reflecting surface.

d- Angle of deviation

it is the angle between the initial direction of the incident ray
(extended incident ray) and the reflected ray.
Angle of Deviation, d;
$\mathrm{d}=$ Angle $\mathrm{A}^{1} \mathrm{OB}$
$\mathrm{d}=\mathrm{g}+$ Angle $\mathrm{M}_{0} \mathrm{OB}$
$d=g+(90-r)$
But $\mathrm{i}=\mathrm{r}$ (From the law of reflection).
$\mathrm{d}=\mathrm{g}+(90-\mathrm{i})$
But;
($90-\mathrm{i})=\mathrm{g}$ (Vertically opposite angles)
$\mathrm{d}=\mathrm{g}+\mathrm{g}$
$\mathrm{d}=2 \mathrm{~g}$

Example

1. A light ray is incident to a smooth surface as shown below

(i) Angle of reflection
(ii) Glancing angle
(iii) Angle of deviation
2. A light ray is incident to a smooth surface as shown below

Find the:

(i) Angle of reflection
(ii) Angle of reflection
3. A girl sits 5 m away from a plane mirror. If a table is
(i) Distance between the table and its image.
(ii) Distance between the girl and the tables' Ecdnalgooks.com
(iii) Distance between the table and the girls' image.
(iv) A boy stands 10 m a way from a plane mirror. What distance should he move towards the plane mirror such that the distance between him and his image is 8 m .

INCLINED MIRRORS

Image formed by an inclined mirror at an angle θ
When two mirrors are inclined to each other at an angle θ, the number of images (n) is given by:

The table below summarizes how one can obtain the number

Angle between mirrors $\theta\left({ }^{\circ}\right)$	$\left(\frac{360}{\theta}\right)$	Number of image in n: $=\frac{360}{\theta}-1$
90	4	3
60	6	6
45	8	7
30	12	11
15	24	23

Questions

1. Two plane mirrors are inclined at an angle 50° to one a nother find the number of images formed by these mirrors.
$\mathrm{n}=\left(\frac{36}{\theta}-1\right)$
$\mathrm{n}=\left(\frac{360}{50}-1\right)=7.2-1=6.2 \approx 6$ images
2. Two plane mirrors are inclined at an angle θ to each other. If the number of image formed between them is 79 , find the angle of inclination θ.
Solution
$\mathrm{n}=\left(\frac{36}{\theta}-1\right)$
$79=\left(\frac{360}{\theta}-1\right)$
$\theta=4.5^{0}$
Find the number of images formed when an object is placed between mirrors inclined at; (i) 90° (ii) 60° (iii) 120°
(i) Image formed in two plane mirrors inclined at $\mathbf{9 0}^{\mathbf{0}}$ (ÉcoleBooks

When two mirrors are inclined at 90° to each other, images are formed by a single reflection in addition to two extra images formed by 2 reflections.
(ii) Image formed in parallel mirrors

An infinity number of image is formed on an object placed between two parallel mirrors each image seen in one mirror will act as virtual object to the next mirror.

-The object O, gives rise to image I_{1}, on mirror m_{1} and I_{2} on m 2 . 11 acts as virtual object to give an image $\mathrm{I}(1,2)$ in mirror m_{2} just as I_{2} gives an image $I_{(2,1)}$ in mirror $m_{1 .} I_{(1,2)}$ in mirror $m I_{(1,2)}$ gives $I_{(1,2,1)}$ after reflection in m_{1} while $I_{(2,1,2)}$ after reflecting in Mirror m_{2}.

Number of images $n=$ When two mirrors are parallel, the angle θ between them is zero and the number of images formed between them is
$\mathrm{N}=\left(\frac{360}{\theta}-1\right)=0$ (infinite)
This shows infinite number of image when two plane mirrors are parallel. The image lies in a straight line through the object and perpendicular to the mirrors.

ROTATION OF REFLECTED RAY BY ROTATING THE MIRRERebooks.com

When a mirror is rotated through any angle, the reflected ray will rotate through an angle 2θ provided the direction of the incident ray remains the same e.g the angle between a fixed ray of light and a mirror is 25°, if the mirror rotates through 20°. Find by how many degrees do a reflected ray rotates. Required angle $=2 \theta=2 \times 20=40^{\circ}$
N.B the angle through which the reflected ray is rotated does not depend on the angle of incidence but depends on the angle of rotation on the reflecting surface.

Deviation produced by mirror in position MM_{0} is twice the glancing angle
$\mathrm{d}_{1}=$ Angle $\mathrm{BO} \mathrm{A}^{1}=2 \mathrm{~g}$
Deviation produced by mirror in position $\mathrm{M}_{1} \mathrm{M}_{2}$, is twice the glancing angle
$\mathrm{d}_{2}=$ Angle $\mathrm{B}^{1} \mathrm{OA}^{1}=2(\mathrm{~g}+\theta)$
Bytle of rotation of reflected ray = Angle B B^{1} O B
Angle $B^{1} 8$ B \equiv Apgle $\left.B^{1}\right)^{0} A_{2}^{1}-$ AngleBO A
$\left.\left.\left.\rangle\rangle\rangle\rangle{ }^{1}\right\rangle\right\rangle=2\right\rangle$
Questions

An incident ray makes an angle of 20° with the plane mirror in position m 1 as shown in the diagram
a) What will the angle of reflection be if the mirror is rotated through 6^{0} to position m 2 while direction of incident ray remains the same?
b) An object is placed 6 cm from a plane mirror. If the

(b) REFLECTION AT CURVED (SPHERICAL) MIRRORS

Curved mereoss atecphesicabmirrors made by cutting part of the sphere.

Terms used in curved mirrors

Pole, P .

Pole is the mid-point of the actual mirror surface.
Pole is the centre portion of the mirror

Aperture.

This is the width of the mirror. The aperture is the distance between two opposite points on the edge of the mirror.

Centre of Curvature, C.

This is the center of the sphere from which the mirror forms a part.

Radius of Curvature, r.

The radius of curvature is the distance from the pole to the centre of curvature.

Principal axis.

This is the straight line joining the pole to the centre of curvature.

Focal length, f.

Focal length is the distance from the pole to the principal focus.

Principal focus, F.
Principal focus is half the distance between the centre of curvature and the pole.

Summary for terms used in curved mirrors i.e. Concave mirror.

Types of curved mirrors

(c) Parabolic mirror

(i) CONCAVE MIRROR

A concave mirror is the typ ofonedenionikswhich the reflecting surface is curved invards.

Uses of concave mirror

\checkmark Used in astronomical telescopes.
\checkmark Used for shaving because it magnifies the object.
\checkmark Used as solar concentrators.
\checkmark Used by dentists for magnification i.e Dentist mirror.
\checkmark Used in car head lamps, torches

Defect of concave mirror:

When a wide beam of parallel rays fall on a concave mirror of large aperture, not all are brought to a focus at the focal point but instead form a caustic curved.
N.B Caustic curve is an illusory curve that is seen to touch the reflected rays when a wide parallel beam of light falls on a concave mirror.

Useful rays used in construction of ray diagrams.

4. A ray striking the pole is reflected so as the incident ra, and the reflected ray make the same angle with th s.ineipghatis. ie.

Characteristics of the image, I formed by concave mirror at different positions.
(i) Object, O beyond the centre of curvature, C .

The image, I formed is;

* Position: Between F and C
* Nature : Real and Inverted
* Size : Diminished

The image, I formed is;

* Position: At C
* Nature : Realand Inverted
* Size : Same size as the object
i) security mirrors in supermarket
ii) driving mirrors

Ecolebooks.com
This is because a convex mirror;
\checkmark Gives an erect (upright) virtual image of the objects.
\checkmark Provides a wider field of view than other mirrors such as plane mirror. i.e.

Disadvantage of convex mirrors:

- The image formed is diminished.
- It gives a false impression of the distance of an object Therefore, convex mirrors give erect diminished images and this makes it difficult for the driver to judge the distance when reversing the vehicle.

Image formation by a convex mirror

Characteristics of the image, I formed by convex mirror.
Irrespective of the position of the object, the images formed in convex mirrors are;

> Fosition: Behind the mirror Nature : Bitual and upright $*$ Size \quad : Diminished

NOTE: 1. Magnified images are the images which are larger than. thermbihgted images are the images which are smaller than the objects.

(iii) PARABOLIC MIRRORS

These are used to produce a parallel beam of light in spot light, car head lamps or hand torches.

Parallel beam from curved mirror

 principal focus of a concave mirror of small aperture.

The image is regarded asbeing, at infinity. If a wide parallel beam is required as from cat Eeademphnekthe section of the mirror must be in the form parabola.
Illustration:

Parabolic Mirror

Magnification

Definition:
Magnification is defined as;

* The number of times the image is larger than the object.
* The ratio of image size to object size.

Linear or transverse magnification is the ratio of one dimension of the image to a corresponding dimension of the object i.e.
Linear magnification is;

* The ratio of image distance to object distance.

$$
\text { Magnification }=\begin{gathered}
\text { Image Distance } \\
\text { Object Distance }
\end{gathered}=\begin{gathered}
\mathrm{v}
\end{gathered}
$$

* The ratio of image height to object height.

$$
\text { Magnification }=\begin{gathered}
\text { Image Height }
\end{gathered} \quad \begin{gathered}
\mathrm{h} \\
\text { Object Height }
\end{gathered}=\begin{aligned}
& \mathrm{H}
\end{aligned}
$$

Stenstruction of accurate ray diagrams on qraph paper (which acts as the principal with a perpendicularline to act as the curved mirror.

Step 2: Where distances are given, choose a scale for object
Step 3: Measure the focallength " f " and radius of curvature " r " from the mirror and mark C and F as centre of curvature

Steppinginal focusfernegtirelpal rays to obtain the position
Sfeperimage sure the position (distance) and the size (height) of the image and multiply by the corresponding scale.

Axamplet $\mathbf{1}_{\mathbf{o}} \mathbf{f}$ height 10 cm is placed at a distance of 60 cm Aramingothreçave mirror of focal length 20 cm . Find by scale
(ii) Natuge ρ कstion age formed.
(iii) Magnification of the image formed.

Solution

Axis	Scale	Conversion
Vertical 区iso	eboblcmicom	* $10 \mathrm{~cm} \rightarrow \frac{10}{10} \rightarrow 1 \mathrm{~cm}$
Horizontal axis	1:10 cm	$\begin{aligned} & * \quad 60 \mathrm{~cm} \rightarrow \frac{60}{10} \rightarrow 6 \mathrm{~cm} \\ & \& \quad 20 \mathrm{~cm} \rightarrow \frac{20}{10} \rightarrow 2 \mathrm{~cm} \end{aligned}$

Position:
The image distance as measured from the scale drawing is
3 cm ; using the above scale,

Size:
$=30$
The height of the image on the scale drawing is 0.5 cm ; using the scale,
$\hat{\nu}\rangle \hat{\nu} \hat{\nu}=\left(0.5{ }^{2}{ }^{2} 10\right)$
Nature: 3:

The image formed is; Real, Inverted and Diminished.

Magnification:

Magnification $=\underset{\text { Ubject Distance }}{\text { Image }}=\frac{30}{60}=0.5$
Or
Magnification $=\frac{\text { Image Height }}{\text { Object Height }}=\frac{5}{10}=0.5$
Example 2:
The focal length of a concave mirror is 4 cm . An Object 1.5 cm high is placed 12 cm in front of the mirror.
(i) Use a rav diagram to locate the position and size of the image on the graph paper.
(ii) Describe the features of the image formed.
(iii) Find the magnification of the image formed.

Solution

Axis	Scale	Conversion
Vertical axis	$\mathbf{1 : 1 ~ c m}$	\star

(i) Position:

The image distance as measured from the scale drawing is 3 cm ; using the above scale,

Size:
The height of the image on the scale drawing is 0.8 cm ; using the scale,


```
                    \(=0.75\) 全
(ii) Nature:
```

The image formed is; Real, Inverted and Diminished.
(iii) Magnification:

$$
\begin{aligned}
& \text { Magnification }=\frac{\text { Image Distance }}{\text { Object Distance }}=\frac{6}{12}=0.5 \\
& \text { Or } \\
& \text { Magnification }=\frac{\text { Image Height }}{\text { Object Height }}=\frac{0.75}{1.5}=0.5
\end{aligned}
$$

Example

An object of height 6 cm is 10 cm in front of a convex mirror of focal length 12 cm . Find by graphical method, the size, position and nature of the image.

Selution be represented by 1 cm

Axis	Scale	Conversion
Vertical axis	1:5 cm	* $6 \mathrm{~cm} \rightarrow \frac{6}{5} \rightarrow 1.2 \mathrm{~cm}$
Horizontal axis	1:5 cm	$\begin{aligned} & * \quad 10 \mathrm{~cm} \rightarrow \frac{10}{5} \rightarrow 2 \mathrm{~cm} \\ & * \quad 12 \mathrm{~cm} \rightarrow \frac{12}{5} \rightarrow 2.4 \mathrm{~cm} \end{aligned}$

(i) Position

The image distance as measured from the scale drawing is
1 cm : using the above scale,

$=5 \hat{2} \hat{2}$
 Solution

Ecolebooks.com

Size:
The height of the image on the scale drawing is 0.8 cm ; using the scale,

(ii) Nature:

The image formed is; virtual, Inverted and Diminished.
(iii) Magnification:

Magnification $=\frac{\text { Image Distance }}{\text { Object Distance }}=\frac{5}{10}=0.5$
Magnification and the image size of the object.

Magnification, M	Image size, I
When M is greater than 1	The image is magnified i.e. the image is larger than the object
When M is equalto 1	The image size is the same as the object
When M is less than 1	The image is diminished i.e. the image is smaller than the object

THE MIRROR FORMULA

The mirror formula for the concave mirror and convex mirror is given by;

Where; $\quad \mathbf{u}=$ object distance from the mirror
$\mathbf{v}=$ image distance from the mirror
$\mathbf{f}=$ focallength
An image may be formed in front or behind the curved mirror. It is necessary to have a sign convention for the values of \mathbf{u}, \mathbf{v} and \mathbf{f} so as to distinguish between the two cases and obtain the correct answer when substituting into the formula.

Real is positive and virtual is negative sign convention:
According to this sign convention;

- All distances are measured from the pole of the mirror as the origin.
- Distances of real objects and the images are positive.
- Distances of virtual objects and images are negative.
- The principal focus, F of the concave mirror is real hence its focal length, f is positive while a convex mirror has a virtual principle focus, F and so its focal rengun, is neganve.

Example 1:

An object is placed 20 cm in front of a concave mirror of focallength 12 cm . Find the nature and position of the image formed.

	ÉcoleBooks
Using the mirror formula	1 5-3 2 1
$1-1$	$\overline{\mathrm{v}}=\frac{{ }^{\text {a }}}{60}=\frac{}{60}=\frac{1}{30}$
$1 \begin{array}{lll}1 & 1\end{array}$	$\frac{1}{v}=\frac{1}{30}$
$\overline{12}=\frac{1}{20}{ }^{+}{ }_{\text {v }}$	v 30
	$\mathrm{v}=30 \mathrm{~cm}$
$\frac{1}{12}-\frac{1}{20}=1$	A real image was formed 30 cm from the mirror on the
	same side as the object.

Example 2:

Calculate the distance of the image from the concave mirror of focallength 15 cm if the object is 20 cm from the mirror.

Solution

$\mathrm{f}=15 \mathrm{~cm} ; \mathrm{u}=20 \mathrm{~cm} ; \mathrm{v}=$?

Using the mirror formula;	
$\frac{1}{2}=\frac{1}{3}+\frac{1}{2}$	$\frac{1}{\mathrm{~V}}=\frac{4-3}{60}=\frac{1}{60}$
$\frac{1}{15}=\frac{1}{20} \stackrel{1}{\mathrm{~V}}$	$\frac{1}{\mathrm{v}}=\frac{1}{60}$
$\frac{1}{15}-\frac{1}{20} \overline{\overline{\mathrm{~V}}}$	$\mathrm{v}=60 \mathrm{~cm}$ A real image was formed 60 cm from the mirror on the same side as the object.

Example 3:

Find the distance of the image from a convex mirror of focal length 10 cm if the object is 15 cm from the mirror.

Solution

$\mathrm{u}=15 \mathrm{~cm} ; \mathrm{f}=-10 \mathrm{~cm}$ (for convex mirror); $\mathrm{v}=$?

Using the mirror formula; $\frac{1}{2}=\frac{1}{2}+\frac{1}{-}$	$\frac{1}{\mathrm{~V}}=\frac{-3-2}{30}=\frac{-5}{30}$
$\frac{1}{-10}=\frac{1}{15} \underset{\mathrm{v}}{F} 1$	$\frac{1}{\mathrm{v}}=\frac{-1}{6}$
$\frac{1}{-10}-\frac{1}{15} \overline{\mathrm{v}}$	$\mathrm{v}=-6 \mathrm{~cm}$ A virtual image was formed 6 cm from the mirror on the opposite side as the object.(i.e behind the convex mirror)

Example 4:

A convex mirror of focal length 18 cm produces an image of on its axis 6 cm from the mirror. Calculate the position of the object.

Solution

$\mathrm{u}=$?; $\mathrm{f}=-18 \mathrm{~cm}$ (for convex mirror); $\mathrm{v}=-6 \mathrm{~cm}$

Using the mirror formula; $\frac{1}{2}=\frac{1}{2}$ $\frac{1}{\mathrm{u}}=\frac{-1+3}{18}=\frac{2}{18}=\frac{1}{9}$ $\frac{1}{-18}=\frac{1}{\mathrm{u}}+\frac{1}{-6}$ $\frac{1}{\mathrm{u}}=\frac{1}{9}$ $\frac{1}{-18}+\frac{1}{6}=\frac{1}{\mathrm{u}}$ $\mathrm{u}=9 \mathrm{~cm}$ A real object was 9 cm in front of the convex mirror. ECOLEBOOKS.COM

Exercise

1. Find the distance of the image from the concave mirror
 mirror.
2. A concave mirror of focal length 15 cm has an object placed 25 cm from it. Find the position and nature of the image.
3. An object is 32 cm in front of a convex mirror of focal length 16 cm . Describe the image and give its position.
4. When an object is 42 cm from a concave mirror, the object and the image are of the same height. What is the focallength of the mirror?
5. An object 5 cm high is placed 30 cm in front of the concave mirror. The image is 60 cm in front of the mirror. Find the;
(i) Focal length of the mirror.
(ii) Magnification.
(iii) Height of the object.

NOTE: Currently, the use of the mirror formula and lens formula is out of the O- level syllabus. Therefore students are encouraged to practice the use of accurate ray diagram (graphical) method to find the position of images and objects or the focallength of the mirror.

Determining the focal length of Concave mirrors

i) Focusing distant object (Approximate Method)

Rays from
a distant object

Light from a distant object such as a tree is focused on the screen.

Distance between the image (screen) and the pole of the
mirror are measuredusing ametre-rule.
It is approximately equal to the focallength .f of the mirror.
ii) By determining first the radius of curvature.
(Self conjugate method) or the no parallax method.
image pin

A concave mirror is placed horizontally on a bench. An

The position of the pin is adjusted until the position is obtained where it coincides with is furgealiotbere is no parallax between the two, i.e. there is no relative motion between the object and the image when the observer moves the head from side to side or up and down.
The distance r of the pin from the pole is measured and focal length determined,

iii) Using an illuminated object at C

Procedures:

The apparatus is set up as shown in the diagram.
A concave mirror is moved to and fro in front of the screen until a sharp image of the cross wire is obtained on the
screen.
The distance between the screen and the mirror, r is measured and recorded.
The focallength, f, of the mirror is then determined from;

$$
\theta=\frac{\$}{2}
$$

N.B:

B: An object coincides with its image when the object is at the centre of curvature of the mirror.
2. The focal length is one half of the distance from the centre of curvature to the mirror.
3. Parallax is the apparent relative movement of two objects due to a movement on the part of the observer.

Exercise: See UNEB Paper I:

1.

2002 Qn. 8	2003 Qn. 20	2005 Qn. 29	2007 Qn. 2

2. UNEB 1995 Qn. 5

 dia gram to show the formation of the image.

(b) State two applications of convex mirrors.

3. UNEB 1997 Paper 2 Qn. 4

(c) An object 10 cm high is placed at a distance of 25 cm from a convex mirror of focallength 10 cm .
ima (je. Draw a ray diagram to locate the position of the ECOLEBOOKS.COM
(ii) Calculate the magnification.
(d) State the reasons for use of convex mirrors in vehicles.

Ecolebooks.com

4. UNEB 2002 Paper 2 Qn. 5
(c) With the aid of a diagram, explain why a parabolic mirror is most suitable for use in car head lights.
(d) List three uses of concave mirrors

REFRACTION OF LIGHT

Definition:

Refraction is the bending of light ray(s) as it passes from one transparent medium to a nother of different densities.

Refraction is the change in speed of propagation of light due to change in opticaldensity.
When light propagating in free space is incident in medium, the electrons and protons interact with the electric and magnetic fields of the light wave. This result in the slowing down of a light.

Illustration.

Refraction occurs because light tra vels at different speed in the different media.

Description

(a) Rays and lines

Ray AO is called incident ray.

This is the ray that fall/strikes the boundary at the normal in the first medium.

Ray OB is called the refracted ray.

Refracted ray is the ray that leaves the boundary at the normal in the second medium and o the opposite side of the incident ray.

Line PQ is called the normal.

The normal is an imaginary line at right angle to the boundary and separates the incident ray and the refracted ray.

Line $X Y$ is called the boundary.

The boundary is the line that separates the two media. It is the line where refraction occurs.

(b) Angles

Angle, i is the angle of incidence.
This is the angle formed between the incident ray and the normal.

Angle, r is called angle of refraction.

The angle of refraction is the angle formed between the refracted ray and the normal.
and then refracted a way from the normalif it travels from a denser medium to a less dense medium.

Ecolebooks.com

Principle of Reversibility of light

It states that if a light ray (path) after suffering a number of refractions is reversed at any stage, it travels back to the source along the same path with the same refraction.

Law of refraction

When light passes from one medium to a nother, say from air glass part of it is reflected back into the previous medium and the rest passes through the second medium with its direction of travelchanged.

$A O=$ Incident ray
$i=$ Angle of incidence
$O B=$ Refracted ray
$r=$ Angle of refraction
Generally, if light is incident from a less dense medium, to a more optically dense medium, its speed reduces and it is refracted towards the normalat the point of incidence.
However, if light travels from a denser to a less dense medium, its speed increases and it is refracted away from the normal.

Laws of Refraction
Laws 1. The incident ray, refracted ray and the normal at point of incidence all lie on the Same plane.

Law 2. For any two particular media, the ratio of the sine of angle of incidence to sine of angle of refraction is constant.

The constant ratio $\frac{\sin ^{i}}{\sin }$ is called the refractive index for light passing from the first to second medium.
Hence; ${ }_{1} \cap_{2}=\frac{\sin l}{\sin }$

Definition:

Refractive Index is the ratio of sine of angle of incidence to the sine of angle of refraction for a ray of light traveling from one medium to a nother of different densities. i.e.
If light travel from air to glass, then the refractive index of glass with respect to air is given by; $\sin i$

It can also be defined as the ratiof the speed of light in one
medium to the speed of light $\frac{\text { Spe ed of light in medium } 1 .}{\text { in another medrum. law. }}$
Hence; ${ }_{1}{ }^{\text {DOWNLOAD_MORE RESOURCES LIKE THIS ON }}$

If medium 1 is a vaduumbécele Btochesratio as the absolute refractive index of medium 2, denoted by \mathbf{n}_{2}.

If medium 1 is a vacuum, then;

$$
\cap_{2}=\frac{\hat{2}}{\hat{2}}=\frac{\text { Speed of light in vacuum. }}{\text { Speed of light in medium } 2}
$$

Note: For practicalpurposes, \cap

DETERMINATION OF REFRACTIVE INDEX

Appara tus:

- RectangularGlass Block
- Four Optical Pins and 4 thumb pins
- Soft Board
- White Sheet of Paper
- MathematicalSet

Set up

Procedure

a) Place the rectangular glass block on the white sheet of paper stuck on the soft board.
b) Trace the outline of the glass block on the white sheet of paper.
c) Remove the glass block and draw a normalat N .
d) Using a protractor, mea sure from the normalthe angle of incidence $i=20^{\circ}$ to draw the incident ray of the angle measured and pin two optical pins P_{1} and P_{2} on the ray

drawn.

e) Replace the glass block back to its outline and aim from face DC to fix pins P_{3} and P_{4} such that they appear to be in
line with the images of P_{1} and P_{2}.
f) Remove the glass block and draw a line through P_{3} and P_{4} to face DC.
g) Draw a line from normalto meet the line trough P_{3} and P_{4} to measure the angle of refraction, r.
h) Repeat the procedure d) to g) for $i=30,40^{\circ}, 50^{\circ}, 60^{\circ}$ and i)
i) Tabulate your result in a suitable table including values of sin Phat a ginaph of sin i a gainst $\sin r$ and determine the slope n of the graph.

Conclusion

* The gsaphr sini against sinr is a straight line this verifies

ECO O ${ }^{\text {he }}$

Example 1:

A ray of light travels from air into water at angle of incidence of 60% Fabld 8 lestheande of refraction given that the refractive of water is 1.33 .

Solution

Given; $\quad i=60^{\circ} \quad n=1.33 \quad r=$?
Ray Diagram


```
From Snell's law
ก 人
    \(1 \sin 60=1.33 \sin\)
    \()^{\sin \rangle}={ }_{(0.866}^{0.33}\)
\[
\hat{\nu}=\sin ^{\underline{0} 8866}
\]
```


Example 2:

A ray of light traveling through air strikes glass at an angle of 40° to the surface. Given that the refractive index of glass is 1.45 , find the;
(i) Angle of refraction
(ii) Angle of deviation (angle through which the ray is bent from its original direction).

Solution

Given; $\quad \Theta=40^{\circ} \quad n=1.45 \quad r=$?
Ray diagram

Where; $r=$ angle of refraction

$$
\mathrm{d}=\text { angle of deviation }
$$

From the angle properties
$40^{\circ}+i=90^{\circ}$

$$
\begin{aligned}
& i=90^{\circ}-40^{0} \\
& i=50^{\circ}
\end{aligned}
$$

From Snell's law

(DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Real and Apparent Depths

Real depth

Real depth is the depth where the object is actually placed or laying under the transparent medium of different optical density to the surrounding medium. i.e. Real depth is the actual height of the medium in its desired dimension.

Apparent depth

Apparent depth is the depth where the object appears to be when observed through the transparent medium of different opticaldensity to the surrounding medium.
The real and apparent depth of an object viewed through a transparent material can be used to determine the refractive index of the transparent material.

Illustration of real depth and apparent depth

Determination of refractive index of Liquid using real
depth and apparent depth.
Beaker, Retort stand, Pins, Liquid, Half metre rule
Diagram:

Procedure:
Pour liquid in a beaker and measure the height, y (real depth) of the liquid in the beaker
Place a pin at the bottom of the beaker with its point touching the side of the beaker.
Support another pin on the clamp at the side of the beaker using plasticine.
Observe from the edge of the beaker and adjust the pin on
the clamp until it appears to be on the same level with the pin in the beaker.

Now measure the height, x from the bottom of the beaker where the pin in liquid appears to determine the apparent.
Divide the real depth of the pin in liquid by the apparent depth of the same pin to determine the refractive index, n of the liquid.
Refractive index, $\mathrm{n}=\frac{\mathrm{R} \text { ea l depth }}{\text { Apparent depth }}$

Example: 1

A pin placed at the bottom of the liquid appears to be at a depth of 8.3 cm when viewed from above. Find the refractive index of the liquid if the real depth of the liquid is 11 cm .
Solution
Given,
Realdepth $=11 \mathrm{~cm}$
Apparent depth $=8.3 \mathrm{~cm}$
Real depth
Refractive index, $\mathrm{n}=$ Apparent deptr

$$
\begin{gathered}
11 \\
> \\
\hline 8.3 \\
=1.33
\end{gathered}
$$

Determination of refractive index of glass using real depth and apparent depth.
Apparatus:
Glalfoblqck Retort stand, opticalPin, White sheet of paper

Diagram:

Procedure:
Draw a line on a white sheet of paper and place a glass block a above it as shown.
Look down at the edge of the glass perpendicular to the tip of the line drawn on the paper.
Adjust the search pin on the clamp until it is at the same level as the line drawn on the paper. Ensure no parallax i.e. the pin and the image of the line should appearto be one on moving the head to and fro the line of observation.
Measure the distance, a and b respectively to determine the apparent depth of the line
Refractive index of the glass block is then obtained from;

Real depth

Refractive index, $\mathrm{n}=$ Apparent depth

Example: 2
A glass block of height 9 cm is placed on a coin of negligible thickness. The coin was observed to be at 3 cm from the bottom of the glass block when viewed from above. Find the refractive index of the glass.

Solution

Real depth
Refractive index, $\mathrm{n}=\overline{\text { Apparent depth }}$

$$
\begin{aligned}
& \quad \begin{array}{c}
9 \\
9-3
\end{array}=\frac{9}{6} \\
& \Leftrightarrow=1.5
\end{aligned}
$$

Effects of refraction:

(i) A swimming pool appears shallower that its actualdepth

Explanation

This is because light rays from the bottom are refracted a way from the normal at the water to air boundary.
These rays appear to come from the point I not O , so at the point I the pool appear shallower than it is.
pool appearshallowerthanit is ${ }^{\text {DOWNLO }}$,

TOTAL INTERNAL REFLECTION AND CRITICAL

 ANGLEConsider meneorhedratik ligetyriopagating from a dense medium and incident on a plane boundary with less dense medium at a small angle of incidence. Light is partly reflected and partly refracted.

As the angle of incidence is increased gradually, a stage is reached when the refracted ray grazes the boundary between the two media.

The angle of incidence \mathbf{c} is called the critical angle.
Hence critical angle is the angle of incidence in a denser medium which makes the angle of refraction in a less dense medium 90°.
When the angle of incidence is increased beyond the critical angle, the light is totally internally reflected in the denser medium. Totalinternal reflection is said to have occurred.

Hence Total Internal Reflection is the process where all the incident light energy is reflected back in the optically denser medium when the critical angle is exceeded.

Conditions for Total Internal reflection to occur.
(i). Light must be moving from an optically denser medium (e.g glass) to a less dense medium (e.g air).
(ii). The angle of incidence in the optically denser medium must exceed (greater than) the critical angle. $[\geqslant \gg]$.

Relationship between eritical angle, c, and refractive index, n ÉcoleBooks

Using Snell's law:
$\left.\left.n_{1} \sin \diamond\right\rangle_{1}=n_{2} \sin \right\rangle_{2}$
$n_{1} \sin \hat{\omega}=n_{2} \sin 90$

$$
\sin \hat{=}=\frac{n_{2}}{n_{1}}
$$

If the lens dense medium is air or a vacuum;

Calculation involving critical angle and refractive index
At critical angle, the angle of refraction is 90° i.e. $\mathrm{r}=90^{\circ}$. And the ray is from more optically dense medium i.e glass to a less optically dense medium i.e. air. So,
From Snell's Law:

$$
\begin{aligned}
\cap_{\mathrm{g}} \sin \mathrm{i}_{\mathrm{g}} & =\cap_{\text {air }} \sin \mathrm{r}_{\text {air }} \\
\cap_{\mathrm{g}} \sin \mathrm{C} & =\sin 90^{\circ} ; \text { But } \sin 90^{\circ}=1 \\
\cap_{\mathrm{g}} \sin \mathrm{C} & =1 \\
\mathrm{lg} & =\frac{1}{\sin C}
\end{aligned}
$$

Where $\cap=$ Refractive index of the glass and C is the critical angle.

Example: 1

Calculate the refractive index of the glass if the critical angle of the glass is 48°.
SOLUTION:

Applications of total internal reflection

(i) Light pipes and Optical fibres

Light can travel and can be trapped by total internal reflection inside a bend glass tube and pipe along a curved path.
If several thousand rays are trapped together, a flexible light pipe is obtained that can be used to light up some awkward spot for inspection.

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM
(ii) Mirage

Explanation
\checkmark Gradualrefraction:
On a hot day light from the sky is gradually refracted away from the normalas it passes through layers of warm but less dense air nearhot road.

\checkmark Totalinternal reflection:

The refractive index of warm air is slightly smaller than that of cool air, so when light meets a layer at critical angle, it suffers total internal reflection thus to the observer the road appears to have a pool of water.

(iii) Fish's view:

The fish in water enjoys a wider field of view in that it views all objects under water and those above the water surface
Objects above the water surface are viewed as a result of refraction while those under the water surface are viewed as a result of totalinternal reflection. However this is only true if the water surface is calm.

(iv) Submarine periscope:

Light from a distant object meets the surface MN at 45°; so light is totally internally reflected downwards.

The reflected light is incident to the surface PQ where it is totally internally reflected to give the emergent light to the observer.
(v) Totally reflecting prism

The critical angle of glass EqiaheBO42k3nd a ray is normally incident on face PQ thus un deviated i.e. not refracted. Total internal reflection occurs and a ray is turned through 90°.

(ii) Turning a ray through 90°

(iii) Turning a ray through 180°

The critical angle of glass is 42° and rays are incident normally on face PR. At face PQ, the rays are incident at 45° so totalinternal reflection occurs.

The use of prisms are preferred to plane mirror
\checkmark Prisms produce clear image
\checkmark Prisms do not tarnish and deteriorate as mirror.
However, plane mirrors are not used in submarine periscope because:

- Several images of one object are formed at the back by plane mirror due to multiple reflection inside the glass i.e. plane mirror produces blurred images.
- Plane mirrors absorbs more light than prisms so the image produced is fainter.

REFRACTION THROUGH A TRIANGULAR PRISM Refraction by glass prism

$\mathbf{B F}=$ Refractingedge
$A B$ and $B C=$ Refracting surface
AC and $\mathrm{ED}=$ Base
ABC and $\mathrm{DEF}=$ Principle section (or any other plane perpendicular to the refracting edge).
Angle $\mathrm{ABC}=$ Refracting angle or angle of the prism.

Representation of a Prism.

ECOLEBOOKS.COM

For calculation, ypur ared to

Rays: $\mathrm{ON}=$ Incident ray; Angle $\boldsymbol{\beta}_{1}=$ angle of incidence $\mathrm{NM}=$ Refracted ray; Angle $\boldsymbol{\beta}_{1}=$ angle of refraction
$\mathrm{ME}=$ Emergent ray; Angle $\boldsymbol{\gamma}_{2}$

$$
=\text { angle of emergence }
$$

Lines: NS and MS $=$ Normal lines on either sides.
Angle A = angle of the prism or refracting angle.
Deviation of light by a prism
Considering Deviation at N ,

Considering Deviation at M,
$\hat{\nu} \hat{\nu}_{2}=\hat{\theta}_{2}+\hat{\theta}_{2} \Leftrightarrow \hat{\theta}_{2}=\hat{\nu} \hat{\nu}_{2}-\hat{\theta}_{2}$
\qquad
such that they
From Triangle NMT:

and obtain
$\hat{\nu}=\left(\hat{\nu} \hat{\nu}_{1}+\boldsymbol{\nu} \hat{\nu}_{2}\right)-\left(\hat{\nu}_{1}+\hat{\nu}_{2}\right)$. \qquad
(i仓)
Table of resuffecord the results in a suitable table including

$\left.\mathrm{i}{ }^{(}{ }^{0}\right)$	$\mathrm{r}\left({ }^{0}\right)$	Sini	Sinr

\checkmark Plotting the graph
Plot a graph of sin i against sin r to determine the slope of the graph. Slope is the refractive index of the prism.

Note: For a light ray travelling in a medium like water to glass, then the refractive index of glass with respect to water is calculated from:

$$
{ }_{\mathrm{w}} \cap_{\mathrm{g}}=\frac{\mathrm{O}_{\mathrm{g}}}{\cap_{\mathrm{w}}}=\frac{\operatorname{sinr}_{2}}{\operatorname{sini} 2}
$$

In general, the refractive index of any medium X with respect to a nother first medium Y is given by:

$$
\cap^{\wedge}=\frac{n}{\hat{\omega}_{Y}}
$$

Experiment to measure the refractive index of a triangular glass prism. ÉEoleBooks

\checkmark Outline of the prism
The prism is placed on a paperand its outline ABC is drawn and then the prism is removed. Draw the normal at M and measure the angle of incidence, i. Place the pins P_{1} and P_{2} on the incident ray
(2 人)
\checkmark Obtaining the refracted ray.
(Replace the prism to its outline. By looking through the prism from side QR , pins \geqslant and P_{4} are place

Grein a straight join withina
\checkmark refracptioning the promeatured and tabulating the results
different vaRerseaf the procedures for different values of i

Condition for minimum deviation position:
\checkmark keypriflight MN in the prism is parallel to the base of

Example 1:

 1.33 and 1.50 respectively.
Solution:

 41° and $=$?
Example: 1

 of 30° as shown below. the;
Solution.

A ray of light is incident on water - glass boundary at 410 .

Given; $\quad \cap_{0}=1.5, \cap_{0}=1.33, \quad$,
From ; ? $\hat{\nu}\rangle \hat{\nu}\rangle$

$$
\begin{aligned}
\sin r & =\frac{1.33 \sin 41^{\circ}}{1.50} \\
\hat{\rho} & =\sin ^{-1}\left(\frac{1.33}{(1)}\right) \\
\beta & \left.=35.5^{2} \frac{4150}{1.5}\right)
\end{aligned}
$$

A ray of light propagating in a liquid is incident on a prism of refractive angle 50° and refractive index 1.6, at an angle

If light passes through the prism symmetrically, calculate
(i). Refractive index of the liquid.
(ii). Angle of deviation.
(i)

Applying Snell's law at N :
$\left.\cap_{L} \sin i=\cap \sin \right\rangle_{1}$
$\cap_{L} \sin 30=1.6 \sin \hat{\rho}_{1} \ldots$
($\hat{2}$)
Applying Snell's law at M:
$\cap \sin \hat{\beta}_{2}=\cap_{L} \sin$
$1.6 \sin \rangle_{2}=n_{L} \sin$
(i>)
But, also;
$\mathrm{r}_{1}+\mathrm{r}_{2}=\mathrm{A}$
$r_{1}+r_{2}=50 \ldots \ldots \ldots$.
(ii仓人)
(ii).
$\mathrm{d}=\left(\boldsymbol{\rho} \boldsymbol{\nu}_{1}+\boldsymbol{\nu} \boldsymbol{\nu}_{2}\right)-\mathrm{A}$
$\mathrm{d}=(i+e)-50$
$d \equiv(130+30)-50$
The figures below show two right angled prisms of
incident normally on the faces of the prisms below.
 incident ray through eacteprism hence explain why light takes the path shown.

The figure below shows light incident normally on a glass prism in air. If the critical angle of the prism is 42°,

(i) Complete the diagram t o show the path of light as

At points B and C , light is moving from a denser to a less dense medium and angle of incidence is greater than the critical angle. [$45^{0}>42^{0}$]. Thus, total internal reflection occurs.
 it is incident normally to the surface.
(ii) Calculate the refractive index of the glass prism Applying Snell's law at B

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOORS.C

Trial Questions

1. A prism of refractive 1.5 and refractive angle 60° has an Eacold efrefuktionof 28^{0} on the $1^{\text {st }}$ face. Determine
a) angle of incidence $i\left[44.7^{0}\right]$
b) angle of refraction on $2^{\text {nd }}$ face $\mathrm{r}_{2}\left[\mathrm{r}_{2}=32^{0}\right]$
c) angle of emergency $\mathrm{i}_{2}\left[\mathrm{i}_{2}=52.6^{0}\right]$
d) angle of deviation [37.34^{0}]
2. Critical angle of a certain precious stone is $\mathbf{2 7}^{\mathbf{0}}$. Calculate the refractive index of the stone.
3. See UNEB Paper I | 1994 Qn. 40 | 1995 Qn. 24 | 1996 Qn. 1 | 1996 Qn. 35 |
| :--- | :--- | :--- | :--- |
4. UNEB 1990 Qn. 4
(a) (i) State the laws of refraction.
(ii) What is meant by refractive index?
(b) Describe a simple experiment to determine the refractive of the glass of a triangular prism.
(c) The angle of refraction in glass is 320 . Calculate the angle of incidence if the refractive index of glass is 1.5 .
5. UNEB 1996 Qn. 3 PII
(a) What is meant by the following terms;
(i) Critical angle
(ii) Total internal reflection
(b) State; (i) two conditions for total internal reflection to occur.
(ii) One application of totalinternal reflection.
6. UNEB 1993 Qn. 9

The diagram below shows rays of light in a semi-circular glass prism of refractive index 1.5 .

(a) Explain why ray AB ;
(i) Is not refracted on entering the block at A .
(ii) Takes path BD on reaching B .
(b) Ray CB is refracted at B. Calculate the angle of refraction.
7. UNEB 1996 Qn. 4; UNEB 1987 Qn. 7; UNEB 2001 Qn. 46

Definition:

Lenses are spherical surfaces of transparent materials. The materials may be glass, plastics, water, etc.

Types of Lenses:

(i) Converging Lenses (Convex Lens): A convex lens is thick in the center. It is also called a converging lens because it bends light rays inwards. There are three examples if convex lenses, namely:

A converging lens (Convex lens) is one in which all parallel beams converge at a point (principle focus) after refraction.
(ii) Diverging Lens (Concave Lens): A concave lens is thinnest in the central and spreads light out. A concave lens is also called a divergent lens because all rays that are parallel to the principal axis diverge after refraction;

Diverging meniscus

In a diverging lens, refracted ray seems to come from the point after refraction.

Technical Terms:

- Pole of a lens:

Is the centered point of the surface of the lens through which the principal axis passes.

- Optical Centre: (C)

Is the point on the principle axis mid way between the lens surfaces. It is the centre of the lens at which rays pass un deviated.

- Principal Axis:

Is the line through the optical center of the lens on which the principal focus lies.

- Principal Focus, F:

Convex lens.
Is the point on the principal axis at which all rays parallel and close to the principal axis meet after refraction thru the lens.
Concave lens.
This is the point on the principal axis of a concave lens at which all rays parallel and close to the principal axis appear to diverge from after refraction thru the lens.

- Focal Length, f :

Is the distance between the optical center and the principal
Note: The principal focus of a converging lens is real while that of a diverging lens is virtual.
Real principal focus is one at which actual rays meet after refraction.

1. Centers of curvature, 2 F : Is the centre of the sphere of which the lens surfaces form part. OR It is a point on the principle axis where any ray through it hits the lens at right angles.
2. Radius of curvature: Is the radius of the sphere of which the lens forms part. OR It is the distance between the optical centre and the centre curvature of the lens.

Ray Diagram for a Convexe(Converging) Lens. In constructing ray diagang Efahe Bparcional rules are used.

1. A ray parallel to the principal axis is refracted through the focalpoint.

2. A ray through the optical centre passes un deviated i.e. is not refracted.

3. A ray through the principal focusemerge parallel to the principal axis after refraction.

Images formed by convex lenses:

The nature of the image formed in a convex lens depends on the position of the object from the lens.
(a) Object beyond 2F

- Nature: Real and Inverted.
- Position: Between F and 2F.
- Magnification: Diminished
(b) Object at 2F

Characteristics of the image:

- Nature: Real and Inverted.
- Position: At 2F.
- Magnification: Same size as object.
(c) Object between F and 2F

Convexlens
Characteristics of the image:

- Nature: Real and Inverted.
- Position: Beyond 2F.
- Magnification: magnified.
d) Object at F

Characteristics of the image:

- Nature: Real and Inverted.
- Position: At infinity.
- Magnification: magnified.
(e) Object between F and C

Characteristics of the image:

- Nature: Virtual and Upright or erect.
- Position: On the same side as the object.
- Magnification: magnified.

When the object is placed between F and C , the image is magnified and this is why the convex lens is known as a magnifying glass.

Summary of the useful rays

Image Formation in a Concave Lens

Irrespective of the position of the object, a concave lens forms an image with the following characteristics:

- Nature: Virtual and Upright or erect.
- Position: Between F and C.
- Magnification: Diminished.

Magnification of lens:

$$
=\frac{\text { Image distance, } \mathrm{V}}{\text { Object distance, } \mathrm{U}}
$$

$$
\mathrm{M}=\frac{\mathrm{h}}{\overline{\mathrm{H}}}=\frac{\mathrm{V}}{\mathrm{U}}
$$

The lens formula:

If an object is at a distance, u forms the lens and image, v distance from the lens, then focallength, f is given by:

6 cm). This applies to both concave and convex.
Realidingsifiyffis adg virthalifitidngative sign convention:

: Bistances of real objects and the images are positive.

- The prinqipalfocus F of the ginvex lens is ral hence
virtual principle focus, F and so its focal length, f is negative.

Example 1:
An object of height 10 cm is placed at distance 50 cm from a converging lens of focallength 20 cm . Calculate the;
(i) Image position.
(ii) image height
(iii) magnification

Solution:
Given, $\mathrm{H}=10 \mathrm{~cm}, \quad \mathrm{u}=50 \mathrm{~cm}, \quad \mathrm{f}=20 \mathrm{~cm}$ $\mathrm{v}=$? $\quad \mathrm{h}=$?
Using the mirror formula;

$$
\begin{aligned}
& \frac{1}{2}=\frac{1}{2}+\frac{1}{2} \\
& \frac{1}{20}=\frac{1}{50^{+}} 1 \\
& \frac{1}{20}-\frac{1}{50}=\overline{\mathrm{v}}
\end{aligned}
$$

$$
\frac{1}{\mathrm{v}}=\frac{5-2}{100}=\frac{3}{100}
$$

$$
\frac{1}{\mathrm{v}}=\frac{3}{100}
$$

$$
\mathrm{v}=33.33 \mathrm{~cm}
$$

A real image was formed

$$
33.33 \mathrm{~cm} \text { from the lens. }
$$

$$
\begin{array}{cl|l}
\begin{array}{l}
\text { Using the definition } \\
\text { magnification, }
\end{array} & \text { of } & \begin{array}{l}
\text { Magnification: } \\
M=\frac{h}{H}=\frac{V}{U} \\
\bar{H}
\end{array}=\frac{V}{U} \\
\frac{h}{10}=\frac{33.33}{20} & M=\frac{\left(\frac{100}{3}\right)}{20} \\
M=0.67
\end{array}
$$

Questions: (Students' Exercise)

1. An object is placed arempleBookm,
from a converging lens of focaNength 15 cm . Find the;
(i) nature of the image in each case.
(ii) position, v of the image in each case.
$(\mathrm{Va}=60 \mathrm{~cm} ; \mathrm{Vb}=7.5)$
(iii) Magnification, M of the image in each case.
$(\mathrm{Ma}=3 ; \mathrm{Mb}=1.5)$
2. A four times magnification virtual image is formed of an object placed 12 cm from a converging lens. Calculate the;
(i) Position of the image ($\mathrm{v}=48 \mathrm{~cm}$)
(ii) Focal length of the lens ($\mathrm{f}=10 \mathrm{~cm}$).
3. Find the nature and position of the image of an placed 10 cm from a diverging lens of focal length 15 cm .
(Virtual : $\mathrm{v}=$
Finding position by graph (scale drawing):

 princinalataxis is refracted.in. such a way that is appears
\checkmark A ray through the optical center should be drawn un deviated.

Examples:

An object of height 10 cm is placed at a distance of 50 cm from a converging lens of focal length 20 cm . Find by scale dra wing the;
(i) Image position
(ii) Image height
(iii) Nature of the image formed

Solution
Axis Scale Conversion Vertical axis $\mathbf{1 : 5} \mathbf{~ c m}$ $\%$
Horizontal axis
$\mathbf{1 : 1 0 ~ c m}$

(i) Position:

The image distance as measured from the scale drawing is 3 cm ; using the above scale,

The height of the image on the scale drawing is 0.8 cm ; using the scale,

(ii) Nature:

Exercise
The image formed is; Real, Inverted and Diminished.
(iii) Magnification:

Magnification $=\frac{\text { Image Distance }}{\text { Object Distance }}={ }^{\frac{34}{50}}=0.68$
Or Magnification $=\frac{\text { mage } \mathrm{Helght}}{\text { Im }}=0.7$
Object Height 10

Krabaplet 8 f the height 10 cm is placed at a distance of 60
scaleranadngivaresing lens of focal length 20 cm . Find by
(i) Image position, v

(iv) Magnification, M

Axis	Scale	Conversion
Vertical axis	$\mathbf{1 : 5} \mathbf{~ c m}$	\star
Horizontal axis	$\mathbf{1 : 1 0} \mathbf{~ c m}$	$\stackrel{\mathrm{cm}}{ } \rightarrow \frac{10}{5} \rightarrow 2 \mathrm{~cm}$
		$60 \mathrm{~cm} \rightarrow \frac{60}{10} \rightarrow 6 \mathrm{~cm}$
		$20 \mathrm{~cm} \rightarrow \frac{20}{10} \rightarrow 2 \mathrm{~cm}$

(i) Position:

The image distance as measured from the scale drawing is 3 cm ; using the above scale,
Image distance $=(1.5 \times 10) \mathrm{cm}$

$$
=15 \mathrm{~cm}
$$

Size:
The height of the image on the scale drawing is 0.8 cm ; using the scale,
Image height $=(0.5 \times 5) \mathrm{cm}$

$$
=2.5 \mathrm{~cm}
$$

(ii) Nature:

The image formed is; Virtual, Upright and Diminished.
(iii) Magnification:

Magnification $=\frac{\text { Image Distance } 15}{\text { Object Distangééc } \frac{15}{60-B} 025 \mathrm{ks}}$

Students'

1. An object 1 cm tall stands vertically on principal axis of
a converging lens of, focal length, $\mathrm{f}=1 \mathrm{~cm}$, and at a distance of 1.7 cm from the lens. Find by graphical construction, the position, size, magnification and nature of the image.
2. An object is 32.5 cm from a diverging lens of focal
length 12 cm . by scale drawing;
(i) Locate the numerical position and the height of
(ii) फstionase formedtio of image magnitude to object height.
(iii) Describe the image formed using the result in (ii) above.
3. An object is placed 10 cm in front of a concave lens of
 ray diagram.
4. An object 5 cm tall is placed 15 cm a way from a convex

5. An object 5 cm high is placed 20 cm in front of a converging lens of focallength 15 cm . Find the power of the lens and the magnification of the lens.
6. An object of height 20 cm is placed vertically on the axis of a convex lens of focal length 10 cm at a distance of 30 cm from the lens. Use the graphical method to find the position, nature and magnification of the image.

Experiments to measure focal length of convex lens (Converging lens)

1. Rough method

(Using a distant object, e.g window)

Position the lens and a white screen on a table as shown above.
Move the lens towards and away from the screen until a sharply focused image of the distant object is formed on the screen.
Measure the distance, f between the lens and the screen. It is approximately equal to the focallength of the lens used.

Note:

To improve the accuracy of the results, it is advisable that the experiment is repeated at least three times and the DWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKKSS. Cooglong calculated.

$\mathrm{f}_{1}(\mathrm{~cm})$	f_{2} (cm)	f_{3} (cm)	$\mathrm{f}(\mathrm{cm})$
\rangle	lebool	com	$\frac{(\hat{2}+\hat{2}+}{\hat{2})}$

2. Plane mirror method and no parallax

A plane mirror M is placed on a table with its reflecting surface facing upwards. The lens L is placed top of the mirror.
An optical pin, O is then moved along the axis of the lens until its image I coincide with the object O , when both are viewed from above and there is no parallax.

The distance from the pin O to the lens is thus measured and it is equal to the focallength, f, of the lens.

Alternatively, the set up bellow may be used.

NOTE: Rays from O passing through the lens are reflected

 happen if the rays are incident normally on the plane
mirror, M . The rays entermg the lens atter reflection are
parallel and hence the point at which they converge must be the principle focus.

3. Using illuminated object and plane mirror

The position of the lens holder is adjusted until a sharp image of the object is formed on the screen alongside the
point (focal plane). The distance between the lens and screen is measured and this is the Eocolentboks

Note: The focalpoint or focalplane of a lens is a point or a plane through the principal focus at right angle to the principal axis. At this point, rays from any point on the object will emerge from the lens as a parallel beam and are reflected back through the lens.

4. Lens formula method

Using an
illuminated object, O at a measured distance, u , move the screen towards and a way from the lens until a clear image of the cross wires is obtained on the screen.
The image distance, v is measured and recorded.
The procedure is repeated for various values of u and the corresponding values of v measured and recorded.
The results are tabulated including values of $\left.\frac{1}{-}\right\rangle \stackrel{\rightharpoonup}{3}$.

The focallength can be calculated from the equation $\overline{\bar{*}}+\overline{\bar{*}}$ and the average of the values obtained.

Power of a lens:

 Nate: Thes Fgsalleqgathosfegnvex les is real so it's positive

The focal length of a concave lens is virtual so it's negative hence its power is negative.

The power of the combination of lenses can be calcula ted from:
The power of the lens;

$\left.\begin{array}{c}\text { Power of } \\ \text { combination, }\end{array}\right)=\binom{$ Power of }{ first lens }$+\binom{$ Power of }{ second lens }
$\mathrm{P}_{\text {combination }}=\frac{1}{\begin{array}{c}\text { focal length, } \mathrm{f}_{1} \\ \text { of first lens }\end{array}}+\frac{1}{\text { focal lenth, } \mathrm{f}_{2}} \begin{gathered}\text { of second lens }\end{gathered}$
$\underset{\text { OKSbination }}{\text { OMM }^{2}}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$

Examples:

1. Two converging lenses of focal lengths 15 cm and 20 cm are plaqedib rebsagkfind thepower of combination.

Solution

Given,

$$
\mathrm{f}_{1}=15 \mathrm{~cm}=0.15 \mathrm{~m} ; \mathrm{f}_{2}=20 \mathrm{~cm}=
$$

0.20 m
$\mathrm{P}_{\text {combination }}=\frac{1}{\mathrm{f}_{1}}+\frac{1}{\mathrm{f}_{2}}$
$\mathrm{P}_{\text {combination }}=\frac{1}{0.15}+\frac{1}{0.20}$
$\mathrm{P}_{\text {combination }}=11.67 \mathrm{D}$
2. A convex lens of focal length 20 cm is placed in contact with concave lens of focal length 10 cm . Find the power of the combination (Ans: -5D).
Solution
Given, $\quad f_{1}=20 \mathrm{~cm}=0.20 \mathrm{~m} ; \mathrm{f}_{2}=10 \mathrm{~cm}=$
0.10 m
$\mathrm{P}_{\text {combination }}=\frac{1}{\mathrm{f}^{1}}+\frac{1}{\mathrm{f}^{2}}$

$$
\begin{aligned}
& \mathrm{P}_{\text {combination }}=\frac{1}{0.20}+\frac{1}{-0.10} \\
& \mathrm{P}_{\text {combination }}=-5 \mathrm{D}
\end{aligned}
$$

Uses of lenses

- The eye uses it to focus images on the retina
- In spectacles to correct eye đefects.
- In lens cameras to focus images on the screen or film.
- In slide projectors to magnify/focus images on the
- Itmgomarbbjeetscroscopes to magnify/focus images of

Simple Opticpldjetryf(gatprojection Lantern)

sliqurojecoathis scsednforlprojthet ingatge fiommeed of netra n sparent

mirror
Mode of Operation

slide if the image is to be bright.
Concave mirror: reflects back light which would otherwise
be wasted by being reflected a way from the film.

Condenser; this is the combination of two Plano convex lenses. The main function is to Edectahearaktsom the light source and concentrate themonto the slide.

Slide: It contains the object whose image is to be projected on the screen.

Projector lens: is mounted on a sliding tube so that it may be moved to and fro to focus a sharp real image on the screen.

(ii) Lens Camera

A camera is alight tight box in which a convex lens forms a real image on a film.

The film contains chemicals that change on exposure to light. It is developed to give a negative. From the negative
the photograph is printed.
The inner surface of the camera is painted black in order to Arevent reflection of stray rays of lightion for adjusting the distance between the film and then lens so that the object
canbe focused on the film by the convex lens. can be focused on the film by the convex lens.

* Converging lens; is to focus the object on the film.
 moving objects require short exposure.

diaquingegnis. controlled by the size of the hole in the

* Diaphragm; this changes the size of the aperture. The stop is made of a sense of metal plates which can be moved to increase the aperture size.
Thus it controls the amount of light entering the camera by its size.
*Note: The correct setting of the lens for an object at any given distance from the camera is obtained from a scale engraved on the lens mount.
* Film: It is a light sensitive part where the image is
formed.
Lint Mutarathe Eree through the cornea, the lens and then is focused on the retina. The retina is sensitive to light and
 the pupil. The size of the pupil decreases in bright light and increases in dim light.

Functions of the parts of the eye.

1. Lens: The lens inside the eye is convex. It's sharp; it changes in order to focus light.
2. Ciliary muscle: These alter the focal length of lens by changing its shape so that the eye can focus on image on the retina.
3. The iris: This is the coloured position of the eye. It controls the amount of light entering the eye by regulating the size of the pupil.
4. The retina: This is a light sensitive layer at the back of the eye where the image is formed.
5. The optic nerve: It is the nerve that transmits the image on the retina to the brain for interpretation.
6. The cornea: It is the protective layer and it also partly focuses light entering the eye.

Accommodation

This is the process by which the human eye changes its size so as to focus the image on the retina. This process makes the eye to see both near and farobjects.

Note: Accommodation is the process by which objects at different distances are focused by the ciliary muscles changing shape, so that the focallength of the lens changes.

Accommodation can also be the ability of the eye to focus objects at various distances.
Near point: this is the closest point at which the eye can accommodate a most clear vision. Its 25 m for a normaleye.

Far point: this is the most distant point at which the eye can accommodate a clear vision. It's at infinity since rays travel in a straight line.

Defects of vision and their corrections

a) Long Sightedness. (Hypermetropia)

This is an eye defect where a person can see distant objects clearly but nearobjects are blurred.
It is due to either:
(i) Too long focallength, or
(ii) Too short eye ball.

Recance of these efferte the ciliary mucelec have weakened and cannot make the eve lens fatter fie decrease its focal lenoth) to focuic nearnhiecton the retina

This defect is corrected by using spectacles containing converging lens which increase the convergence of the rays and brings it to focus on the retina.

b) Short Sightedness: (Myopia)

This is an eye defect where person can see near objects clearly but distant ones are blurred.
It is due to either,
(i) Too short focallength, or
(ii) Too long eye ball.

Because of these effects, the ciliary muscles do not relax sufficiently and consequently, distant objects are focused in front of the retina.

This defect is corrected by using spectacles containing diverging lens which increase the divergence of the light rays before they enter the eye and brings them to focus on the retina.

Simidarities between the camera and the eye

- Both the eye and camera have light sensitive parts i.e.
the retina for an eyes and film for camera.
- Both the eyes and camera have lenses.
- Both have a system which regulates the a mount of light entering them i.e. iris for the eye and the diaphragm for the camera.
- The camera has black light proof inside the camera while the eye has a black pigment inside.

Differences between the human eye and camera:

Human eye	Camera
Lens: - ls biological. - Is flexible	-Lens is artificial - Is a rigid glass or plastic
Focal length: f of lens for the eye is variable.	-focal length of lens the for camera is fixed.
Distance: The distance between the lens and retina is fixed.	-The distance between the lens and film is variable.
Focusing: By changing the shape of the lens.	-By moving the lens relative to the film.
Aperture: Controlled by the iris.	-Controlled by the diaphragm.
Exposure: Is continuous.	-Controlled by shutter.
Light sensitive surface: film	-Retina

Exercise:

1993Q. 7	2000Q. 21	2001Q. 30	2004Q. 14	2007Q. 10
			98 Qn. 6	2000 Qn. 8

COLOURS AND DISPERSION OF LIGHT

Colours of objects we see depend on the colours of the light which redehoulyesflem.cham.
Its by experiments conducted that we can prove that white light is made up of a mixture of seven colours called a

spectrum.

A spectrum is a range of seven colours that form white light. (Day light).
(a) DISPERSION OF LIGHT

Definition:
Dispersion of light is the separation of white light into its Gomponent colours.
nen white light is passed through a prism, it is deviated and separated into seven colours.

This is because of the refractive index of glass being different forieach colour which makes the different colours
to move at different speeds. An object colour depends on:

- Colpur of.light falling on it ${ }_{\text {reflects }}$ i.e. green light
 Lmpure inequm: thifis is ithertypeof spectrum in which the the fliatly ligff. Pakeuspendrtioumshos ikeacspentmuinh ount arhiclla pigimg. of one

Production of a Pure Spectrum

An illuminated slit is placed at the principle forces of a converging lens so that a parallelbeam of white light emerges and falls on the prism.
Refraction through the prism splits up the light into separate parallel beams of different colours each of which is brought to its own focus.
Note: the combination of the slit and first lens is called the collimator (To collimate means to make parallel).
Note: The slit should be made narrow to reduce the overlapping of colours to a minimum so as to produce a

(c) COLOUR FILTERS

Definition:
A filter is a coloured sheetof plastic or glass material which allows light of its own type to pass through it and absorbs the rest of the coloured lights i.e. a green filter transmits only green, a blue transmits only blue, a yellow filter transmits red, green and yellow lights.

Effect of filters of primary colours on white light

Question

Describe and explain the appearance of a red tie with blue spots when observed in.
a) Red light
b) Green light - the whole tie appears black because both colours are primary colours and none is reflected back.
c) Red light - in the red light the tie appears red and blue spots blacks.
This is because the red reflects the red colour and observes blue colour.

Question2

A plant with green leaves and red flowers is placed in
a) green
b) blue
c) Yellow
d) what colour will the leaves and flowers appear in each case. Assume all colours are pure
a) green -: the leaves remain green but the flower black
b) blue -: the leaves will appearblack and flowers black
c) Yellow -: the leaves appear green and flowers appearred.

Colour subtraction.

When light falls on a surface of an object, three things may happen to it in varying proportions. Some light may be;
(i) Reflected,
(ii) Transmitted,
(iii) Absorbed.

The light which is absorbed disappears. The absorption of light is known as subtraction of coloured light.

Mixing pigments;

Is a phenomenon when a impure colour reflects more than one colour light. Mixing coloured pigment is called mixing
by subtraction and mixing coloured light is called mixing by addition.
When two pigments are mixed, they reflect the colour which is common to both and absorb all the other e.g. yellow paint reflects orange, yellow and green. While blue paint reflects green, blue and indigo.
Yellow and blue reflect green but absorb orange, yellow, blue and indigo.

A green filter absorbs all other colours of white light and transmits only green.

A red filter absorbs all other colours of white light and transmits only red.

A blue filte absorbs all othe colours of white light and transmit only blue.

Effect of filters of secondary colours on white light

A yellow (R+G) filter absorbs all other colours of white light and transmits only Red green and yellow.

$$
\left.\begin{array}{lr}
\text { A Cyan }(G+B) \\
\text { filter } & \text { absorbs } \\
\text { other } & \text { all } \\
\text { ololours } & \text { of }
\end{array}\right)
$$

A magenta
$(\mathrm{R}+\mathrm{B})$
filte absorbs all othe colours of white light and transmit only Red and blue

Infrared and Ultra-violet light

The spectrum from the sun has both the visible and invisible spectrum. The invisible spectrum consists of ultra-violet at the extreme end of the violet light and the Infra red found just beyond the red light.

The invisible spectrum can be detected by;
(i) A thermopile connected to a galvanometer which shows a deflection on its detection.

Mixing Coloured Filters and Pigments

When a yellow filter and cyan filter are placed at some distance from a ray box such that half of their portions overlap.

Observation: Green light is seen where white light passes through both filters

Explanation:

For the overlap of yellow and cyan, cyan filters absorb the red
Light and transmit green and blue, but yellow filter absorbs blue light and transmits green and red (which is absorbed by Cyan filter) so only green light is transmitted.

Note:
White light is separated into seven colours by a prism because the prism has different refractive index for the different colours of white lights.

Exercise:

1993	1996	2000	2001	Qn.	2003
Qn.4	Qn.16	Qn.32	37		Qn.

Section C
UNEB 1994 Qn. . 4 PII;
UNEB 1994 Qn. . 4 PII;

4. WAVES

A wave is a disturbance which travels through a medium and transferenergy from one point to a nother without causing any permanent displacement of the medium itself e.g. water waves, sound waves, waves formed when a string is plucked

CLASSIFICATION AND GENERAL PROPERTIES OF WAVES

A wave is a periodic disturbance which travels with finite velocity through a medium and remains unchanged in type as it travels. Or it is a disturbance which travels through a medium, and transfers energy from one location (point) to a nother without transferring matter.

Waves may be classified as mechanical or electromagnetic waves.
Mechanical waves: These are waves produced by a vibrating body. They are transmitted by particles of the medium vibrating to and fro.
They require a material medium for their propagation.
These include water waves, sound waves, waves on stretched strings and waves on vibrating springs., e.t.c.

Electromagnetic waves: These are waves produced by a disturbance in form of a varying electric or magnetic fields. These are waves that don't require a material medium for
their propagation. Electromagnetic waves travel in a vacuum.
They include radio, infra red, light, Ultraviolet, X-rays, Gamma rays.

If the disturbance of the source of waves is simple harmonic, the displacement in a given time varies with distance from the source as shown below.

WAVE MOTION

When a wave is set up on the medium, the particles of the medium from about a mean position as the wave passes. The vibrations are passed from one particle to the next until the finaldestination is reached

Generation and Propagation of mechanical waves.

Waves are generated when particles of a transmitting medium at any point are disturbed and start vibrating.
As they vibrate, they cause the neighboring particles to vibrate in turn, hence causing the vibrations to continue from the source to other regions in the transmitting medium. The disturbance thus spreads the source outwards and it constitutes the wave.

Ecolebooks.com

$\xrightarrow[\text { Displacement }]{\text { Graphical reposentation of a wave }} \rightarrow$

Terms used in describing waves,
particle from its equilibrium position.
Wave length (λ): Is the distance between two successive Amplitude: This is the greatest displacement of any wave It is the distance covered in a complete cycle of a wave.

It is the distance between two successive compressions or
particles in a wave profile that are in phase.
Crest: It is the maximum displaced point a above the line of It is the distance between two successive crests or troughs.

Thatghriohtsis the maximum displaced point below line of

0 (zero) disturbance.
phase in a wave travelling through a medium.. OR: It is the zaraedjbetuctornaotion (in phase).

path at the same time and are moving in the same direction.
to the wave front.
Cycle or Oscillation: is accomplete to and fro motion of a wave. It is equivalent to moving from O to B .

Period (T): The time taken for any particle to undergo a complete oscillation. $\rangle={ }^{*}$.
Frequency (f): The number of oscillations per second. second in a given direction.

Yelocity, (ysinghe The idistance fovered by a wave particle per

Phase: Is a fraction of a cycle which has elapsed after a
Ha wave completes n cycles in time t, then frequency, f is

Relationshis between fand T

Relationship between v, λ and f
If a wave of wavelength λ completes n cycles in time t, then the frequency, f is given by;
Each cycle is a wavelength, λ :
Total distance covered in n -cycles $=\mathrm{n} \lambda$

There are wo broad types -:
a) progressive waves and
b) stationary waves

PROGRESSIVE WAVES

Is a wave which moves away from its source through a medium and spreads out continuously? There are two kinds of progressive waves namely:
i) Transverse waves
ii) Longitudinal waves

i) Transverse waves

These are waves in which particles vibrate perpendicularly to the direction of propagation of the wave.

Examples

ii) Longitudinal waves

These are waves in which the particles of media vibrate in the same direction as wave

OR

These are waves in which the particles of the media vibrate parallel to wave motion e.g. sound waves in pipes, waves from a slinky spring.
E Lompitudimalars traydy farmation of compressions and
 Period, DOUNLOAD MORE RESOURCES L given oy:

Compression (C) is a region in a longitudinal where the vibrating particles are very close together.
A wave faction (R) Is a region in a longitudinal where the vibrating particles are further apart (distanced).
Wave length; of the longitudinal is the distance between two successive compressions or rare factions.
Differences between longitudinal and transverse waves

Transverse Waves	Longitudinal waves
$-\quad$ Particles vibrate perpendicular to the direction of wave	Particles vibrate parallel to the direction of wave
 troughs	 refraction
-Can be polarized	Cannot be polarized

1. State two differences between waves and light waves.

Examples

1. A radio station produces waves of wave length 10 m . If the wave speed is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$, calculate
(i) Frequency of radio wave.
(ii) period time, T
(iii) Number of cycles completed in 10^{8}

Solution:

(i) Frequency of	(ii) Period ,T	(ii) Number of
radio wave; $\lambda=$		
$10 \mathrm{~m}, \mathrm{v}=3 \times 10^{8} \mathrm{~m} / \mathrm{s}$	Period, $\mathrm{T}=\frac{1}{\mathrm{f}}$	cycles
$\mathrm{v}=\mathrm{f} \lambda$	$\mathrm{T}=\frac{1}{3 \times 10^{7}}$	$\mathrm{n}=\mathrm{ft}$
$3 \times 10^{8}=\mathrm{f} \times 10$	$\mathrm{~T}=3.3 \times 10^{-7} \mathrm{~s}$	$\mathrm{n}=3 \times 10^{7} \times 10$
$\mathrm{f}=\frac{3 \times}{\frac{10^{8}}{10}}$		$\mathrm{n}=3 \times 10^{8}$ cycles
$\mathrm{f}=3 \times 10^{7} \mathrm{~Hz}$		

2. The distance between 10 consecutive crests is 36 cm . Calculate the velocity of the wave. If the frequency of the wave is $12 \mathrm{H}_{\mathrm{z}}$.

Solution:

The distance between $\mathrm{n}-\mathrm{v}=\mathrm{f} \lambda$
successive crests or troughs
is given by;

```
v}=\textrm{f}
v}=12\times0.0
```

$\lambda=\frac{\mathrm{d}}{\mathrm{n}-1}$
ÉcoleBooks
$\lambda=\frac{36}{10-1}=\frac{36}{9}=0.04 \mathrm{~m}$
$\lambda=0.04 \mathrm{~m}$
3. The diagram below shows a wave travelling in water.

(a) Name;
(i) Any two points on the wave which are in phase
(ii) The points Labeled m and x
(b) (i) Determine the a mplitude of the wave.
(ii) If the speed of the wave is $8000 \mathrm{~cm} / \mathrm{s}$. Determine the frequency of the wave.

Ouestions

1. A vibrator produces waves which travel 35 m in 2 seconds. If the waves produced are 5 cm from each other, calculate;

2. The figure below shows circular waves of frequency 32 Hz . Calculate its velocity. [Ans: $1.6 \mathrm{~ms}^{-1}$]

3. A source produces waves which travel a distance of 140 cm in 0.08 s . If the distance between successive crests is 20 cm , find the frequency of the source. [Ans: 87.5 Hz]
4. A sound source produces 160 compressions in 10 s . The distance between successive compressions is 20 m . Calculate the;
(i) frequency of sound [16HZ]
(ii) wave speed $\left[320 \mathrm{~ms}^{-1}\right]$
5. See UNEB 1992 Qn. 7

THE RIPPLE TANK

A ripple tank is an instrument used to study water wave properties. It is a shallow glass trough which is transparent. The images of the wave are projected on the screen which is placed below it.
The waves are produced by means of a dipper which is either a strip of a metalor a sphere. The dipper is moved up and down by vibration of a small electric motor attached to it.

The sphere produces circular wave fronts and the metalstrip is used to produce plane waves.
A stroboscope helps to make the waves appear stationery and therefore allows the wave to be studied in details.

Straight waves (plane waves): These are produced by dipping a straight edged object e.g. a ruler on the water surface.

Continuous straight waves: These are produced by fixing a straight dipper (horizontal bar) suspended by rubber bands. The whole bar is dipped in water and is made to vibrate by the vibrations generated by an electric motor.

WWITWITWITA-Straight barrier Plane wave fronts

Continuous circular waves: These are produced bv attaching small total balls (using rubber bands) to metalbars and using the vibration from an electric motor.
As the bar vibrates, the vibrations cause the dipper to move up and down producing continuous circular waves.
N.B

Therefore the speed of the wave in a ripple tank can be reduced by reducing the depth of water in the tank. The effect of reducing the speed of waves is that the wave length of water reduces but frequency does not. The frequency can only be changed by the source of the wave. Qn: A vibrator in a ripple tank has a period of 0.2 seconds and the distance between 10 successive crests is 38.8 cm . Calculate the ;
(i) Wavelength of the wave $[4.31 \mathrm{~cm}]$
(ii)
Velocity of the wave $[0.22$

WAVE PROPERTIES

The wave produced in a ripp e tankéenaheergooks

(a) Reflection	(b) Refraction	(c) Diffraction
(d) Interference	(e) Polarization	

(a) REFLECTION OF WAVES

A wave is reflected when a barrier is placed in its path. The shape of the reflected wave depends on the shape of the barrier.
The laws of reflection of waves are similar to the laws of reflection of light.

* Reflection of plane wave

(i) On a plane surface.

(ii) On a curved surface

* Reflection of circular waves

(i) On a plane surface

(ii) On a curved surface

Note: During reflection of water waves, the frequency and velocity of the wave do not change.

(b) REFRACTION

This is the change of in direction of wave travel as it moves from one medium to a nother of different depth. It is caused by the change of wave length and velocity of the wave. However, the frequency and the period are not affected. In a ripple tank, the change in direction is brought about by the change in water depth.

When waves are incident on a shallow water boundary at an angle;
\checkmark Wave length decreases in shallow waters
\checkmark Speed decreases in shallow water
\checkmark Frequency and period remain the same.

$\boldsymbol{\gamma}_{1}$ = wave length in deep water
$\hat{2}_{2}$ = wave length in shallow water
Note:
(ii)
(iii)

Refräctive index $=1 \begin{aligned} & \text { Lens-shaped perspex } \\ & \text { reduces water depth }\end{aligned}$

(c) DIFFRACTION

This is the spreading of waves as they pass through holes, round corners or edges of obstacle. It takes place when the diameter of the whole is in the order of wave length of the wave i.e. the smaller the gap the greater the degree of diffraction as shown below.

-Waves spread out more (i.e greatly diffracted) when the wave length is longer.
-The wave length does not change when waves pass through the slit.
-Diffraction (spreading) increases with decrease in the width of the slit. Wider gaps produce less diffraction.
-When the width of the gap is less than the wave length of the of the incident waves, the emerging waves are circular. At this width, the slit may be considered to act as a separate point source of waves.
(a) Edge of obstacle

Sound waves are more diffracted than light waves because the wave length of sound is greater than that of light． Thereforesewlequdk beardin hidden corners．
N．B－When waves undergo diffraction，wave length and velocity remain constant．

（d）INTERFERENCE

This is the super imposition of two identical waves travelling in the same direction to form a single wave with a larger a mplitude or smaller a mplitude．
The two waves should be in phase（matching）．

Conditions necessary for producing interference：

1．The two waves must have coherent sources．
2．The two waves must have the same amplitude and the same frequency．
3．The distance between the sources must be very small．

Constructive interference

This constructive interference occurs when a crest from one wave source meets a crest from another source or a trough from one source causing reinforcement of the wave i．e． increased disturbance is obtained．
The resulting amplitude is the sum of the individual amplitudes．
E．g．
$\cap+\cap=\bigcap$ or $U+U=U$

＊For Light，constructive Interference would give increased brightn ess．
＊For sound，constructive Interference would give increased loudness．

Destructive interference

This occurs when the crest of one wave meets a trough of a nother wave resulting in wa ve cancelling i．e．
If eavoresare restliginh．
e．g．
$\cap+U=$
（
For Light，constructive Interference would give reduced brightness or darkness．
For sound，constructive Interference would give reduced loudness or no sound at all．

Note：

The interference pattern caused by two sources placed close together－give nodal and antinodal lines that are spread widely．When the two sources are placed far apart，the nodal
and anti－nodal lines are closer together making the pattern more difficult to see．

EcoleBooks
Antinodal line

Note：In the corresponding case for light waves，antinodal lines are bright fringes and nodal lines are dark fringes．

Lines joining points of constructive interference are called antinodal fines while these lines joining points of destructive interference are called nodal lines．

Trial Questions：

（a）With the aid of a diagram，describe how an interference patter（Interference fringes）can be produced in a ripple tank．
（b）What are the conditions necessary for interference to
（e）POLARISATION OF WAVES
It only occurs with transverse wayes like other transverse waves，water waves can be polarized．

Petlarizatiqne：is the effect in which vibration are in only a
Differences between water and sound waves；

Water waves	Sound waves
－Transverse	Longitudinal
－Low speed	High speed
－Short wave length	Long water length
－Can be polarized	Cannot be polarised
－Possible only in liquid（．e．g water）	Possible in solids，liquids and gases．

State three differences between sound and light waves．

Wave	1994 Qn23	1992 Qn1	2008 Qn31
motion	1998 Qn23	2006 Qn22	1989 Qn6
1992 Qn7	1998 Qn26	2007Qn35	1993 Qn4
1989 Qn30	2001 Qn18	2007Qn39	2006 Qn5
1990 Qn21			

ELECTRO MAGNETIC WAVES

This is a family of waves which is made by electric and magnetic vibrations of very high frequency．

Spectrum of electromagnetic waves
In decreasing frequency

Properties of electromagnetic waves

- They are transverse waves.
- They can travel through vacuum.
- They travel at a speed of light $\left(3.0 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$.
- They can be reflected, refracted, diffracted and undergo interference.
- They posses energy.

Effects of electromagnetic waves on meter

(a) Gamma rays.

- They destroy body tissues if exposed for a long time.
- They harden rubber solutions and lubricate oil to thickness.
(b) X-rays
- Causes curtains to give off electrons.
- Destroys body tissues if exposed for a long time.
- Used in industries to detect leakages in pipes and in hospitals to detect fractures of bones.
(c) Ultra violet
- Causes sun burn
: Causes sun metals to give off electrons by the process
- Called photoelectric emission.
- Causesblindness.
(d) Visible light

Enables us to see.

- Ghanges the apparent color of ap object.
(e) Infrared Causes the body temperature of an object to rise.
(f) RadIt iswasesurce of vitamin D.
- inauces the voltage on a conauctor and it enadies its presence to be detected.

Wave band	Origin	Source
Gamma rays	Energy changes in modes of atoms	Radioactive substance
X- rays	Electrons hitting a metaltarget	X - ray tube
Ultra- violet	Fairly high energy changes in atoms	Very hot bodies Electron discharge Through gases especially mercury Vapour
Visible light	Energy changes in electron structure of atoms	Lamps, flamesetc DOWNLOAD M MORE RESOURCES
Infrared radiation DOLKE THIS ON ECOO		

Red Sun set and Blue sky

Effect of long and short wave lengths.

(i) Long wavelength: Waves of long wavelength are less scattered than waves of short wavelength. This explains why the sun appears red when rising or setting.
Explanation: At sun rise or sun set, the light rays from the sun travel through greater thickness of earth's atmosphere. So the longer wavelength passes through.
(ii) Short wavelength: Waves of short wavelength are highly scattered. This explains why the sky appears blue, since the primary colour, blue has the shortest wavele ngth in the spectrum.
Note: Beyond the atmosphere, the sky appears black and the a stronauts are able to see the stars and the moon.

Electromagnetic waves	2001 Qn21
1987 Qn30	2006 Qn31
1989 Qn16	2007 Qn13

Is a form of energy which is produced by vibrating objects
e.g. when a tuning fork is struck on a desk and dipped in
water
Is a form of energy which is produced by vibrating objects
e.g when a tuning fork is struck on a deesk and dipped in
water, vibrating or when a guitar string is struck.

PROPERTIES OF SOUND WAVES

- Cannot travel in a vacuum because there is no metal
- Ean bause interference.
- Travels with a speed $\sqrt{=}=330 \mathrm{~m} / \mathrm{s}$ in air.

SPECTRUM SOUND WAVES

Frequency	$0 \mathrm{H}_{7}$	$20 \mathrm{H}_{7}$	$20,000 \mathrm{H}_{7}$
Type of sound	Subsonic sound	Audible sound waves	Ultra sonic sound wave.

Subsonic sound waves

These are not audible to human ear because of very low frequency of less than $20 \mathrm{H}_{\mathrm{Z}}$.

Audible sound waves

These are audible to human ear. This frequency ranges from $20 \mathrm{H}_{\mathrm{Z}}-20 \mathrm{KH}_{\mathrm{Z}}$.

Ultra sonic sound waves

These are sound waves whose frequencies are above $20 \mathrm{H}_{7}$. They are not audible to human ears. They are audible to whales, Dolphins, bats etc.

Application of ultra sound waves

- They are used by bats to detect obstacles e.g. buildings head. Ecolebooks.com
- Used in spectacles of blind to detect obstacles.
- Used in radio therapy to detect cracks and faults on welded joints.
- Used in industries to detect rocks in seas using sonar.
- Used to measure the depth of seas and other bodies.

Example: 1

A radio station broad casts at a frequency of 200 kHz and the wave length of its signal is 1500 m . Calculate the;
(i) Speed of the radio waves. $\left[3.0 \times 10^{8}\right]$
(ii) Waye length of another station that broad casts

Example: 2

TRANSMISSION OF SOUND.

Sound rafurires qiquaterialinedium forits, tranes issipnt itt solids and does not travel through vacuum.

Experiment to show that sounds cannot pass through a vaccum.

Procedures:

- jamrange the apparatus as in the diagram with air, in the
- Sheieqng and sound is heard ${ }_{\text {the }}$ hammer is seen striking

Obsefhattiot ind produced begins to fade until it is heard no
- Gently attpur airmack inteethetianas the gir geturns, the sfaurelthrough vagatimeard showing that sound cannot Consfasifh: waves require a material medium for their

Note: The moon is sometimes referred to as a silent planet because no transmission of soyncalederalesto lack of a air (or any material mediun

The speed of sound depends on;

(i) Temperature

Increase in temperature increases the speed of sound i.e. sound travels faster in hot air than in cold air.
(ii) Wind

Speed of sound is increased if sound travels in the same direction as wind.

Souind (travelts fastiter on a low altitude and slower on higher
Souind tra velts faster on a low altitude and slower on higher altitude. (IV) Humidity:
The higher the humidity, the higher the speed of sound and
(v) Density of the medium.
deffed of offinund is more in denser medium than in the less

B5esferferavels fastest in solids than liquids and gases because. In solids the particles in solids are very close together and they produce vibration easily i.e. solids are more dense. Also speed of sound is faster in liquids than in gases.
In solids and liquids, increasing the temperature decreases the speed of sound because solids are denser. Also speed of sound is faster in liquids than in gases.

Some media and the speed of sound

Medium	Speed of sound $\left(\mathbf{m s}^{-1}\right)$
Air	330
Steer	600
Water	1500
Glass	5600
nations	

Some explanations

- If a person places his ear near the ground and another person taps along a metal which is some distance a way the sound will be heard clearly than when standing since sound travels faster in solids than in gases.
- A sound made by a turning fork, sounds, louder when
 increasing the sound.
lequidsxplain why sound travels faster in solids than in

Exampine:stand a distance apart besides a long metal rail on
 ECOLEBOOKS.COM
sounds separated by a time interval of 0.5 s , are heard by the first man. If the speed of sound in air is $330 \mathrm{~ms}^{-1}$, and that in the meta世radieb $388 \mathrm{~km} \mathrm{~s}^{-1}$. Cf find the distance between the men.

$\begin{aligned} \frac{\mathrm{t}_{1} \mathrm{x}-\mathrm{t}_{2}=\mathrm{x} 0.5}{330}-\frac{5280}{52} & \equiv 9.56 \mathrm{~m}\end{aligned}$

Honssoumad waves trevelthnough lir the vibration of air

Openstabhard plane surface, R is a closed tube and T is an

- Put a ticking clock in tube R on a table and make it to
- face hard plane surface egg. a wall.
- until the ticking sound of the sound is heard loudly
incidence and reflection respectively.
- From the experiment, sound is heard distinctly due to reflection.
- Angle of incidence (i) and angle of reflection (r) are equal and lie along XY in the same plane.
- This verifies the laws of reflection.

Note: Hard surfaces reflect sound waves while soft surface absorb sound wave.

ECHOES

An echo is a reflected sound. Echoes are produced when sound moves to and fro from a reflecting surface egg. a cliff wall. The time taken before an echo arrives depends on the distance a way from the reflecting surface.
In order for a girl standing at a distance, \mathbf{d} from a reflecting surface to hear the echo; sound travels a distance of $\mathbf{2 d}$.
Measurement of velocity of sound using an echo method

- Two experimenters stand at a certain distance d from a tall reflecting surface
- One experimenter claps pieces of wood \mathbf{n} times, while the other starts the stop clock when the first sound is
- The time taken, t for then claps is recorded and the speed of sound in air is caleglededeB;ooks

For an echo; Speed $=\frac{2(\text { distance })}{\text { time }}=\frac{2 \mathrm{~d}}{\left(\frac{\mathrm{t}}{}\right)}=\frac{2 \text { nd }}{\mathrm{t}}$
Where n is the number of claps (or sounds) made.

Axample:nds 34 m a way from a reflecting wall. She makes sound and hears an echo after 0.2 seconds. Find the velocity

Speed $=z\binom{$ distance $)}{$ time }
$V=\underset{\mathrm{t}}{2 \mathrm{~d}}$
$\mathrm{V}=2 \times 34$
$V=3402 \mathrm{~ms}^{-1}$

Example: 2

A person standing 99 m from a tall building claps his hands and hears an echo after 0.6 seconds. Calculate the velocity of sound in air.
Speed $=2$ (distance)
$\mathrm{V}=\frac{2 \mathrm{~d}}{\mathrm{t}}=\frac{2 \text { 土 }_{\text {time }}^{0}}{0.6}=330 \mathrm{~ms}^{-1}$

Example: 3

Example: 3 gun was fired and an echo from a cliff was heard 8
seconds later. If the velocity of sound is $340 \mathrm{~m} / \mathrm{s}$, how far was the gun from the cliff?
Speed $=\frac{2(\text { distance })}{\text { time }}$
$V=\frac{2 \mathrm{~d}}{\mathrm{t}}$
$340=\frac{2 \mathrm{~d}}{8}$
$2 \mathrm{~d}=340 \times 8$
$2 \mathrm{~d}=2720$
$\mathrm{d}=1360 \mathrm{~m}$
Example: 4
A student is standing between two walls. He hears the first echo after 2 seconds and then another after a further 3 seconds. If the velocity of sound is $330 \mathrm{~m} / \mathrm{s}$, find the distance between the walls.

$V=\frac{2 d_{1}}{t_{1}}$	$V=\frac{2 d_{2}}{t_{2}}$
$330=\frac{2 d_{1}}{2} \Rightarrow 2 d_{1}=660$	$330=\frac{2 d_{2}}{5} \Rightarrow 2 d_{2}=1650$
$d_{1}=330 \mathrm{~m}$	$d_{2}=825 \mathrm{~m}$
$d=d_{1}+d_{2}$	
$d=330+825$	
$d=1155 \mathrm{~m}$	
dKS.CON	

Example: 6 wall.
Speed $=\frac{2 \mathrm{n}(\text { dista } \mathrm{nc}}{\text { time }}$
$V=\frac{2 n d}{t}$
$330=\frac{2 \times 50 \times \mathrm{d}}{60}$
$100 \mathrm{~d}=330 \times 60$
$\mathrm{d}=198$

Solutions:

Example: 5

A man is standing midway between two cliffs. He claps his hands and heareqelgerolaftee 3 reconds. Find the distance between the two cliffs.
(Velocity of sound $=330 \mathrm{~m} / \mathrm{s}$)
$\mathrm{V}=\frac{2 \mathrm{~d}_{1}}{\mathrm{t}_{1}}$
$330=\frac{2 d_{1}}{3} \Rightarrow 2 d_{1}=990$
Since the man is mid way between the cliffs,
$\mathrm{d}_{2}=\mathrm{d}_{1}=495 \mathrm{~m}$
$\mathrm{d}_{1}=495 \mathrm{~m}$
$\mathrm{d}=\mathrm{d}_{1}+\mathrm{d}_{2}$
$d=495+495$
$d=990 m$

A student made 50 claps in one minute. If the velocity of sound is 330 s , find the distance between the student and the

1. A boy stands at a distance of 990 m from a tall building and makes a loud sound. He hears the echo after 6

Case I
$V=\frac{2 \mathrm{x}}{\mathrm{t}_{1}}$

$$
V=\frac{2 \mathrm{x}}{\mathrm{t}_{1}}
$$

$$
330=\frac{2 x}{2} \Rightarrow 2 x=2 \times 330
$$

$$
\begin{aligned}
330=\frac{2 y}{3.5} \Rightarrow 2 y & =3.5 \\
& \times 330
\end{aligned}
$$

$$
\mathrm{x}=330 \mathrm{~m}
$$ seconds. Calculate the speed of sound in air.

$V=\frac{2 d}{t}=\frac{2 \times 990}{6}=330 \mathrm{~ms}^{-1}$
seconds. Find the wave length of sound wave.
$V=\frac{2 d}{t}=\frac{2 \times 300}{2}=3000 \mathrm{~ms}^{-1}$
$f \lambda \Rightarrow \lambda=\frac{v}{f}=\frac{300}{200}=1.5 \mathrm{~m}$
3. A man stands between two cliffs and fires a gun. He hears the $1^{\text {st }}$ echo after 2 seconds and the second echo after $31 / 2$ seconds. Calculate the distance between two cliffs and speed of sound in air $=330 \mathrm{~ms}^{-1}$.

$$
\mathrm{y}=577.5 \mathrm{~m}
$$

4. A student, standing between two vertical cliffs and 480 m from the nearest cliff shouted. She heard the $1^{\text {st }}$ echo after 3 seconds and the second echo 2 seconds later. Calculate;
(i) The velocity of sound in air.
(ii) The distance between the cliff.

Solutions:

Let distance between cliffs $=\mathbf{d}$

$$
\begin{array}{l|l}
\hline \text { Case I } & \text { Case II } \\
V=\frac{2 x}{t_{1}} & V=\frac{2(d-x)}{t_{2}} \\
V=\frac{2 \times 480}{3} \Rightarrow 3 V=960 & 320=\frac{2(d-480)}{5} \\
V=320 \mathrm{~ms}^{-1} & 2(\mathrm{~d}-480)=5 \times 320 \\
& d-480=800 \\
& d=1280 \mathrm{~m} \\
\hline
\end{array}
$$

Questions

1. A boy standing 100 m from the foot of a high wall claps his hands and the echo reaches him 0.5 s after. Calculate the speed of sound in air.
2. A sound wave is produced 600 m a way a high wall. If an echo is received after 4 seconds. Find the frequency of sound wave length is 2 m .
3. A sound wave of frequency 250 Hz is produced 120 m a way from a high wall. Calculate;
(i) The wavelength of the sound wave
(ii) The time taken for the sound wave to travel to the wall and back to the source and speed of sound in air $=330 \mathrm{~ms}^{-1}$.
4. A man standing between two vertical walls and 170 m from the nearest wall shouted. He heard the $1^{\text {st }}$ echo after 4 s and the $2^{\text {nd }}$ echo 2 seconds later. Find the DOWNLOAD MORE RESOURCES LIKE THIS ON ECOdistB@@@WGDhE@MM
5. A boy standing 150 m from a high cliff claps his hands
 $320 \mathrm{~ms}^{-}$. Find the time taken for the sound to travel to the wall and back to the source.
6. A man stands at a distance of 340 m from a high cliff and produces sound. He hears the sound Again after 2 seconds. Calculate the speed of sound.
7. A child stands between 2 cliffs and makes sound. If it hears the $1^{\text {st }}$ echo after 1.5 seconds and the $2^{\text {nd }}$ echo after 2.0 seconds. Find the distance between the 2 cliffs. (Speed of sound in air $=320 \mathrm{~ms}^{-1}$).
8. A man sees the flash from a gun fired 1020 m a way and then hears a bang. How long does the bangtake to reach him? [Ans: $330 \times 1020 \mathrm{~s}$].
9. The echo sounder on a boat sends down the sea, a pulse and receives its echo 0.3 seconds later. Find the depth of the sea. (speed of sound in water is $1445 \mathrm{~ms} \mathrm{~s}^{-1}$)
[Ans: 216.8m].
10. A girl at A clapped her hands once and a boy at B heard two claps in an interval of 1 second between the two sounds. Find the distance AB. [Ans: 330 m].
11. Two people X and Y stand in a straight line at distances of 330 m and 660 m respectively from a high wall. Find the time interval taken for X to hear the first and second sounds when Y makes a loud sound. [Ans: 2.0 s].

Reverberation

In a large hall where there are many reflecting walls, multiple reflections occur and cause or create an impression that sound lasts for a longer time such that when somebody makes a sound; it appears as if it is prolonged. This is called reverberation.

Definition of Reverberation

Bremengeat dian tis nthtipleferfleations. original sound being

Advantages of reverberation

Risadyantages of reverberation
Becomesynclear spectes, there is a nuisance because the sound Prevention of reverberation
absorbing material called acoustic materials.
The internal surfaces of a hall should be covering the sound Why echoes are not heard in small rooms?
reflected sound is so small such that the incident sound This is because the distance between the source and ear to differentiate between the two.
mixes up with the reflected sound making it harder for the Ouestions:
(b) Distinguish between:
(i) (a) Southemeges and light yayedectromagnetic waves.

1. A man standing medway between two cliffs makes a sound. He hears the first echo after 3s. Calculate the distance between the two cliffs (Velocity of sound in air $=330 \mathrm{~m} / \mathrm{s}$)

Refraction of sound waves

Refraction occurs when speed of sound waves changes as it crosses the boundary between two media. The speed of sound in air is affected by temperature.
Sound waves are refracted when they are passed through areas of different temperatures. This explains why it is easy to hear sound waves from distant sources at night than during day.

Refraction of sound during day.

Warm ground during the day

During day, the ground is hot and this makes the layers of air near the ground to be hot while that above the ground is generally cool. The wave fronts from the source are refracted a way from the ground.
Refraction of sound during night

Piffraction of sound

the sizd way ye easily Thend argund corpers because they have
longer wavelength and are easily diffracted.
next room because of diffraction of sound waves.
A person in one room can be heard by another person in the and the person is able to hear the sound.
The mouth acts as a gap and the waves from mouth spread hear music from a radio in the next room; the sound waves If you are sitting in a room and the door is open, you can room you are in.
from the radio pass through the door and spread out into the Note:
short wave length.
Light waves are not easily diffracted because they have

Interference of sound

When two sound waves from two different sources overlap, they produce cegiandoofkgyd signd and regions of quiet sound. The regions of loud sound are said to undergo constructive interference while regions of quiet are said to undergo destructive interference.

An experiment to show interference of sound waves.
Siginal generator

Loud speaker, A
Loud speaker, B
Two loud speakers A and B are connected to the same signal generator so that sound waves from each are in phase and are of the same frequency. Interference of waves from A and B occurs
An observer moving in front of the loud along AB hears alternating loud and soft sound as he moves which corresponds to constructive and destructive interferences respectively.
With the sound set at a lower frequency (long wave length) the interference pattern becomes widely spread.

Qn. Describe an experiment to show interference of sound waves.

MUSICAL NOTES OR TONES:

A musical note or a tone is a single sound of a a definite pitch and quality made by a musical instrument or voice.

Music: This is an organized sound produced by regular vibrations.

Noise: This is a disorganized sound produced by irregular vibrations.

$=\rangle$

Characteristics of musical notes

This is the loudness or softness of sound. It depends on the frequency of sound produced, the higher the frequency the higher the pitch.

(ii) Loudness

This depends on the amplitude of sound waves and sensitivity of the ear.

- Amplitude; This is the measure of energy transmitted by the wave. The bigger the amplitude, the more energy transmitted by the wave and the louder sounder sound produced.
- Sensitivity of the ear. If the ear is sensitive, then soft sound will be loud enough to be detected and yet it will not be detected by the earwhich is insensitive.

DOWNLOAD MORE RESOURCES LIKE THIS ON

(iii) Timber (Quality)

This is the characteristic frg tedeliballays the ear to distinguish sounds of the same pitch and loudness it depends on the number of overtones produced, the more the number of overtones, the richer and the sweeter the music and therefore the better the quality.

Overtone

This is a sound whose frequency is a multiple of a fundamental frequency of the musical note.

Pure and impure musical notes.

Pure refers to a note without overtones. It is very boring and only produced by a tuning fork.
Impure refers to a note with overtones. It is sweet to the ear and produced by all musical instruments.

Beats

A beat refers to the periodic rise and fall in the amplitude of the resultant note.

VIBRATION IN STRINGS

Many musical instruments use stretched strings to produce sound. A string can be made to vibrate plucking it like in a guitar or in a harp putting it in pianos. Different instruments produce sounds of different qualities even if they are of the same note.

Factors affecting the frequency of the stretched string.

A. =Fixed bridge; B.=Movable bridge
(a) Length

For a given tension of the string, the length of the string is inverse the proportion to the frequency of sound produced.
This can be demonstrated by an instrument called sonometer as shown above.
By moving bridgeB, higher frequency can be obtained for a short length $A B$ and lower frequency for a long length. The relation can be expressed as;

Adding weights or removing them from its ends at load R
the tension of the higher sonometer wire. It will be noted that the higher the tension, the higher the frequency of the note produced.

(c) Mass per unit length

Keeping length (l) and tension (t) constant, the frequency of sound produced depends on the mass per unit length of the string. Heavy strings produce low frequency sounds. This is seen in instruments such as guitar, base strings are thicker than solo strings. If the tension and length are kept constant,

of the strings thus a thin short and taut string produces high frequency sound.

as:

Where \boldsymbol{l} is the length in m, \mathbf{T} is the tension in N and
is mass per unit leifoth in kgm
is mass per unit length in kgm

Example: 1
A musical note has frequency of 420 and length (l), if the length of the string is reduced by - , find the new frequency.

But, $\quad \hat{\beta}_{2}=12$
$420 \times \hat{\beta}_{1}=\frac{1}{2}($
$\rangle_{2}=840^{2}$

A stationary wave is a wave formed when two progressive waves of the same frequency and wave length travelling in opposite direction meet producing nodes and antinodes.

Progressive wave is a wave in which energy is transmitted from one place to a nother and is not stores.

Vibrating strings

The ways in which a string vibrates are called harmonics. The sound is produced when notes are performed at both ends of a stationary wave.

Modes of vibration

The ends of a stretched string are fixed and therefore the ends of the string must be the displacement nodes.
If the string is displaced in the middle, a stationary wave is formed.

Fundamental note:

- Is a note with the lowest audible frequency.
- It is the note produced at the first position of resonance.

Overtones:

- Is a note whose frequency is higher than the fundamental frequency.
-

Uses of overtones:
-Determining the overall quality of sound
-Describing sound systems in pipes or plucked strings.

Harmonics:

- Is a note whose frequency is an integral multiple of the fundamental frequency.

Musical Interval:

ÉcoleBooks

- This is the ratio of the frequencies of two notes.

5:4

Name of musical note	Tone ratio
Octave tone	$2: 1$
Minor tone	
	9.:8:5
Seaji.tome	

OctaNlifis is the span of notes between one pitch and a nother that it is twice or a half its frequency.

sound similar. Because of that, all notes with these kinds of relations can be grouped under the same pitch class.

Note: In calculations involving octave use the formula;

Where, $\rangle_{2}=$ Higher frequency

\rangle = Number of octaves above or below

Example: 1

Find the freguency of a note four octave above a note of frequency 20 Hz .

Example: 1

Find the frequency of a note of four octaves below a note of frequency 512 Hz .

(i) First Position of resonance (fundamental note)

 $1^{\text {st }}$ harmonic vibration

The wave formed in this case is the simplest form of vibration and is called the fundamentalnote .
The frequency at which it vibrates is called the fundamental frequency.
If f is the frequency (Fundamental frequency). Then $f_{1}=\left(\frac{v}{\lambda}\right)$, But $\lambda=2 l$
$f_{1}=\left(\frac{v}{2 l}\right)_{\text {Ewbdeboindtes socehof the wave. }}$

(ii) Second Position of resonance (first Overtone).

When the wave is plucked quarter way from one end, the wave formed is shown below.

If f_{2} is the frequency of the wave, then;
$f_{2}=\frac{v}{\lambda_{2}}=\frac{v}{l}=\frac{2}{2} \times \frac{v}{l}=2 \times\left(\frac{v}{2 l}\right)=2 f_{1}$
Thus, it is also called the second harmonic.
(iii) Third Position of resonance ($2^{\text {nd }}$ overstone)

$f_{3}=\frac{v}{\lambda_{3}}=\frac{v}{(2 / 3 l)}=3 \times \frac{v}{2 l}=3 f_{1}$
Thus, it is also called the third harmonic.
Therefore in a stretched string all the harmonics are possible

$$
f_{1,} 2 f_{1,} 3 f_{1}, 4 f_{1} .
$$

and their frequencies are;
Thus harmonics obtained from vibrating strings are
obtained. obtained. are

No disturbance occurs at these points.

RESONANCE a body is set into vibrations with its own natural frequency by another nearby body vibrating at the same frequency.
The final amplitude of the resonating system builds up to a much greater value than that of the driving system.

An experiment to demenstrate Resonance using a coupled pendulum and tibesEcoleBooks
Procedures:

Hang four pendulum bobs on the same taut string such that pendulum, A has variable length while B, C and D have different fixed lengths.
Set pendulum A to the same length as D. Make it swing and observe the mode of swinging of the pendulums.

Set pendulum A to the same length as B. Make it swing and observe the mode of swinging of the pendulums.

Observation:

When length of A is equal to length of D, B and C vibrate with smaller amplitudes while D swings with larger amplitudes.
When length of A is equal to length of B , the motion of A will be transferred to B in greater a mplitude and B will start to swing with appreciable amplitude while C and D will jiggle a little but they will not swing appreciably.

Common consequences of resonance:

(i) A playground swing can be made to swing high by someone pushing in time with the free swing.
(ii) Soldiers need to break a step when crossing a bridge.
(iii) Vibrations of the sounding box of a violin.
(iv) A column of air in a tube resonates to a particular note.
(v) A diver on a spring board builds up the amplitude of oscillation of the body by bouncing on it at its natural frequency.
(vi) Singers who can produce very high frequency notes can cause wineglasses to break when the notes have the same frequency as the natural frequency of the glass. [Opera singers]

Applications of Resonance:

- In determining the speed of sound in air using a tuning
fork and the resonance tube,
- In tuning strings of a musical instrument e.g a guitar and tuning electrical circuits which include indicators.

Dangers of Resonance

- Causes buildings to collapse due to earthquake.
- Chimneys can also collapse due to strong resonance.

Vibrations of air in pipes.

(a) When a wave of a particular wave length and frequency is set into a closed pipe, reflection of the wave occurs at the bottom of the pipe. The reflected wave will interfere with the incidence when the length of the wave is adjacent so that a node is reflected at the reflected surface, a standing wave is produced.

The air column is now forced to vibrate at the same frequency as that of the source of the wave which is a natural frequenleefthekis codumn.

(a) Closed pipes.

This consist essentially of a metal pipes closed at one end and open at the other.

Closed pipes boundary conditions.

At the closed end, there is a displacement node.
At the open end here is displacement antinode.
The allowed oscillation modes or standing wave patterns are:-
(i) Fundamental note

$$
\begin{equation*}
f_{1}=\frac{v}{\lambda_{1}}=\frac{v}{4 l} \tag{i}
\end{equation*}
$$

Fundamental frequency,
Fundamental or lowest audible frequency (f_{1})
It is obtained when the simplest stationary wave form is obtained.
(ii) First overtone (3 ${ }^{\text {rd }}$ harmonic)

Frequency of first overtone f_{3} is given by;
$f_{2}=\frac{v}{\lambda_{2}}=\frac{v}{\left(\frac{4 l}{3}\right)}=\frac{3 v}{4 l}=3 \times\left(\frac{v}{4 l}\right)=3 f_{1}$
(iii) Second overtone ($5^{\text {th }}$ harmonic)

$f_{3}=\frac{v}{\lambda_{3}}=\frac{v}{\left(\frac{4 l}{5}\right)}=\frac{5 v}{4 l}=5 f_{1}$
The frequencies obtained with a closed pipe are $\mathrm{f}_{1,3}, 3 \mathrm{f}_{1}, 5 \mathrm{f}_{1}$, $7 f_{1} 9 f_{1}$, etc i.e. only odd harmonics' are obtainable. Because of the presence of only odd harmonics, closed pipes are not as rich as open pipes.
In closed pipes, nodes are formed at closed ends and antinodes at open end.

These are Pipes which areopen at both ends.
In open pipes, standing way escesulitigoiotesesonance are created when the incidentwaves are reflected by the air molecules at the other end. Possible ways in which waves travelare shown below:
In open pipes, the sound nodes are produced when antinodes are formed at both ends.

Open pipes boundary conditions:

Antinodes are at both ends.
The allowed oscillation modes or standing wave patter are:-
(i) Fundamental note.($1^{\text {st }}$ harmonic)

Fundamental frequency; $f_{1}=\frac{v}{\lambda_{1}}=\frac{v}{2 l}$
(ii) First overtone (second harmonic)

Thus frequencies for notes produced by open pipes are $f_{1}, 2 f_{1}, 3 f_{1}, 4 f_{1}$ \qquad
So an open pipe can produce both odd and even harmonics.
Therefore, open pipes produce a richer note than that from a similar closed pipe, due to the extra harmonics.

In general;

* For a closed pipe: $\hat{\nu}_{\boldsymbol{\gamma}}^{\boldsymbol{\gamma}} \boldsymbol{\gamma}=$, Where, $\mathbf{n}=1$,
- $3,5,7 \ldots \ldots$.
* For an open pipe: ; 2,3,4........

End correction

Then, at the open end of the pipe is free to move and hence the vibration at this end of the sounding pipe extend a little into the air outside.

An antinode of the stationary wave due to any note is in practice a distance, c from the open end. The distance, c is known as the end correction.

For the closed pipe:-

Fundamentalmode
ECOLEBOOKS.COM

Fundamentalfrequency,

For open pipe:-

Fundamentalmode,

Fundamentalfrequency,

Open pipes are preferred to closed pipes because they give both odd and even harmonics hence better quality sound.
vetermination oi veiocity or sound in air by kesonance method.

$\mathrm{C}=$ End correction, $\boldsymbol{\nu}_{1}, \boldsymbol{\nu}_{2}=$ Length of air columns.

- Assemble the apparatus as in the diagram.
- Put a vibrating tuning fork just above the resonance tube.
- Gently lower the resonamee tube until the $1^{\text {st }}$ resonance (loud sound) occurs.
- Measure the length \rangle_{1} atwhich it occurs.
$\hat{\nu}_{1}+\mathrm{c} \stackrel{1}{\underline{\underline{1}}}{ }_{4} \lambda$
- Raise the resonance tube until the $2^{\text {nd }}$ resonance (loud sound) occurs.
- Measure the length \rangle_{2} at which it occurs.
$\hat{\beta}_{2}+\mathrm{c} \stackrel{3}{=}{ }_{4} \lambda$
- Subtract equation (i) from (ii) to eliminate c
$\left(\boldsymbol{\nu}_{2}-\boldsymbol{\beta}_{1}\right)+(\mathrm{c}-\mathrm{c})-={ }_{4}^{3} \lambda_{4}{ }_{4}^{1} \lambda$
$\boldsymbol{\nu}_{2}-\boldsymbol{\nu}_{1}=$
$2\left(\boldsymbol{\nu}_{2}-\boldsymbol{\beta}_{1}\right)=\lambda$
- Hence the speed or velocity of sound in air is determined from the expression. $\rangle=$

Example: 1.

In an experiment the velocity of sound in air using a resonance tube, the following results were obtained:

- Length of $1^{\text {st }}$ resonance $=16.1 \mathrm{~cm}$
- Length of $2^{\text {nd }}$ resonance $=51.1 \mathrm{~cm}$
- Frequency of tuning fork $=480$ 人

(i)

(i) Calculate the wave length of sound produced.
$\left.\left.\rangle=2(\rangle_{2}-\right\rangle_{2}\right)$
$\rangle=2(51.1-16.1)$
$\lambda=70 \mathrm{~cm}$
(ii) The end correction of the resonance tube.
(iii)The velocity sound in air.
$\mathrm{V}=2 \boldsymbol{2}\left(\boldsymbol{\nu}_{2}-\right.$
$\mathrm{V}=2 \times 480\left(\frac{51.1}{100}-\frac{16.1}{100}\right)$
$\mathrm{V}=336 \mathrm{~ms}^{-1}$

Example: 2.

A glass tube open at the top is held vertically and filled with water. A tuning fork vibrating at 264 Hz is held above the table and water is allowed to flow out slowly. The first resonance occurs when the water level is 31.5 cm from the top while the $2^{\text {nd }}$ resonance occurs when the water level is 96.3 cm from the top. Find the;-

Solution:

Example: 3.
The frequency of the third harmonic in a closed pipe is 280 Hz . Find the leasthedfotkair. colmmn. (Speed of sound in air $=330 \mathrm{~ms}^{-1}$)

Example: 4.
The frequency of the $4^{\text {th }}$ overtone in an open pipe is 900 Hz when the length of the air column is 0.4 m . Find the
(i) Frequency of the fundamental note
(ii) Speed of sound in air.

Solution:

Exercise:

1. The frequency of the $3^{\text {rd }}$ overtone ($4^{\text {th }}$ harmonic) produced by an open pipe is 840 . Given that the
(i) Length of the people

2. A pipe closed at one end has a length of 10 cm , if the velocity of sound is $340 \mathrm{~m} / \mathrm{s}$; calculate the frequency of the fundamental note.
3. A tuning fork produces resonance in a tube at a length of 15.0 cm and also at a length of 40.0 cm . Find the frequency of the tuning fork.
4. (a) A tuning fork of 256 was used to produce resonance in a closed pipECTheflisdelomance position was at 22 cm and the $2^{\text {nd }}$ resonance position was at 97 cm . Find the frequency of sound waves.
(b) An open tube produced harmonics of fundamental frequency 256 , what is the frequency of the $2^{\text {nd }}$ harmonics.
5. A tuning fork of frequency 256 Hz was used to produce resonance in a a tube of length 32.5 cm and also in one of length 95.0 cm . Calculate the speed of sound in the air column. [320 ms^{-1}]
6. A tuning fork of frequency 512 Hz is held over a resonance tube of length 80 cm . The first position of resonance is 16.3 cm from the top of the tube and the second position of resonance is 49.5 cm . Find the speed of sound in air. Why is it better to use a frequency of 512 Hz rather than one of 256 Hz ? [$340 \mathrm{~ms}^{-1}$]
7. See UNEB

Sound	1989 Qn27	2006 Qn42	1989 Qn2
waves	1997 Qn23	2008 Qn26	1991
2001 Qn19	1994Qn10	1997 Qn26	Qn14
1990 Qn40	1998 Qn25	1999 Qn27	1991
1995Qn22	2002 Qn25		Qn40
2002 Qn17			1992
			Qn32
			1997
			Qn33

Progressive	2000 Qn12	Qn22	1990 Qn6
and/stationary	2000 Qn29	2005	2000 Qn6
waves	2000 Qn30	Qn39	2004 Qn7
1988 Qn25	2002	2008	2008 Qn6
1989 Qn9		Qn31	
1995 Qn21		2008	
		Qn35	
		Section B	

5. ELECTROSTATICS

This refers to the study of charges at rest.
To understand the nature of charge, it is necessary to know the structure of an atom.

Structure of an atom

The atom consists of three particles, namely

Particle	Charge	Location
(i) Neutron	No charge	In the nucleus of the atom
(ii) Proton	Positive (+)	In the nucleus of the atom
(iii) Electron	Negative $(+)$	Outside the nucleus of the atom

The electrons are negatively charged while protons are positively charged. The two types of charges however are of the same magnitude in a neutralatom.
In a neutralatom, the number of negative charges is equal to the number of positive charges and the atom is said to be electrically neutral. Therefore, electrostatics is the study of static electricity because the charges which constitute it are stationary.

Conductors and insulators

througnit.

Cowduction occurs when electrons transfer charges as they
Exxamafilem orle paretmlongertaphite, acids, bases and salt
solutions are conductors.
An insulator is a material which does not allow flow of
Lhatrge thooughduction electrons because its electrons are
Examghlesoundber,thdryumleodat glassiv φ fosties. ebonite, fur,
polythene, sugar solutions etc.
Note: A body (Conductor or Insulator) can lose or gain
elections. of electrons leaves the body with a positive charge.

- Gain of electrons leaves the body with a negative charge.

Differences between conductors and insulators

Conductors	Insulators
- Electrons easily move	- Electrons hardly move
- Electrons loosely held	- Electrons tightly held
- The charge acquires is not	- Charge acquires is fixed
fixed.	

Electrification

tims is me process or proaucmy erecinc charges willin are either positive or negative.

Methods of producing Electric charges.

(i) By friction or rubbing or electron transfer (good for insulators and non conductors).
(ii) By conduction/contact (good for conductors).
(iii) By induction (conductors).
(i) Electrification by friction

- Two uncharged bodies (insulators) are rubbed together. Electrons are transferred from the body to the other.
- The body which looses electrons becomes positively charged and that which gains electrons becomes negatively charged.

Acquire positive charge	Acquire negative charge
-Gla ss, Fur, Cellulose	-silk, Ebonite (hard rubber), Polythene

Explanation of charging by friction
All insulators do not have electrons arranged in the same way i.e. some insulators have electrons held to them fairly loosely e.g. in glass electrons are held fairly loose compared to silk.

When glass is rubbed with silk, glass tends to lose electrons faster thap silk. This results in electrons being, lost from
atoms of glass at the sametime being canted by silk.
 negatively charged.
NOTE: The production of charge by rubbing is due to
artedersnlsethe ilag thramsfetrend (bothe frther materials where they
are tightly held by the nucleus.
Law of Electrostatics

- Like charges repel each other.
- Unlike charges attract each other.
 body is of opposite charge.

Thudus incepulsisurne/ TRUE test for presence of charge on a

Explanation of attraction between a charged body and an uncharged body
When a negativelyoqkagedolppdy is brought near a conductor, induced charges are produced on the conductor.
The negative charges on the conductor are repelled by the negative charge on the rod.
Consequently, the part of the conductor near the rod becomes positively charged and the far end becomes negatively charged.
Because the positive charge on the conductor is nearer the negatively charged rod than the negative charge on the conductor, the attraction between the positive charge and negatively charged rod is greater than the repulsion between the negative charge and the negatively charged rod.
The net force between the rod and the conductor is therefore an attraction. Therefore because of this fact, the only SURE/ TRUE test for presence of charge on a body is repulsion.

Electrification by conduction i.e Contact method (By sharing excess electrons)

- Support the uncharged conductor on an insulated stand.
- Put a positively charged rod in contact with the conductor.
- Because of mutual repulsion between the positive charges in the rod, some of them are converted or transferred to the conductor.
- When the conductor is removed from the rod, it is found to be positively charged.

NOTE:

* The negative charges (electrons) migrate from the un charged body to the charged body until the positive charge on both of them is the same.
* Sphere B acquires a positive charge because it has lost electrons while sphere A is still positive but it is left with less positive charges.
* The insulated stand prevents flow of charge a way from the conductor.
* To charge the conductor negatively, a negative rod is used.

Electrification by induction (By Electrostatic induction)

Electrostatic Induction is the acquisition of charges in an un charged conductor from a charged body placed near it but not in contact with it.

Facts about charging a conductor by induction.

* Brairging a charging rod near the conductor to be

4echaryed brithoist tiphughine fitar one end of the conductor to

* Earthing the side of the conductor remote to the charging rod in presencesotwednapginglog.
The other side of the conductoris earthed to allow inflow or out flow of electrons from or to the earth.
* Breaking the earth connection in presence of the charging rod.
While the charged body is still in position, the earth line disconnected.

* Removing the charging rod

The charged body is the removed and the net charge distributes its self all over the conductor.
Note: The charge obtained is always opposite to that of the charging body.
(a) Charging the body positively.

Procedure:

- Bring a negatively charged rod near the conductor placed on an insulated stand. The positive and negative charges separate as shown in (a)
- In presence of the charged rod, earth the conductor by momentarily touching it at the side furthest from the charging rod with a finger. Electrons flow from it to the earth as shown in (b).
- In presence of the charged rod, disconnect the earth line and then remove the charged rod.
- The conductor is found to be positively charged.
(b) Charging the body by induction negatively,

Charged gloss or

Procedure:

- Bring a positively charged rod near the conductor placed on an insulated stand. The positive and negative charges separate as shown in (a)
 emakgatghownith (d)finger. Electrons flow to it from the
- andtesenremoftathenchacged ad disconnect the earth line DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM
- The conductor is found to be negatively charged.

Charging twoderliessinhultanequsly:
(i) Such that they acquire an opposite charge.

- Two identical metal X and Y are supported by insulating stands.
- A negatively charged rod is placed between the two metal spheres.
- Positive charges in each sphere are attracted towards the
negatively charged rod and negative charges (electrons) are repelled to the side remote to the charging rod.
- In presence of the charging rod, both conductors are earthed at the same time by touching the sides remote to
- He chatriffrer rife sphere, electrons flow to the ground. Whenith posatheishaiscennected, the radial spheres are
 entire surface of the sphere.

Alternatively;

Charged

Bodies in contact
Bodies after
separation

- Sharged tod uncharged bodies, X and Y on an insulated stand and then place them in contact as shown in (a)
- Bring a positively charged rod near the two bodies, positive and negative charges separate as in (b).
- Separate, X from Y in presence of the inducing charge.
- Remove the inducing charge, X will be negatively charged and Y will be positively charged.
(ii) So that they acquire the same charges

Charged

Earthing
sphere Y

Bodies after
separation
acquire the same charge, Sphere Y (one remote to the To charge the two spheres simultaneously such that they

- Remove the negatively charged rod, positive charges on the ca spread out to the rod and leaf therefore the leaf dieerged bercethe.qodhleaf is positively charged.
(ii) Charging it negatively.

Positively

- Get an uncharged gold leaf of electroscope.
- Bring the positively charged rod nearthe gold leaf cap.
- Negative charges are attracted to the cap and positive charges are repelled to leaf and glass plate.
- Earth the gold leaf electroscope in presence of a positively charged rod.
- Negative charges flow from the earth to neutralize positive charges on plate and leaf.
- The leaf collapses.
 deyergedand a gold leaf therefore becomes negatively

Uses of a Gold leaf Electroscope

 If the leaf deflects, then the body has got a charge.

2. To test the nature or sign of charge on a body.

Bring the body $\overline{\bar{u}}$ under test near the $\overline{\overline{\bar{c}}}$ ap of a charge $\overline{\bar{\top}}$ G.L.E. If the leaf diverges further, then the body has a charge similar to that on the G.L.E.

However, if the leaf collapses, then the body is either neutral or it carries a charge opposite to that on the G.L.E. In this

oppersted do the one it had previously and the experiment is
If still the leaf collapses, then the body is neutral.

Increase in leaf divergence occurs when the test charge and the charge on the godedeeretoossope are the same.
3. To compare and mea sure potentials.

Two bodies which are similarly charged are brought in contact with the cap of a G.L.E one after the other.
The divergences in the two cases are noted and compared. The body which causes more divergence is at a higher potential.

4. To classify conductors and insulators.

Bring the body under test in contact with the cap of a charged G.L.E.
If the leaf collapses suddenly, then the body is a good conductor.
If the leaf collapses gradually, then the body is a poor conductor. The leaf collapses due to charge leakage. If the leaf does not collapse, then it is an insulator.

Distribution of charge on a conductor.

Surface density is the quantity of charge per unit area of the surface of a conductor.

* The distribution of surface density depends on the shape
\& If the conductor.
is investigated using a gold leaf electroscope and a mroffatbigne (a small metal disc with a handle made of

Experimentabeatsishogrthetst at the most curved point.
(ii) Edndgetotways resides on the outside of a hollow
(a) Hollow conductor

When the proof plane is placed on the outside surface of a

 does not diverge as in (b) therefore, charge resides on the
conductor is transterred to
(b) Curved bodies

A curve with a big curvature has a small radius and a curve
 inversely proportional to radius. A straight line has no curvature.
Surface charged density is directly proportional to the curvature. Therefore a small curvature has small charge density. Surface charge density is the ratio of charge to the surface area.

ACTION OF POINTS

Charge concentrates at sharp points. This creates a very strong electrostatic field at charged points which ionizes the surrounding air molecules producing positive and negative ions. Ions which are of the same charge as that on the sharp points are repelled a way forming an electric wind which may blow a candle flame as shown in the diagram below and ions of opposite charge are collected to the points.

Therefore, a charged sharp point acts as;
(i) Spray off' of its own charge in form of electric wind.
(ii) Collector of unlike charges.

The spraying off and collecting of charges by the sharp points is known as coronadischarge (action of points.)

Application of action of points (corona discharge)

- Used in a lightening conductor.
- Used in electrostatics generators.
- Electrostatic photocopying machines.
 charge remains on the outer surface.

Lightening

A lightening is a gigantic (very large) discharge between clouds and the earth, or between the charges in the atmosphere and the earth.

A lightening conductor:

Lightening conductor is a single component in a lightening protection system used to safe guard tall building from being destroyed by lightening.

It provides a safe and easypassage of charge to the earth hence safe guarding the buiding.coleBooks

A lightening conductor is made up of:
(i) Spikes placed high up on a tall building.
(ii) copper strip which is fixed to the ground and on the walls of the tall building ending with several
(iii) Copper plate buried under the grounded

How it works

- Charging the clouds negatively by friction: A moving cloud becomes negatively charged by friction.
- Induction: Once it approaches the lightening conductor, it induces opposite charge on the conductor.
- Ionization and neutralization: A high charge density on the comductor ionizes the air molecules and sends a stream of positively charged ions which neutralize some of the negative charges of the cloud.
- Conduction: The excess negatively charged ions are safely conducted to the earth through a copper strip.

Faraday's Ice pail experiment

(b)

PART I

Procedures:

* Placeatohedhargeds meatara on an uncharged G.L.E.
* Suspend a positively charged metal sphere and lower it into the pail, without touching the pail as shown in dia gram (a).
* Move the charged metal sphere about inside the can and then remove the metal sphere completely.

Observation:

Action	Observation
On lowering the metal sphere	G,L,E diverges
On moving the metal sphere about	No observable change
On complete removal of the metalsphere	Leaf returns to its original shape.

PART II

Procedures continued:

* Lower the metal sphere again into the metal can, this time allow the sphere to touch the bottom of the can as shown in diagram (b).
* Test the charge on the sphere using another G.L.E.

Observation:

Action	Observation
On touching the metalcan	G,L,E remains diverged
On testing the metal sphere with another G.L.E	The sphere is found to have lost all the charge

Conclusions from Faradays' experiment.

$\checkmark \quad$ A charged metalobject suspended inside a neutral metal container induces an equal but opposite charge on the inside of the container.
\checkmark When the charged sphere touches the inside of the container, the induced charge exactly neutralizes the excess charge on the sphere.
\checkmark When a charged body is suspended within a metal container, an equal charge of the same sign is forced to the outside of the container.

Electric fields

This is a region a round the charged body where electric forces are experienced. Electric fields may be represented by field lines.
Field lines are lines drawn in an electric field such that their directions at any point give a direction of electric field at that point. The direction of any field at any given point is the direction of the forces on a small positive charge placed at that point.

Properties of electric field lines

- They begin and end on equalquantities of charge.
- They are in a state of tension which causes them to shorten.
- They repel one a nother side ways.

Electric Field patterns

(a) Isolated charges EcoleBooks
Field lines point a way from
(ii)Isolated negative charge

Field lines point towards the negative charge. the charge.
(b) Unlike charges close together

The lines of force connect from positive charge to negative charge.
(c) Like charges close together

The field lines repel side ways.

(ii) like negative charges

(d) Two charged plates/ a charged plate and a point charge

Exercise:

1991 Qn. 2	2005 Qn. 34	2002 Qn. 30
1997 Qn. 28	2008 Qn. 6	2005 Qn. 5
1998 Qn. 28	Lightening \&	2006Qn. 33
	Electric fields	
1999 Qn. 31	1992Qn. 21	2007Qn. 32
2000 Qn. 35	1994 Qn. 14	1988 Qn. 17
2001Qn. 22	1995 Qn. 26	
2004 Qn. 10	1998 Qn. 40	
2005 Qn. 28	2000Qn.17	

SECTION B

1989 Qn. 60
(a) Sketch the electric field patterns for the following;
(i) Two negative charges close to each other
(ii) A positively charged conducting sphere
(b) Explain the following observations;
(i) The leaves of a positively charged gold leaf electroscebqeabweres tebqp is touched.
(ii) When a positively charged conductor is lowered in an ice pail placed on the cap of an uncharged electroscope, the leaves diverge. When the conductor touches the inside of the pail, the divergence of the leaves is not altered.
(c) Explain how a lightening conductorsafe guards a house a ga inst lightening.

1990 Qn. 8

(a) Draw a well labeled diagram of a gold leaf electroscope.
(b) Describe an experiment to test the charge on a charged body using a gold leaf electroscope.
(c) Draw electric field patterns for;
(i) Two positively charged bodies at a small distance apart.
(ii) An isolated negative charge.

1991 Qn. 7

(a) State the law of electrostatics.
(b) Describe how two identical metal balls may be charged positively and simultaneously by induction.
(c) (i) Explain what happens when a negatively charged rod is brought near the cap of an uncharged electroscope and slowly taken away.
(ii) Briefly explain how an electroscope can be used to test whether a material is a conductor or an insulator.
(d) What precautions should be taken when carrying out experiments in electrostatics?

1994 Qn. 7

(a) Explain why a pen rubbed with a piece of cloth attracts pieces of paper.
(b) A positively charged metallic ball is held above a hollow conductor resting on the cap of a gold leaf electroscope.
Explain what happens to the leaf of the electroscope as the ball is lowered into the hollow conductor.

1998 Qn. 10
(a) Explain what happens to an insulator when it is rubbed with a nother insulator of different material?
(b) The figure below shows a conductor supported on an electrical insulator. The conductor is given some positive charge.

Show how the charge is distributed on the conductor.
(c) Sketch the electrical field pattern due to two unlike charges \mathbf{P} and \mathbf{Q} below.

2005 Qn. 4

(a) Describe how you tisoleBoldkyaf electroscope to determine the sign of a charge on a given charged body.
(b) Explain how an insulator gets charged by rubbing.
(c) Sketch the electric field pattern between a charged point and a metal plate.
(d) Four non- metallic rods $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z are tested for charges. X attracts W and Y and repels Z . Z repels W and Y . W and Y repel each other. Which of the following statements is true about $\mathrm{W}, \mathrm{X}, \mathrm{Y}$ and Z?
A. X is charged, Y is uncharged.
B. X is un charged, W and Y are charged.
C. W, Y and Z carry the same charge.
D. X, Y and Z carry the same charge.
(e) Two pith balls are suspended by a nylon thread. When a positively charged rod is placed between them, A is attracted while B is repelled.

What charge does A and B have?

	A	B
A	Positive	Positive
B	Neutral	Positive
C	Positive	Negative
D	Neutral	Neutral

6.1. ELECTRIC CELLS OR BATTERIES

A cell is a device which directly changes chemicalenergy to electrical energy.

Types of electric cells

a) Primary cells, these are cells which cannot be recharged and their chemical reaction which produces electrical energy cannot be reversed e.g the simple cells, dry cells
b) Secondary cells, these are cells that can be recharged and the chemical reaction that produces electricity can
direction. reved by passing the current thru the opposite direction.
(a) Primary cells

These are cells which produce electricity from an
 produces electrical energy cannot be reversed

Examples of primary cells;

(ii) Simple cells (Yoltaic cells) and Wet cell)
(i) Simple cells (Voltaic cells)
 while the less reactive metalbecomes the a node.
 puldelitiq acind (Electifralyte). The electrodes are connected by In a simple cell, the cathode is Zn , the Anode is copper and the electrolyte is dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$.

A simple cell gets its energy from the chemical reaction between Zn and $\mathrm{H}_{2} \mathrm{SO}_{4}(\mathrm{aq})$ i.e.
$\mathrm{Zn}(\mathrm{s})+\mathrm{H}_{2} \mathrm{SO}_{4}(\mathbf{a q})$

$$
\mathrm{ZnSO}_{4}(\mathrm{aq})+\mathrm{H}_{2}
$$

Electrons flow the negative plate zinc to the positive plate copper while current flows from the positive to negative plate.

NOTE: A simple cell stops working after a short time because of polarization and local action.

(ii) Leclanche' cells

* Dry Leclanche' cell (Portable, electrolyte cant pour out, faster depolarizing action \& can maintain high steady current for some period of time)
* Wet Leclanche' cell (Bulky and electrolyte can easily pour out, slow depolarizing action \& cannot maintain high steady current which lights).

Here polarization and local action are a voided

- Manganese (iv) oxide is in place to act as a depolarizing agent to oxidize hydrogen to water. Thus preventing polarization.
- The carbon powder reduces the internal resistance of the cell and increases the conducting surface area.

Carbon is the anode and Zinc is the cathode. The electrolyte is ammonium chloride jelly. The chemical reaction between zinc and ammonium chloride is the source of electrical energy is a dry cell and therefore e.m.f is up. $\mathrm{Zn}(\mathrm{s})+2 \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}) \xrightarrow{ } \mathrm{ZnCl}_{2}+2 \mathrm{NH}_{3}+\mathrm{H}_{2}(\mathrm{~g})$

The e.m.f produced goes on to fall due to polarization and local action. These are the defects of a dry cell.

Polarization
Phe firization
Itsprevention depolarizing agent which oxides hydrogen to water.
Note:Even if the cell is not working (giving out e.m.f) e.m.f reduces because of localaction.
 a current through them from another source once they stop working pr riduceeq the amestht offeurrentersighe surelifdal change taking place within the cell.

Use aratcignitihatorsf a cars and other locomotives and to

(iii) LAdkalikedacedmulatori(e.g Nickel - cadmium cell;
NiCd cell, Nickel - iron cell ; NiFe cell)
(i) Leaddaciflstecuntiatiors consists of cells connected in

of the acid is about $\mathbf{1 . 2 5}$ and the e.m.f of each pair is $\mathbf{2 . 2 V}$.

The cathode is lead, the anode is lead dioxide and the electrolyte is dilute sulphuric acid.
When it is working both electrodes gradually change to lead sulphate while the acid becomes more dilute and its relative density decreases.

Mechanism of an accumulator.

When in use, the negative lead electrode dissociates into free electrons and positive lead (ii) ions.

The electrons travel through the external circuit while the lead (ii) ions combine with the sulphate ions in the electrolyte to form lead (ii) sulphate.

$$
\hat{\nu}\rangle+(\hat{\nu}\rangle)+
$$

$\hat{\nu}\rangle \hat{\nu}$

When the electrons re-enter the cell at the positive lead dioxide electrode, a chemical reaction occurs. The lead dioxide combines with the hydrogen ions in the electrolyte and fhe electrons to form water, releasing lead (ii) ions into

Care and maintenance of lead-acid accumulator

Pos ${ }^{\text {The battery should be }}$	PQNGesls should not be left
charged regularly.	uncharged fora long time.
(ii) The liquid level should	(v) When charging, avoid
dritilled manateine ${ }^{\text {a }}$ endsing	
explosedectrodes are nor	Almodeocessnde. \mathbb{H}_{2} is firrom
(iii) Cells should be	cathode.
tharget8if tReIR.D.cerdudes checked using a	remiminatadaid. yboarthuoingl nbet connect the terminals with a
hydrometer.	
	fromitaquelht is taken away
	and ovardiechargieg harging

(ii) Aliedkhe cerdmium (NiCd cells)

Anode is the Nickel -hydroxide and cathode is cadmium
 * Nickel - Iron (NiFe Cells)

 dissolved in water (caustic potassium solution)

Uses

- Used in battery driven vehicles

Used foremergency lighting
Advantages of alkaline cells over Lead-acid cells or accumulators

Alkaline Accumulators	Lead-acid accumulators
(i) Require no special maintenance.	Require special maintenance
(ii) May be left uncharged for a long time without being damaged. They can be out of use for a long time	They get damaged if left un charged for a long time.
(iii) Are less heavy.	Are heavy.
(iv) Are long lasting.	Are not long lasting.
(v) They provide large currents without being damaged.	They provide low currents.
(vi) Are suitable for supplying steady current for a long time.	(vii) Can with stand over charging.
Can be damaged by over charging.	

Disadvantages of the alkaline cells over the lead acid cells.

* Alkaline cells are expensive compared to lead acid cells.
* Alkaline cells have a low e.m.f and a higher internal

※ Gadmiymforpopends sibrenqiagpgeus

Capacity of an accumulator

Example:

How long wills a cell marked 80Ah supply a current of 4.5 A before it is exhausted.

Solution:
Capacity $=$ current (A) \times time (h)
Capacity = It
$80=4.5 \times t$
$t=17.8$ Hours

Charging an accumutator (battery charging)

An accumulator is recharged by passing a current through it from a D.C supply in the opposite direction to the current it supplies.
Positive of the D.C. supply is connected to the positive of The the accumulator while negative terminal of the D.C. supply is connected to the negative of the accumulator.
acid becomes more concentrated during charging and The R.D. of the acid increases.

Rheostat varies resistance to make the current adjustable.

The ammeter measures the charging current which becomes low as the accumulator is charged and restored to usable
condition. This is due to the rise in the e.m.f of the accumulators.

When chemicals have been restored to their original condition, hydrogen gas is given off (gassing process) and the cell is said to be fully charged.

Noteinhen an accumulator (battery) is being charged,

* electrical energy charges to chemicalenergy being used (superiding cyurrent), chemical energy changes to
* Bireatscurcqetrinti\#ged clating thouqharging rgrochss

Question:

Sixvargiendalators each of e.m.f 2 V and each of internal as

(i) Explain why its necessary to include a rheostat in the circuit.
(ii) Explain why direct current is used in the charging process.
(iii) What will the ammeter read if the Rheostat is set at
(iv) Find the rate at which electrical energy is converted to chemical energy in (ii) above. ($\mathrm{P}=2$

Ecot ${ }^{\text {Whbooks.com }}$

Differences between primary cells and secondary cells.

Primary Cell	Secondary Cell
-Cannot be recharged once it stops working	-Can be recharged when they stop working.
-Current is produced as a result of irreversible chemicalchange.	-Current is produced as a result of reversible chemicalchange.
-Provide a lower e.m.f -Works for a shorter time -Higher internal resistance	-Provide a hiigher e.m.f -Works for a longer time. -Lowe internal resistance

Exercise:

1.

1995 Q. 28	1998 Q. 33	1998 Q. 39	2002 Q. 15

2. Which of the following statement(s) is or are true?
(i) Regular charging
(ii) Maintaining the level of acid by topping it up with distilled water.
(iii) Avoid over discharging
(iv) Avoid shorting the terminals.
A: (i), (ii) and (iii) only.
B: (i) and (iii) only.

C: (i), (iii) and (iv) only.
D: all
3. 1993 Qn. 6
(a) (i) Draw a diagram to show the structure of a simple cell.
(ii) Give one defect of a simple cell and state how it is minimized.
(b) Explain how a lead acid accumulator can be recharged when it has run down.
4. 1994 Qn. 4
(a) List four different sources of e.m.f
(b) State two advantages of a secondary cell over a primary cell.
5. 1995 Qn. 6
(a) Explain why a current does not flow between the electrodes in dilute sulphuric acid until a certain value of p.d is exceeded.
6. 1996 Qn. 10
(a) State two advantages of nickel iron accumulator over a lead acid accumula tor.
(b) Name the gases evolved during the charging of the lead acid accumulator.
(c) Why a dry cell is called a primary cell?
6.2 .

CURRENT ELECTRICTTY
ElectriciEy is,lehgoks.cemed particles such as electrons and ions.
Electricity has various forms which include static electricity and current electricity. Static electricity is discussed in Electrostatics and current electricity will be discussed majorly now.

Electric current is the rate of flow of charge. OR It is the rate of flow of electrically charged particles.

Steady current is the constant rate of flow of charge. It's measured in amperes represented by A. $1 \mathrm{~A}=1 \mathrm{CS}^{-1}$.
An ampere is a current when the rate of flow of charge is one coulomb per second.
Qn. What type of quantity is current?

Source of electric energy

It has various sources which include among others;-
(i) Chemical energy. It is also known as potential or stored energy and releasing it always requires combustion of burning of coal, natural gas etc.
(ii) Thermal energy. Heat means thermo/ it can produce electrical energy when /after combustion of fossil fuels and biomass.
(iii) Kinetic energy. This is energy in motion e.g. moving water, moving wind etc as they turn the turbines.
(iv) Nuclear energy. Its energy in the bonds inside atoms and molecules during its release it can emit radioactive and thermal energy as well. It is normally produced in nuclear reactors
(v) Solar energy. This is energy from the sun which can be captured by photovoltaic cells and then a source of electrical energy.

There could be other sources of energy but generally, the above are the major sources.

Common electrical /appliances we use in Uganda include.
$\begin{array}{lll}\text { - } & \text { Electrical lamps } & \text { - Electric kettles } \\ \text { - } & \text { Electric plates (cookers) } & \text { - Electric flat irons }\end{array}$
N.B. Electrical appliances can be defined as devices used to simplify worker but use electricity as a form of energy.

Electric circuits and symbols

Symbols

Electric symbols are symbols used in electricity during the circuits to draw them schematically and represent electrical and electronic components.
They include;

There are very many symbols but these are the mostly used electrical symbols.

Terms used;

(i) Charge, \mathbf{Q}; Is the quantity of electricity that passes a given point in a conductor at a given time.
The S.I unit of charge is a coulomb. A coulomb is the quantity of electric charge that passes a given point in a conductor when a steady current of 1 A flows in one second.
(ii) Current, (I); Is the rate of flow of charge. i.e. $I=\frac{Q}{t}$.

The S.I unit of current is an ampere. An ampere is a current
flowing in a circuit when a charge of one coulomb passes any point in the circuit in one second.

\rangle 人

Example 1: UNEB 2008 Qn. 32
A current of 6A amperes flows for two hours in a circuit. Calculate the quantity of electricity that flows in this time.

Solution:

Given:
$\mathrm{I}=6 \mathrm{~A}, \mathrm{t}$ ECd4ebooks.com
$\hat{\nu}=\hat{2}\rangle$
$\mathrm{Q}=6 \times 7200$
$\mathrm{Q}=43200 \mathrm{C}$
$\mathrm{Q}=$?
Example 2: UNEB 2007 Qn. 48 (b)
A charge of 180C flows through a lamp for two minutes.
Find the electric current flowing through the lamp.

Solution:
Given:
$\mathrm{Q}=180 \mathrm{C}, \mathrm{t}=2$ minutes

$$
\begin{gathered}
\hat{2}=\hat{2} \\
180=\mathrm{I} \times 120 \\
\mathrm{I}=1.5 \mathrm{C}
\end{gathered}
$$

$\mathrm{Q}=$?
(iii) Potential difference (P.d); Is the work done in transferring one coulomb of charge from one point to a nother in a circuit.
Whenever current flows, it does so because the electric potential at two points are different. If the two points are at the same potential, no current flows between them.P. $d=\frac{W}{Q}$ The S.I unit is a volt. A volt is the potential difference between two points in circuit in which, 1J of work is done in transferring 1C of charge from one point to a nother.

(iv) Electromotive force, (e.m.f): Is the work done in transferring one coulomb of charge around a complete circuit in which a battery is connected.
It is the p.d across a cell in an open circuit.
Sources of electrical e.m.f.
(i). Electric cell: This converts chemical energy to electrical energy.
(ii). Generators: These convert mechanical energy to electrical energy.
(iii). Thermo couple: This converts thermal energy (or heat energy) to electrical energy.
(iv). Piezo-electric effect (Crystal pick ups)
(v). Photo electric effect (solar cells)
(v) Electrical Resistance, (R): Is the opposition to the flow of current in a conductor. $\mathrm{R}=Y$.
The S.I unit of resistance is an ohm (Ω). An ohm is the resistance of a conductor through which a current of one ampere flows when a p.d across it is one volt.
(vi) Internal resistance of a cell, r :

Internal resistance of a cell is the opposition to the flow of current within the cell.
(vii) Open circuit: where current is not being supplied to an externalcircuit.
(viii) Closed circuit: Where the cell is supplying current to an external circuit.

1. E.m.f:- Is the work done to move a charge of IC through a circuit including a source (cell) i.e. the p.d. when the cell is not supplying current to an external circuit.
it's the p.d when current is being delivered to an externalcircuit.

EcoleBooks
NB. The value of the terminal p.d. is always less than e.m.f because of the opposition to the flow of current inside the cell.
Internal resistance: Is the opposition to the flow of current within the cell.
E. $\mathrm{m} . \mathrm{f}=$ Terminal pd. $+\binom{$ p.d across the internal }{ resistance, $r}$.

$$
\mathrm{E}=\mathrm{VR}+\mathrm{Vr}
$$

$$
\theta=\theta+\theta
$$

Factors affecting resistance of a conductor.

The resistance of a conductor is independent of the P.d, V ana the current 1 inrougn the conauctor dut it aepenas on physical factors like; length, cross sectional area and temperature.

Factor	Effecton resistance
(i) Length, 1 α	Increasing the length increases the resistance of the conductor. This is because increase in length increases the number of collisions electrons have to make with atoms as they travel through the conductor. This reduces the drift velocity of the free electrons and hence increases the resistance of the conductor.
(ii) Cross sectional area, A $\Leftrightarrow \alpha^{1}$	When there is an increase in the cross sectional area of the conductor, the number of free electrons that drift along the conductor also increases. This means that there is an increase in the number of electrons passing a given point along the conductor per second, thus an increase in current Consequently, this reduces the resistance of the conductor.
(iii)Temperature, T $\frac{1}{8}$	When there is an increase in the temperature of the conductor, the atoms vibrate with greater amplitude and frequency about their mean positions. The velocity of the free electrons increases which increases their kinetic energy. Consequently, the number of collisions between the free electrons and the atoms increases. This leads to a decrease in the drift velocity of the electrons. This means that there is a decrease in the number of electrons passing a given point along the conductor per second, thus a decrease in current Consequently, this increases the resistance of the conductor.
(iv) Nature of the substance. OKS.COM	Good conductors like metals have low resistance while poor conductors (insulators) have very high resistance.

2. Terminal p.d. The work done to move a charge of IC

Note: Supper conductors are materials whose resistance vanishes when they are cooled to a temperature near -273^{0}. Ecolebooks.com

Combining the first two factors at constant temperature, we get:

Where $\boldsymbol{\omega}$ is a constant which depends on the nature of the conductor. It is called the Resistivity of the conductor.
Thus thick and short conductors have lower resistances compared to thin and long conductors.

Resistivity, \rangle :

Is the electrical resistance across the opposite faces of a cube of 1 m length.
The S.I unit of resistivity is an ohm metre, $(\Omega \mathrm{m})$.

Conductivity,

$\mathrm{H}_{2} \mathrm{SOC}_{4}$ reciprocal of electrical $\underset{\sigma}{=} \stackrel{\text { resistivity }}{=}$

$\hat{0}$
Qhmstewhat the current through an ohmic conductor is

Experiment to yerify Ohms law;

-The circuit is connected as shown above.
cfrwittah, K is closed, and a current, I flows through the
cBriedpoand reqerfetetheadingmeter reading and the

-It is a straight line graph through the origin, implying that
V is directly proportionalto I which verifies Ohm's law.
Note: In case the experiment requires resistance, then the

Where θ is the angle between he line and the horizontal.

Limitations of ohm's law

\checkmark It only applies when the conductor are constant e.g. temperature, length of a conductor, cross section area e.t.c.
$\checkmark \quad$ It doesn't apply to semi conductors e.g. diodes and electrolytes

Ohmifinand nonnuahmic afenductars law. E.g. Metals .

- Non Ohmic conductors are conductors which do not obey ohm's law e.g. filament lamps, in diodes, neon gas tubes.

The graphs of current against voltage for different conduretors.

current and it is nearly There is a slow rise in the	saturation, the current The graph is fairly Ohmic. At
Ohmic.	becomes constant.
(v) Thermister	(vi) Fitamentbutb
And carbon resistor	-
V (V)	V (V)
thermister decreases as	a straight line. As current At low currents, the graph is
temberatyre increase fnote fall in resistance causes	imcreatses, wherrencreases tife produced and temperature
(v) Acid water	(vi) Neon gas the filamrent
ECOLEBOOKS.COM	

Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ with
platinum electrodes

ELECTRIC CIRCUITS

An electric circuit can be defined as a combination of electric appliances represented by electric symbols for a particular purpose.
A circuit can be open (incomplete) or closed (completed).
An open circuit is circuit in which electrons are not continuously flowing.
A closed circuit is a circuit which is complete and having electrons continuously flowing.

Parallel and series electric circuits' connection

In connections, we must either connect in series or in parallel.

Some examples

1. A current of 4 A flows through an electric kettle when the p.d. across it is 8 V . Find the resistance.
2. What voltage is needed to make a current of 0.4 A flow through when the appliance has resistance of 20Ω ?

Questions

1. Give the unit and its symbolfor

(a) Current
 (b) Charge

2. What instrument is used to measure current.
3. A charge of 4 C flows through an ammeter in 1 s . What reading will the ammeter show? If the same charge flowed through the ammeter in 2 s . What would the current be?
4. (a) Draw a circuit diagram to show two cells connected in series with a switch and two bulbs.
(b) Draw a $2^{\text {nd }}$ circuit diagram with the same components, but with a switch and two bulbs in Parallel with each other.

Qn. Determine resistance from the information given.

p.d (V)	1.05	1.40	1.80	2.20	2.40
1 (A)	0.15	0.20	0.25	0.30	0.34

RESISTANCE

It can be defined as the opposition to the flow of current thru
a conductor. A resistor is a conductor which opposes the flow of current thru it.

The unit of resistance is an ohm (Ω)
An ohm is the resistance of the conductor when a current of
1 A is flowing and a p.d. of 1 V is across its ends.

Resistor Net works

(i) Series arrang ement́of pesisloosoks

Resistors are said to be in series when they are connected end to end so that the same a mount of current is the same.
The positive of one load is connected to the negative of a nother load.

In series
(i) Same current flows through each resistor.
(ii) P.d across each resistor is different
(iii) Totalp.d $V=$ sum of $p . d$ across each resistor.

Thus: $V=V_{1}+V_{2}+V_{3}$
Using Ohm's law, $\mathrm{V}_{1}=\mathrm{IR}_{1}, \mathrm{~V}_{2}=\mathrm{IR}_{2}$ and $\mathrm{V}_{3}=\mathrm{IR}_{3}$
$\mathrm{V}=\mathrm{IR}_{1}+\mathrm{IR}_{2}+\mathrm{IR}_{3}$
$\mathrm{V}=\mathrm{I}\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right)$
If \mathbf{R} is the resistance of a single resistor representing the three resistors, then $V=I R$.
$\mathrm{IR}=\mathrm{I}\left(\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}\right)$

Series circuits

The current is the same at all points around a series circuit connections i.e. from the source (battery/cell) up to all points when its fully connected.

Which is a series connection and current being measured in series.

(ii) Parallel arrangement of resistors

Resistors are said to be in parallel if they are connected such that they branch from a single point (known as a node) and join up again.

The positive of one load is connected to the positive of anotherload.

For parallel
(i) P.d across each resistor is the same.
(ii) EThelmbin oltrentolplowing splits and therefore, the current through each resistor is different
(iii) Total current, I is equal to sum of the current through each resistor.
Thus: $\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$
Using Ohm's law, $\mathrm{V}_{1}=\frac{\mathrm{v}}{\mathrm{R}_{1}} ; \mathrm{V}_{2}=\frac{\mathrm{v}}{\mathrm{R}_{2}}$ and $\mathrm{V}_{3}=\frac{\mathrm{V}}{\mathrm{R}_{3}}$
$\mathrm{I}=\frac{\mathrm{V}}{\mathrm{R}_{1}}+\frac{\mathrm{V}}{\mathrm{R}_{2}}+\frac{\mathrm{V}}{\mathrm{R}_{3}}$
$\mathrm{I}=\mathrm{V}\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}\right)$
If \mathbf{R} is the resistance of a single resistor representing the three resistors, then: $\rangle=$
$\frac{\dot{\mathrm{V}}}{\mathrm{R}} \cdot=\mathrm{V}\left(\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}\right)$

Note: For only two resistors in parallel, the effective resistance can be obtained as follows:
$\frac{1}{R}=\frac{1}{R_{1}}+\frac{1}{R_{2}} \Leftrightarrow \frac{1}{R}=\frac{R_{2}+R_{1}}{R_{1} R_{2}} \Leftrightarrow$

Parallel circuits

Ammeters are for measuring the current in a parallel circuit. It's characteristic in parallel connections to derive current whenever it reaches the parallel arms of the circuit. But current later recombines to form the original current again
before it returns to the cell.

Examples:

1. Show that for two resisfocic oileplatekshe effective

$$
\mathrm{R}=\frac{\mathrm{R}_{1} \mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

2. What is the total resistance of the resistors below;

3. What is the effective resistance of the circuit below?

More combinations:

It's very possible to have series and parallel connections combined and in this case, we apply both principles within a given circuit.

If the effective is R
Let the effective of R_{1} and R_{2} be R_{p}
$\begin{array}{lllll}1 & 1 & 1 & \mathrm{R}_{1}+\mathrm{R}_{2} & \mathrm{R}_{1} \mathrm{R}_{2}\end{array}$
$\mathrm{R}_{\mathrm{p}} .=\frac{\mathrm{R}_{1}}{+}+\frac{R_{2}}{}=\overline{R_{1} \mathrm{R}_{2}} \Leftrightarrow \mathrm{R}_{\mathrm{p}}=\mathrm{R}_{1}+\mathrm{R}_{2}$
Let the effective of R_{3} and R_{4} be R_{s}
$\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{3}+\mathrm{R}_{4}$
Thus the effective resistance R is given by:
$R=R_{p}+R_{s}$
$R=R_{1}+R_{2}+R_{3}+R_{4}$

Voltage and connections

Voltages or e.m.f's can also be connected in series or parallel.
Cells in series
In this case, we sum all the individual e.m.f's to obtain the totale.m.f's:

Cells in parallel

For the case of parallel connection of e.m.f. they have the same e.m.f.

EXAMPLES

1. (1991 Qn. 35). In the circuit diagram below, the ammeter reading is 0.2 A . Find the voltmeter reading.

Let $R_{1}=10 \Omega, R_{2}=20 \Omega, R_{3}=30 \Omega, I=0.2 A, V=$?

First determine the effective resistance, R	Now that we know I and R, let us use Ohms law; $\mathrm{V}=\mathrm{IR}$
$\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}$	$\mathrm{~V}=\mathrm{IR}$
$\mathrm{R}=10+20+30$	$\mathrm{~V}=0.2 \times 60$
$\mathrm{R}=60 \Omega$	$\mathrm{~V}=12 \mathrm{~V}$.

2. ($\mathbf{1 9 9 7} \mathbf{Q n} .35$). Two coils of wire of resistance 2Ω and 3Ω are connected in series with a 10 V battery of negligible internal resistance. Find the current through the 2Ω resistor. [Ans: 2A]

Solution:

Let $R_{1}=10 \Omega, R_{2}=20 \Omega, R_{3}=30 \Omega, I=0.2 A, V=$?

First determine the effective resistance, R
$\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}$
Now that we know V and R,
$\mathrm{R}=2+3$
$R=5 \Omega$ let us use Ohms law; $\mathbf{V}=\mathbf{I R}$
$\mathrm{V}=\mathrm{IR}$
$10=I \times 5$
$5 \mathrm{I}=10$
$\mathrm{I}=2 \mathrm{~A}$
3. (1993 Qn. 15). A current of 2 A in flows in a circuit in which two resistors each of resistance 3Ω are connected as shown in the figure below. Calculate the P.d across XY.

ts

Solution:

Let $\mathrm{R}_{1}=3 \Omega, \mathrm{R}_{2}=3 \Omega, \mathrm{I}=2 \mathrm{~A}, \mathrm{~V}=$?	
First determine the effective resistance, R	Now that we know I and R, let us use Ohms law; V=IR
	$\begin{aligned} & \mathrm{V}=\mathrm{IR} \\ & \mathrm{~V}=2 \times 1.5 \\ & \mathrm{~V}=3 \mathrm{~V} \end{aligned}$

4. (2007 Qn. 3). What will be the reading of the ammeter in the figure below if switch $\mathbf{K}_{\mathbf{2}}$ is;

(i) Open and \mathbf{K}_{1} is closed
(ii) Closed and $\mathbf{K}_{\mathbf{1}}$ is closed.

Solution:
(i) When K_{2} is open and K_{1} closed, current flows through the 4Ω only. Let $\mathrm{R}=4 \Omega, \mathrm{~V}=1.5 \mathrm{~V}, \mathrm{I}=$?

First determine the effective resistance, R	Now that we know I and R, let us use Ohms law; $\mathbf{V}=\mathrm{IR}$
	$\mathrm{V}=\mathrm{IR}$
$\mathrm{R}=4 \Omega$	$1.5=\mathrm{I} \times 4$ $\mathrm{I}=0.375 \mathrm{~A}$

(ii) When K_{2} is closed and K_{1} closed, current divides into the 2Ω and 4Ω. Let $\mathrm{R}_{1}=2 \Omega, \mathrm{R}_{2}=4 \Omega, \mathrm{~V}=1.5 \mathrm{~V}, \mathrm{I}=$?

First determine the effective resistance, R	Now that we know I and R, let us use Ohms law; V=IR
$\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}$	$\mathrm{~V}=\mathrm{IR}$
$\frac{1}{\mathrm{R}}=\frac{1}{2}+\frac{1}{4}=\frac{3}{4}$	$1.5=\mathrm{I} \times \frac{4}{3}$
$\mathrm{R}=\frac{4}{3} \Omega=1.33 \Omega$	$\mathrm{I}=1.125 \mathrm{~A}$

5. (2008 Qn. 28). The figure below shows two cells each of e.m.f 4.5 V and internal resistance 0.5Ω, connected to a 2Ω resistor.

What is the ammeter reading?

Solution:

Let $\mathrm{r}_{1}=0.5 \Omega, \mathrm{r}_{2}=0.5 \Omega, \mathrm{R}_{3}=2 \Omega \mathrm{~V}=4.5 \mathrm{~V}$ (Voltages in parallel; $\mathrm{E}_{1}=\mathrm{E}_{2}=\mathrm{V}$), $\mathrm{I}=$?

First determine the	This resistance Rp is now
effective resistance, $R p$ of the resistors in parallel.	in series with the 2Ω resistor.
$\frac{1}{\mathrm{r}}=\frac{1}{\mathrm{r}_{1}}+\frac{1}{\mathrm{r}_{2}}$	Thus the effective resistance, R is; $\mathrm{R}=\mathrm{R}_{\mathrm{P}}+\mathrm{R}_{3}$
$1 \begin{array}{llll}1 & 1\end{array}$	$\stackrel{R}{R}=0.25+2$
$\mathrm{R}=0.5+0.5=4$	
$\begin{gathered} 1 \\ \mathrm{R}=4 \Omega=0.25 \Omega \end{gathered}$	Now that we know I and R, let us use Ohms law; $\begin{aligned} \mathrm{V} & =\mathrm{IR} \\ 4.5 & =\mathrm{I} \times 2.25 \\ \mathrm{I} & =2 \mathrm{~A} . \end{aligned}$

6. (1994 Qn. 4). The diagram below shows three resistors,
1.8Ω, and 2.0Ω and 3Ω resistor.

Calculate the; (i) Effective resistance of the circuit

Solution: (iv) Current through the 3Ω resistor.
(i) Effective resistance of the circuit

Tebstance is inf series wifh ithe Pagelle sistheir effective
Thus the effective resistance R is given by:
$R=R_{p}+R_{s}$
$\mathrm{R}_{1} \mathrm{R}_{2}$
$R=R_{1}+R_{2}+R_{3}$

$$
2 \times 3
$$

$R=2+3+1.8 \Leftrightarrow R=5+1.8 \Leftrightarrow R=1.2+1.8$
$\mathrm{R}=3 \Omega$
(ii) Current through the circuit.

From Ohms law; V=IR.
$\mathrm{V}=\mathrm{IR}$
$5=\mathrm{I} \times 3$
5
$\mathrm{I}=3=1.67 \mathrm{~A}$

(iii) P.d acrossthe 2Ω resistor

P.d a cross the 2Ω resist Eis QdeB oches. d a cross the
3Ω which is equalo the P.d across the parallel combination.
Thus from Ohms law; V=IR.

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{P}}=\mathrm{IR}_{\mathrm{P}} \\
& \mathrm{~V}_{\mathrm{P}}=\frac{5}{3} \times 1.2 \\
& \mathrm{~V}_{\mathrm{P}}=2 \mathrm{~V}
\end{aligned}
$$

Thus the P.d across the 2Ω resistor is 2 V .
(iv) Current through the 3Ω resistor.

Let the 3Ω resistor $=\mathrm{R}_{1}$; Then;
$\mathrm{V}_{1}=\mathrm{I}_{1} \mathrm{R}_{1}$; In this case, $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{P}}=1.2 \mathrm{~V}$
$1.2=\mathrm{I}_{1} \times 3$
$\mathrm{I}_{1}=0.4 \mathrm{~A}$
Thus the current through the 3Ω resistor is 0.4 A .
7. (2001 Qn. 31). Find the effective resistance when two resistors of 5Ω and 15Ω joined in series are placed in parallel with a 20Ω resistor.

Solution:

First determine the effective Now $\mathbf{R}_{\text {s }}$ is in parallel resistance, $\mathbf{R}_{\mathbf{s}}$ for the resistors in series.
$\mathrm{R}_{\mathrm{s}}=\mathrm{R}_{1}+\mathrm{R}_{2}$
$\mathrm{R}_{\mathrm{s}} \equiv \operatorname{F} 0 \mathrm{~s}_{2} 15$
with the $\mathbf{R}_{\mathbf{3}}=\mathbf{2 0} \boldsymbol{\Omega}$.
Thus the effective resistance in the circuit
$\mathrm{is} ;=\frac{R_{s} R_{3}}{R_{s}+R_{3}}$
$R=\frac{20 \times 20}{20+20}=40$
$\underline{400} \mathrm{R}=10 \Omega$
8. In the figure below, find the ;

(i) Effective resistance in the circuit.
(ii) Current through the circuit.
(iii) P.d across the 2Ω resistor.

Solution:

Eetdieb $\Omega 9 \mathrm{Rs}_{3}=6 \Theta_{4} \mathrm{R}_{3}=3 \Omega, \mathrm{R}_{4}=4 \Omega, \mathrm{R}_{5}=2 \Omega$, (i) Effective resistance in the circuit.

First determine the effective resistance, Rs for the 5Ω and
6Ω resistors in series.
$R_{s}=R_{1}+R_{2}$
$\mathrm{R}_{\mathrm{s}}=5+6$
$R_{s}=11 \Omega$

Now $\mathbf{R}_{\mathbf{s}}$ is in parallel with the $\mathbf{3 \Omega}$. and $\mathbf{4 \Omega}$ resistors.
Thus the effective resistance in parallel is;

$$
\begin{aligned}
& \frac{1}{\mathrm{R}_{\mathrm{p}}}=\frac{1}{\mathrm{R}_{\mathrm{s}}}+\frac{1}{\mathrm{R}_{3}} \frac{1}{\mathrm{R}_{4}} \\
& \frac{1}{\mathrm{R}_{\mathrm{p}}}=\frac{1}{11}+\frac{1}{3}+\frac{1}{4} \\
& \frac{1}{\mathrm{R}_{\mathrm{p}}}=\frac{12+44+33}{132}=\frac{89}{132} \\
& \frac{1}{\mathrm{R}_{\mathrm{p}}}=\frac{12+44+33}{132}=\frac{89}{132} \\
& \mathrm{R}_{\mathrm{p}}=\frac{132}{89} \Omega=0.674 \Omega
\end{aligned}
$$

(iv) P.d across the 6Ω resistor.

The P.d across $R_{s}(5 \Omega$ and $6 \Omega)$ is equal to the p.d across the 3Ω and is also equal to the p.d across the 4Ω resistor.
This is because, $\mathrm{R}_{\mathrm{s}}, 3 \Omega$ and 4Ω are in parallel.
P.d across the parallel Then the P.d across the combination:
From Ohms law; V=IR.
$V_{P}=I_{P} R_{P}$
$V_{P}=5.236 \times 0.674$
$\mathrm{V}_{\mathrm{P}}=3.529$
Current through
$\mathrm{R}_{\mathrm{s}}(5 \Omega$ and $6 \Omega)$ resistors.
$\mathrm{From}_{\mathrm{P}} \stackrel{\mathrm{I}_{\mathrm{s}}}{\mathrm{ORms}_{\mathrm{s}}}$ law; $\mathbf{V}=\mathbf{I R}$.
$3.529=3.529^{11}$
$\mathrm{I}_{\mathrm{s}}=0.321 \mathrm{~A}$

Example: 8

4Ω and 12Ω resistors are parallel, their effective resistance

$$
R_{1}=\frac{4 \times 12}{4+12}=
$$

R_{1} and 3Ω resistors are in series, their effective resistance is $R_{2}=R_{1}+3=3+3=6 \Omega$
R_{2} and 6Ω resistors are in parallel, their effective resistance $R_{3}=\frac{6 \times 6}{6+6}=3 \Omega$
R_{3} and 1Ω resistors are in series, their effective resistance is $R=R_{3}+1=3+1=4 \Omega$
Hence effective resistance of the whole circuit is $\mathrm{R}=4 \Omega$
Current flowing $I=\frac{V}{R}=\frac{2}{4}=0.5 \mathrm{~A}$

Exercise:

1. Calculate the effective resistance of the circuit below. [Ans: 4 ${ }^{\text {] }}$

2. Eight identical cells each of e.m.f 1.5 and internal resistance 0.1Ω are connected in a circuit as shown bellow.

Calculate the;

3. Three identical cells each of e.m.f 1.5 V and internal resistance 0.1Ω are connected as shown bellow.

Calculate the current in the circuit. [Ans: 0.88 A]
EBOOKS.COM
4. (1997 Qn. 30). A battery of e.m.f 12 V is connected across two resistors of 6Ω and 3Ω as shown below.

Calculate the current through the resistors.
5. A number of 8 ohm resistors are available. How would you connect a suitable number of these to obtain an effective resistance of :
(i) 2 ohms .
(ii) 24 ohms

6. See UNEB Paper1

Section A:

1987 Qn.29	1989 Qn.32	1992 Qn.8	1994 Qn.4
1998 Qn.35	2000 Qn.37	2006 Qn.38	2008 Qn.36
1992 Qn.15	1989 Qn.11	1991 Qn.28	1994 Qn.24
1995 Qn.29	1998 Qn.37	2004 Qn.6	2007 Qn.12
1994 Qn.32			

Section B:

2002 Qn. 50	1994 Qn. 5	1997 Qn. 8	1998 Qn. 8
2000 Qn. 9	2002 Qn. 7		

($\mathbf{1 9 8 9}$ Qn. 7). (b) A battery of e.m.f 2.0 V and of negligible internal resistance is connected as shown below.

Find the reading of the ammeter, A .
(c) A battery of e.m.f 12 V and internal resistance 1Ω is connected for three minutes and two seconds across a heating coil of resistance 11Ω immersed in a liquid of mass 0.2 kg and specific heat capacity of $2.0 \times 10^{3} \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$. Find the rise in temperature of the liquid. Clearly state any assumptions made.
(1989 Qn. 7). (b) A cell of e.m.f, E and internal resistance 1.0Ω is connected in series with a 2Ω resistor as shown bellow.

The voltmeter reads 1.5 V when the switch is open.
(i). Fing thenvaluad EMORE RESOURCES LIKE THIS ON
(ii). What will be the voltmeter's reading when the switch is closed? EcoleBooks
(iii). What will be the voltmeter's reading when X is connected to Z ? Give a reason for your answer.

An experiment to obtain internal resistance of a cell.

(a) Method I: Using a voltmeter and standard resistors.

-A high resistance voltmeter is connected across the terminals of the cell, we take the reading which is the E.m.f., \mathbf{E} of the cell.
-A standard resistor is connected to the cell terminals and the voltmeter reading is taken again which is \mathbf{V}.
-Calculate the internal resistance of the cell, \mathbf{r} from;

-Repeat the procedure using other resistors of different resistances.
-Finally take the mean value of internal resistance.
(b) Method II: Using a voltmeter, Ammeter and standard resistors.

-A high resistance voltmeter is connected across the terminals of the cell, we take the reading which is the E.m.f., \mathbf{E} of the cell.
-A standard resistor is connected in series with the cell terminals and the voltmeter connected across it as shown above.
-Read and record the voltmeter reading, \mathbf{V} and the corresponding ammeter reading, \mathbf{I}.
-Calculate the internal resistance of the cell, \mathbf{r} from;

-Repeat the procedure using other resistors of different resistances.
-Finally take the mean value of internal resistance

Derivation:

Find the total resistance using R and r and them apply ohm's law
Total resistance $=R+r$
$\mathrm{E}=\mathrm{I} \times$ Total restance
$E=I(R+r)$
$E=I R+I r$

Note: The expression $\rangle-\hat{\nu}$ is called lost volt and it is defined as the voltage wasted in overcoming the internal

Alternatively:

From; V = IR, Ecol ${ }^{I} \overline{\bar{e}} \overline{\mathrm{~B}} \mathrm{~V}$ oks.com
Substituting for current, 1 in the equation for r above, gives;

6.3

ELECTRICAL ENERGY AND POWER

The advantage of electric energy is the ease with which it may be transferred to light, heat and other forms of energy. Because of this, it can be used in many types of equipment like refrigerators, cookers, lamps, e.t.c.

When electricity passes thru an appliance, it develops and produces some heat which may depend on any of the following;
> Resistance of the conductor
$>$ The a mount of current flowing
$>$ The time for which the current has been flowing

Work done by an electric current.

When a charge moves through a resistance wire, the work done becomes the electrical energy which changes to heat energy.

From the definition of wherent $\mathrm{Q}_{\mathrm{t}}=$ It: Thus;

Power is the rate of doing work or it's the rate of energy
Electrical Power

$$
\begin{aligned}
& \text { transfer. } \frac{\text { Work done }}{\text { Time taken }}= \\
& \text { Power }=\frac{\text { IVt }}{\mathrm{t}}=
\end{aligned}
$$

Power, $\mathrm{P}=\quad=\mathrm{IV}$
$\hat{\nu}=\hat{\nu}\rangle=$
$\hat{\nu}\rangle=$
the;

1. An electrical flat iron of rated $240 \mathrm{~V}, 1500 \mathrm{~W}$. calculate

> (iii) The energy consumed in $1 \frac{1}{t}$ hours. (i)

Solution (ii) The resistanceug
$\mathrm{P}=1500 \mathrm{~W} ; \mathrm{V}=120 \mathrm{~V}, \mathrm{I}=$?
(i) the current through the flat iron.

人 $=$ 人 \rangle

resistor.
,

$$
\begin{aligned}
& \text { From Ohms } \\
& V_{2}=I_{2} R_{2}
\end{aligned}
$$

$$
4 \mathrm{I}_{1}=7.2
$$

$6 \mathrm{I}_{2}=7.2$
$7.2=\mathrm{I}_{1} \times 4$
$7.2=\mathrm{I}_{2} \times 6$
$\mathrm{I}_{1}=1.8 \mathrm{~A}$
Atternatively:
$\mathrm{I}_{2}=1.2 \mathrm{~A}$
$\mathrm{I}_{2}=3-1.8$
$\mathrm{I}_{2}=1.2 \mathrm{~A}$
(ii) Power dissipated in the $\mathbf{4} \Omega$ resistor.
$\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$

Ecolebooks.com

3. ($\mathbf{1 9 9 2}$ Qn. 6). An electrical appliance is rated 240 V , 60W. (a) What do you understand by this statement?
(b) Calculate the current flowing through and the resistance of the appliance when operated at the rated values above. [$0.25 \mathrm{~A}, 960 \Omega$ respectively]

Solution:

(a) $240 \mathrm{~V}, 60 \mathrm{~W}$ means that the appliance supplies or consumes 60 joules of electrical energy in one second when connected to a 240 V mains supply.
(b) $\mathrm{V}=\mathbf{2 4 0 \mathrm { V } , \mathrm { P } = 6 0 \mathrm { W } , \mathrm { I } = \text { ? }}$
(i) From: $\mathrm{P}=\mathrm{IV}$

$$
\begin{aligned}
60 & =\mathrm{I} \times 240 \\
240 \mathrm{I} & =60 \\
\mathrm{I} & =0.25 \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (ii) From: } P=\frac{V^{2}}{R} \\
& \underline{V}^{2} \\
& =-\frac{(240)^{2}}{R} \\
& 60=\frac{1}{n}=960 \Omega
\end{aligned}
$$

4. ($\mathbf{1 9 9 0} \mathbf{Q n .}$ 3). (c) In the diagram below, two batteries of e.m.f 1.5 V and internal resistance of 1Ω each are connected to a network of resistors in a circuit which includes a switch, S.

(i). What will be the reading on the ammeter when switch S is closed? [Ans: 0.23 A]
(ii). What is the power developed in the 4Ω resistor when S is closed? [Ans: 0.21 W]

Solution:

$\mathrm{R}_{1}=4 \Omega ; \mathrm{R}_{2}=3 \Omega ; \mathrm{R}_{3}=6 \Omega ; \mathrm{V}_{1}=1.5 \mathrm{~V} ; \mathrm{V}_{2}=1.5 \mathrm{~V}$;
$\mathrm{r}_{1}=1 \Omega ; \mathrm{r}_{2}=1 \Omega$;

Effective resistance of the
circuit
For the two cells in parallel.
$\mathrm{r}=\frac{\mathrm{r}_{1} \underline{\mathrm{r}_{2}}}{\mathrm{r}_{1}+\mathrm{r}_{2}}=\frac{1 \times 1}{1+1}=0.5 \Omega$
For the two standard resistors in parallel.
$\mathrm{R}_{\mathrm{P}}=\frac{\mathrm{R}_{1}-\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}=\frac{3 \times 6}{3+6}$
$=2 \Omega$
Thus effective resistance is;
$R=R_{p}+R_{s}+r$
$\mathrm{R}=0.5+2+4$
$\mathrm{R}=6.5 \Omega$
(i) Current through the ammeter.
From Ohms law; V=IR.

$$
\mathrm{V}=\mathrm{IR}
$$

$1.5=\mathrm{I} \times 6.5$
$6.5 \mathrm{I}=1.5$

$$
\mathrm{I}=0.23 \mathrm{~A}
$$

(ii) power developed in the 4Ω resistor when S is closed?
From Ohms law; V=IR.
$P=I^{2} R$
$\mathrm{P}=(0.23)_{2} \times 4$
$\mathrm{P}=0.0629 \times 4$
$\mathrm{P}=0.21 \mathrm{~W}$

Exercise:

1. An electric appliance is rated́colve:0skus Calculate the;
(i) Current through the appliance.[0.25A]
(ii) Resistance of the appliance.
(iii) Time it will take to transfer energy of $10,000 \mathrm{~J}$.
[200 seconds]
2. Appliance A allows 3 A of current to go through it when connected to a 200 V supply while appliance B has a resistance of 40Ω when connected to the same supply.
Which of the two appliances heats up first and why?

3. see UNEB

Section A			
1997 Qn. 37	1989 Qn. 8	2007 Qn. 4	2003 Qn. 38
1988 Qn. 10	1991 Qn. 15	1998 Qn. 35	1999 Qn. 36
2006 Qn. 36			

Example: 5

A battery of un known e.m.f and internal resistance is connected in series with a load of resistance, R ohms. If a very high resistance voltmeter is connected across the load reads 3.2 V and the power is dissipated in the battery is 0.032 W and efficiency of the circuit is 80%. Find the:
(i) Current flowing
(ii) Internal resistance of the battery.
(iii) Load resistance, R
(iv) E.m.f of the battery.

Solution:

Total resistance, $=\mathrm{R}+\mathrm{r}$
From the circuit formula;
$I=\frac{E}{R+r}$.
(\ll) Power dissipated
in the battery;
$\mathrm{P}=\mathrm{I}^{2} \mathrm{r}=0.032$
From Ohm's law; the terminalp.d is;
$\mathrm{V}=\mathrm{IR}=3.2 \ldots \ldots \ldots \ldots$ (iii)
Efficiency, =
P. out
P. in $\times 100$

$$
\begin{aligned}
& \frac{80}{\mathrm{I}^{2} \mathrm{R}} \\
& 100=\text { ER } \\
& 0.8=\frac{I}{}=0.18(R+r) \\
& R=4 r
\end{aligned}
$$

Example:6

A battery of e.m.f 12 V and un known internal resistance is connected in series with a load resistance, R reads 11.4 V
(ii) Internal resistance of the battery.
(iii) Ecolebodlesistamaq, R.
(v) Efficiency of the circuit.

Solution:

Question:

A cell of electromotive force 2.0 V and negligible internal resistance is connected in series with a resistance of 3.5Ω and an ammeter of resistance 0.5Ω. Calculate the current in the circuit. [Ans: 0.5A]

Commercial Electric Energy

All electric appliances are connected in parallel so that each is at the same voltage.
All electric appliances are marked showing the power rating in watts (W) and the voltage in volts (V).
The power of an appliance indicates the amount of electrical energy it supplies or the amount of work it does per second.
 \qquad
the heat consumes 1000 J of electrical energy every second when connected to 240 V .

6.4

COMMERCIAL ELECTRICAL ENERGY
There are always charges beleetriety consumed that the electricity board gives for us for payment and they use our meters to estimate the energy consumed.
The energy consumed is measured in $\mathbf{k W h}$ which is an abbreviation for kilowatt hour.
The commercial unit of electrical energy is a kilowatt-hour, (kWh) since a watt second is very small.

A kilowatt hour is the electrical energy used by a rate of working of 1000 watts for 1 hour.
It is the quantity of electrical energy converted into other forms of energy by a device of power 1000watts in one hour.

$$
\begin{aligned}
1 \mathrm{watt} & =1 \text { joule per second } \\
1 \mathrm{kWh} & =1000 \times 1 \mathrm{hr} \\
& =1000 \times 60 \times 60 \times 60 \text { joules. } \\
1 \mathrm{kWh} & =3,600,000 \mathrm{~J}=3.6 \mathrm{MJ}
\end{aligned}
$$

Cost of electric energy calculation

$\left[\begin{array}{l}\text { (Energy consumed) }]=\left[\begin{array}{l}\text { (in kW) }\end{array}\right] \times[\text { (in hours) }]\end{array}\right.$

consumed. Thus the cost of using an appliance is given by; The rate per unit is the cost per unit of electrical energy $\hat{\nu}\rangle \hat{\nu}\rangle \hat{\nu}\rangle$

$$
\left.(\text { (in kW) })^{] \times[\text {in hours })}\right] \times[
$$

1. ($\mathbf{1 9 9 5}$ Qn. 33). Four bulbs each rated at 75 W operate Exaforles; hours. If the cost of electricity is sh. 100 per

Number of bulbs $=4$; Power rating for each bu Total Power rating for 4	75W $\begin{aligned} =4 \times 75 \mathrm{~W} & =300 \mathrm{~W} \\ & =\frac{300}{1000} \mathrm{~kW} \\ = & \diamond\rangle \end{aligned}$
Total Time $=120$ Hours	Cost per unit $=$ sh. 100
Total Cost $=\left[\begin{array}{c}\text { Power } \\ (\text { in kW })\end{array}\right] \times\left[\begin{array}{c}\text { Time } \\ (\text { in hours })\end{array}\right] \times\left[\begin{array}{c}\text { Cost per } \\ \text { unit }\end{array}\right]$	
Total Cost $=[0.3 \mathrm{~kW}] \times[120 \mathrm{hrs}] \times[\mathrm{sh} .100]$	
Total Cost $=$ sh. 3600	

2. An electric immersion heater is rated at $3000 \mathrm{~W}, 240 \mathrm{~V}$. Calculate the;
(i) Current and resistance of the heating element.
(ii) Total number of electric units it consumes in $1 \frac{1}{2}$ hours.
(iii) Cost per unit if sh. 9000 is paid after using it for 3hours everyday for ten days.

Solution:

(i) $\mathrm{V}=\mathbf{2 4 0 V}, \mathrm{P}=3000 \mathrm{~W}, \mathrm{I}=$?, $\mathrm{R}=$?

From: $\mathrm{P}=$ IV EcolebookS Com ${ }_{\text {From }} \mathrm{P}=\frac{\mathrm{V}^{2}}{}$

(ii)

Total Power $=3000 \mathrm{~W}$

$$
=\frac{3000}{1000} \mathrm{~kW}
$$

$$
\begin{aligned}
\text { Total Time } & =1 \frac{1}{2} \text { hours } \\
& =\frac{3}{2} \text { hours } \\
& =
\end{aligned}
$$

$\left[\begin{array}{c}\text { Number of units used } \\ (\text { Energy consumed })\end{array}\right]=\left[\begin{array}{c}\text { Power } \\ (\text { in kW })\end{array}\right] \times\left[\begin{array}{c}\text { Time } \\ (\text { in hours })\end{array}\right]$
Number of units used $=3 \times 1.5$
(Energy consumed)
$\begin{aligned} & \text { Number of units used } \\ & \text { (Energy consumed) }\end{aligned}=4.5 \mathrm{kWh}=4.5$ Units
(iii)

Total Power	$=3000 \mathrm{~W}$	Total Time $=3 \times 10$ hours
	$=\frac{3000}{1000} \mathrm{~kW}$	
	$=3 \mathrm{~kW}$	

Let the cost per unit be y
Total Cost $=\left[\begin{array}{c}\text { Power } \\ (\text { in kW })\end{array}\right] \times\left[\begin{array}{c}\text { Time } \\ (\text { in hours })\end{array}\right] \times\left[\begin{array}{c}\text { Cost per } \\ \text { unit }\end{array}\right]$

$$
\begin{aligned}
9000 & =3 \times 30 \times \\
9000 & =90 \\
y & =\text { sh. } 100
\end{aligned}
$$

3. Mr. Bagira uses 3 kettles of 800 W each, a flat iron of $1000 \mathrm{~W}, 3$ bulbs of 60 W each and 4 bulbs of 75 W each. If they are used for 3 hours every day for 30 days and that one unit of electricity costs sh. 200, find the total cost of running the appliances.

Solution:

Kettles	Flat irons	60W Bulbs	75W Bulbs
P	P	$\mathrm{P}=3 \times 60$	
$=3 \times 800$	$=1 \times 1000$	$\mathrm{P}=180 \mathrm{~W}$	$=4 \times 750$
P	$\mathrm{P}=1000 \mathrm{~W}$		$\mathrm{P}=300 \mathrm{~W}$
$=2400 \mathrm{~W}$	$=\frac{1000}{1000} \mathrm{~kW}$	$=\frac{180}{1000} \mathrm{~kW}$	300
$\frac{2400}{1000} \mathrm{~kW}$	$=1 \mathrm{~kW}$		$=\frac{3000}{1000} \mathrm{~kW}$
1000	$=1 \mathrm{~kW}$	$=0.18 \mathrm{~kW}$	$=0.3 \mathrm{~kW}$

Total power $=(2.4+1+0.18+0.3) \mathrm{kWh}=3.88 \mathrm{kWh}$ EcoleBooks
Total time $=(3 \times 30)$ hours $=90$ hours.
Total Cost $=\left[\begin{array}{c}\text { Power } \\ (\text { in kW })\end{array}\right] \times\left[\begin{array}{c}\text { Time } \\ (\text { in hours })\end{array}\right] \times\left[\begin{array}{c}\text { Cost per } \\ \text { unit }\end{array}\right]$
Total Cost $=[3.88 \mathrm{~kW}] \times[90 \mathrm{hrs}] \times[\mathrm{sh} .200]$

Total Cost $=$ sh. 69840
4. Find the cost of running five 60 W lamps and 4100 W lamps for 8 hours if the electric energy costs shs. 5.0 per unit.[Shs. 28]
5. A house has one 100 W bulb, two 75 W bulbs and 540 W bulbs. Find the cost of having all lamps switched on for 2 hours every day for 30 days at a cost of shs. 30 per unit.
[Shs. 810].

6. See UNEB

Section A			
2002 Qn. 36	1999 Qn. 40	2003 Qn. 37	2006 Qn. 28
2007 Qn. 14			
Section B			
1992 Qn. 2	1997 Qn. 8	2008 Qn. 4	

Generation and Transmission of electricity

(a) Generation of electricity

Electricity is generated at power stations by using one of the following;

* Coal, Nuclear reactions, Falling water, e.t.c.

(b) Transmission of electricity

* The electricity generated at the power station is then stepped up to higher voltage using step up transformers for transmission.
* Electricity is transmitted at high voltages to reduce power loss through heating effect in the transmission cables.
Transmission cables are made thick to reduce its resistance hence minimizing power loss through the mechanism.
* The electricity is then stepped down using step down transformers in phases. That is, it is first stepped down to heavy factories, industries, cities, towns, and finally to homes.
* The transmission can either be over head or underground. In some developed countries, the grid system is used
The grid system is a system where different power stations are inter connected or networked so that in cases there is power failure in one power station or when one station is stopped for maintenance work, the other stations continue to supply the power.

(c) House wiring.

Domestic electric installation

Power is connected in a house by thick cables from the pole called mains to the fuse box $\{$ meter box \}, then main switch and to the distribution box. Here, power is directed to ECOLEBOOKS.COM
electrical equipments. Each circuit hasits own fuse which is connected to a live wire.
The maingwit ${ }^{2} 168$ add $\$$ distribution box) breaks both wires when in OFF position and is therefore called a double pole switch.
It completely cuts off the supply in the house.

In supply cable:

Power enters the house thru the supply cable from the electric pole from which two insulated wires, the live and the neutral come from. They are distinguished by colour i.e;

Type of wire	Colour
(i) Live wire	Red or Brown
(ii) Neutral wire	Blue or Black
(iii) Earth wire	Yellow or Green or Yellow with green stripes

The earth wire is usually earthed and is therefore at zero potential while the live wire is at a potential of 240 V for the case of Uganda.
The electricity being supplied is alternating and it therefore alternates from positive to negative in a single cycle.

Switches, Sockets and Plugs

Electric system	Connection (i) Switches$\|$Control the flow of current Connected to the live wire to prevent the appliance from being live when switched off. Thus they are called single pole switches.			
(ii) Fuses	It is a thin wire of low melting point which melts when the current exceeds a required value so as to break the circuit.			
It must be connected to the live wire.		$	$	These are power points usually put on
:---				
the walls.				
They have 3 holes leading to the live				
wire L, neutral wire N and earth wire				
E.				

* It has 3 pins that fit into the 3 holes in the socket. The pins are marked with L, N and E for live, neutral and earth

Connection of appliances

Electrical appliances are
 the mains so that;
(i) They receive full main potential difference.
(ii) When one circuit is faulty or switched off, the other circuits remain working.

(a) Light circuits

All lamps in house wiring are connected in parallel with the switch on the live wire to the lamp.

(i) Filament Lamp / Incandescent lamp:

-When switched on, the coiled tungsten filament is heated, it becomes white hot and emits light.
-The higher the temperature of the filament, the greater the electrical energy changed to light.

Note:

* The filament is made out of tungsten, because tungsten has a higher melting point. Hence it can't easily melt when white hot.
* The filament is coiled in order to reduce space occupied and hence reduce the rate of heat loss by convection currents in the gas.
* The glass bulb is filled with an inert gas at low pressure, to prevent evaporation of tungsten and increase the operating temperature. Otherwise it would condense on the bulb and blacken it.
(ii) Fluorescent lamps/ Tubes/ Discharge lamp.

-When switched on, the mercury vapour emits ultra-violet radiations.
-The radiations strike the fluorescent powder (e.g Zinc sulphide, $\mathbf{Z n S}$) and the tube glows emitting light.

Differences between a filament lamp and a fluorescent lamp

Filament lamp	Fluorescent lamp
-Not long lasting	-Long lasting
-Cheaper	-Expensive
-Emit light by heating the filament in the bulb.	-Emit light by sending an electrical discharge through an ionized gas.
-Have high operating temperatures.	-Have low operating temperatures.
-Can easily be disposed off since the inert gasses are not poisonous.	-Care should be taken when disposing them off, since mercury vapour is poisonous.
-High energy/ power consumption, hence high energy costs.	-Low energy/ power consumption, hence low energy costs.

Qn. With the aid of diagrams, describe how a filament lamp and a fluorescent/discharge lamp work.
(b) Socket ring mains.

The sockets on the ring main circuit are connected in parallel so that they receive full main potentialdifference.
The use of a ring of wire reduces the thickness of wire which has to be used.
Both ends of the loop are connected to the fuse box.
The current, I flowing is normally 12 amperes. Thus the fuse used should be just above 12 A .

Choosing an ideal fuse for the appliance

The ideal fuse to be used should have a maximum rating which is a little higher than the normalcurrent expected.

Example:

Suggest an appropriate fuse value to be used for a 3 kW appliance when used on a 240 V main supply.
$\mathrm{P}=3 \mathrm{~kW}=3000 \mathrm{~W} ; \mathrm{V}=240 \mathrm{~V}$

$$
\begin{aligned}
\mathrm{P} & =\mathrm{IV} \\
3000 & =\mathrm{I} \times 240 \\
240 \mathrm{I} & =3000 \\
\mathrm{I} & =12.5 \mathrm{~A}
\end{aligned}
$$

Thus the appropriate fuse should be slightly higher than 12.5 A

Safety precautions in a house

- Electric cables must be properly insulated
- Keep hands dry whenever dealing with electric supply
- In case of an electric shock, switch off the main switch immediatelv
- Before a fuse is replaced check the fault in the circuit which caused the problem and make sure it's rectified.

Sources of e.m.f

They are;

- Cells. These change energy to electric energy
- Batteries/accumulators. Also convert chemical energy to electrical energy
- D.C and A.C. generators
- Photo cells, they convert light energy to electrical
- Thermo couples. They convert heat energy to electrical energy.

Exercise:

1. (1989 Qn. 17). How many lamps marked 75W, 240V could light normally when connected in parallel having a 5 A fuse.
A: 1
B: 3
C: 16
D: 26
2. (1990 Qn.39). Very high voltages are used when distributing electric power from the power station because;
A: Some electric equipment require very high voltages
B: Currents are lower, so energy losses are smaller
C: Very high voltages are generated at the power stations
D: There is less likely hood of the transmission lines being struck by lightning.
3. (1991 Qn.7). An electric toaster plate rating is $220-$ $240 \mathrm{~V}, 750 \mathrm{~W}$. The fuse is:
A: 1 A
B: 3 A
C: 5 A
D: 13 A
4. (2000 Qn. 31). For safety in a house, a fuse and a switch are connected to:

	Fuse	Switch
A	Live wire	Neutral wire
B	Neutral wire	Earth wire
C	Live wire	Live wire
D	Earth wire	Neutral wire

5. (1999 Qn. 39). Which of the following statements are true about electric wiring?
(i) The fuse is always connected into the live wire leading to the circuit.
(ii) The fuse is always connected into the Neutral wire leading to the circuit.
(iii) When a fault develops in a circuit, it is the DWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COAAutral which has to be disconnected.
A: (i) only
B: (iii) only
C: (i) and (iii) only
D: (i), (ii) and (ii).

Ecolebooks.com

6. (2002 Qn. 18). The device which disconnects the mains when there is a sudden increase in voltage is;
A: Fuse \quad B: Switch \quad C: Earth wire \quad D: Circuit breaker
7. (1992 Qn. 2). In a house wiring system, all connections to the power points are in parallel so as to:
A: Supply the same current.
B: Operate at the same voltage.
C: Minimize the cost of electricity
B: Consume the same amount of energy.
8. (2008 Qn. 17). The possible energy transfer in an electric bulb is;
A: Light energy to heat energy.
B: Heat energy to electrical energy.
C: Electrical energy to light energy.
D: Light energy to electrical energy.
9. (1993 Qn. 33). Which of the following circuit diagrams shows the correct positions for the lamp and the switch K in a lighting circuit?

B:

C. Neutral

D: Live

10. (1991 Qn. 7).

SECTION B

11. (1991 Qn.3). The figure below shows a circuit diagram of a part of a wiring system of a car. H_{1} and H_{2} are headlamps and $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ and P_{4} are parking lamps.

(a) How can;
(i) All the lamps be switched on?
(ii) Both headlamps be switched off without affecting the parking lamps.
(b) State what happens to the lamps if P 1 is broken when all the lamps are on. Give a reason for your answer.
12. (2000 Qn.8). (a) Describe the structure and action of a fluorescent tube.
(b) Give one advantage of a fluorescent tube over a filament lamp.
(c) Describe the functionsef.
(i) A fuse.
(ii) An earth wire
(d) Describe briefly how power is transmitted from a power station to a home.
(e) Find the cost of running two 60 W lamps for 20 hours if the cost of each unit is sh. 40 .

MODERN PHYSICS

STRUCTURE OF AN ATOM

(a) The atom

An atom is defined as the smallest electrically neutral particle of an element that can take part in a chemical reaction.
An atom consists of 3 sub atomic particles namely -:

- Proton
- Neutrons
- Electrons

It is made up of the central part called nucleus around which electrodes rotate in orbit or shells or energy levels. The protons and neutrons lie within the nucleus and these particles are sometimes referred to as nuclei particles or nucleons.

Name of p'cle	Symbol	change	Location
Protons	1	+1	In the nucleus
Neutrons	0_{n}	0	In the nucleus
Electrons	1	1	outside nueleus

The nucleus is positively charged
The atom of an element is represented in a chemical equation using a chemical symbol as shown below.

Where, X is the chemical symbol of the element, A is the mass number and Z is the atomic number.
An atom with specified number of protons and neutrons (or specified A and Z) is called a nuclide.

(b) Atomic number and mass number

(i) Atomic number (Z)

This is the number of protons in the nucleus of an atom.

(ii) Atomic mass (A)

This is the sum of protons and neutrons in a nucleus of an atom. It is sometimes called Mass number or nucleon number.

The atomic number, \mathbf{Z}, mass number, \mathbf{A} and the number of neutrons, \mathbf{n} are related by the expression:
(c) Isotopes

These are atoms of the same element having the same atomic numbers but different mass numbers.
Thus Isotopes of an element have;
(i) The same number of protons and electrons.
(ii) Different number of neutrons.

Examples of Isotopes:

Element	Isotopes:
Carbon	-Carbon-12 Carbon-14 Chlorine -Chlorine-35 Cans
Uranium	-Uranium-3

Isotropy is the existence of atoms of the same element with the same atomic number, but different mass number.

Question:

Describe the composition of the following nuclides.
(i)

(i)
(iii)

Exercise:

1. (1991 Qn. 18): number of neutrons is
A. 40
B. 80
C. 120
D. 200
2. (1990 Qn. 7): The table below shows the numbers of the respective particles constituting atoms of elements

P, Q, Rand.S.S.			
Element	Neutrons	Protons	Electrons
P	0	1	1
Q	2	1	1
R	2	2	2
S	2	3	3

The isotopes are
A. P and Q
C. Q and R
B. C.R and S
D. Q and S
3. (1990 Qn. 11): The copper atom has

	electrons	protons	Neutrons
A	29	29	34
B	34	34	29
C	34	29	29
D	34	39	34

4. (1991 Qn. 8): If X is an isotope of Y, then the
A. Atomic mass of X is equalto that of Y
B. Atomic mass is equal to the atomic number of Y
C. Atomic number of X is equal to that of Y
D. Atomic number of X is equal to the atomic mass of Y

has mass number 88 neutrons

5. (1994 Qn. 9): An atom
and atomic number 38. Which of the following statements are correct about the a tom;
(i) It has 38 protons and 50 neutron s
(ii) It has 38 protons and 38 electron s

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLBBOOKS.COA (in) It has 38 protons and 38 electrons
B. C. (i) and (iii)
D. (i), (ii) and (iii)
6. (1985 Prbd 8 ks Ieqppes are nuclides with the same numberof;
A. Protons but different but different number of electrons
B. Protons but different number of neutrons
C. Neutrons but different number of protons
D. Electrons but the same number of protons
7. (2004 Qn. 22): The table below shows the structure of four atoms P, Q, R and S

Elements	Neutrons	Protons	Electrons
P	6	6	6
Q	8	6	6
R	2	2	2
S	2	3	3

B. P and S
D. P and R
8. (2004 Qn. 32): An atom contains 3 electrons, 3 protons and 4 neutrons. B.ts' 4 nucleon n. 6 mber is? D. 7

D. 28 electrons and 32 protons
10. and are isotopes of an element. Find the number of neutrons in the nucleus of
A. 144
B. 140
C. 92
D. 4
11. An isotope of nuclide, ${ }^{2}$, has
B. 18 pleatrons add 78 enfutmons
C. 17 protons and 20 neutrons
D. 18 protons and 18 neutrons
12. (a) What is the difference between atomic number and (b) Whatis nнeatrubly;
(i) Mass number?
(ii) Atomic number?

PHOTOELECTRIC AND THERMIONIC EMISSIONS

(a) Photoelectric Emission:

Photo electric emission is the ejection of electrons from a certain metal surface e.g zinc plate, when electromagnetic radiation of sufficient frequency falls on it.
It normally occurs in phototubes or photoelectric cells.
Phototube or Photoelectric cell
\checkmark A photoelectric cell consists of a cathode coated with a photo sensitive material and an anode. These are enclosed in a vacuum glass tube.
\checkmark The glass tube is evacuated in order to avoid collision of the ejected electrons with the air or gas molecules. This would otherwise lead to low currents.

Electromagnetic radiations (eg Ultra violet radiation) are directed onto the cathode and supplies sufficient energy that causes the liberation of electrons.
The electrons are then attracted by the anode. and produce current in the circuit hence the ammeter deflects.
Note: The flow of electrons to the a node completes the circuit and hence an electric current flows which causes the ammeter to deflect.

* The magnitude of the current produced is proportional to the intensity of the incident radiation.
* If gas js introduced into the tube current decreases hence reducing the number of electrons reaching the

Sonditiens fertraheraetactric effect to take place.

 certain frequency called Threshold frequency

(b) Thermionic Emission:

 transmitted or travel in a straight line and these steams are called cathode rays.

CATHODE RAYS:

Cathode rays are steams of fast moving electrons.
Production of Cathode rays:

The cathode is heated by a low P.d applied across the filament.
The cathode then emits electrons by thermionic emission. The emitted electrons are then accelerated by a high p.d (E.H.T) applied between the filament and the anode so that they move with a very high speed to constitute the cathode rays.

Other methods by which cathode rays are produced are;

- Photoelectric emission
- Applyingeabilabbookks.com
- By natural radioactive nucleus which emit beta particles.

Properties of cathode rays

* They travel in a straight line
* They carry a negative charge.
* They are deflected by an electric field. They are deflected towards the positive plate, since they are negatively charged.
* They are deflected by a magnetic field. In an electric field, cathode rays are deflected towards the positive plate and in the magnetic field; the direction of deflection is determined using Fleming's left hand rule. But remember, the direction of flow of current is opposite to that of electrons.
* They ionize air and gas molecules.
* They cause fluorescence to some substance e.g zinc sulphide.
* They darken photographic film.
* They posses kinetic energy and momentum
* They produce X-rays when stopped by matter.

Experiment to show that cathode rays travel in straight line (Thermionic tube).

Shadow of the
Cathode rays are incident towards the Maltese Maltese cross
A shadow of the cross is formed on the fluorescent screen.
The formation of the shadow verifies that cathode rays travels in a straight line.

Applications of Cathode rays

The thermionic emission and cathode rays are utilized in

fhit

Spots is where the electron beam is focused to form a bright The coating on the screen converts kinetic energy into light energy and produce a bright spot when the electron beam is focused on it.

The graphite coating on the inner wall of the cathode ray tube traps stray electrons emitted from the screen and makes the potential in that region uniform.
(a) The electron gun:

This consists of the following pácoleBooks
(i) The cathode: Mis used to emit electrons.
(ii) The control grid: It is connected to low voltage supply and is used to control the number of electrons passing through it towards the a node.
(iii) The anode: the anode is used to accelerate the electrons and also focus the electrons into a fine beam.
Note: Since the grid controls the number of electrons moving towards the anode. It consequently controls the brightness of the spot on the screen.

(b) Deflecting system:

This consists of the X- and Y- plates. They are used to deflect the electron beam horizontally and vertically respectively.

The X- plates are connected with the C.R.O to a special type of circuit called the time base circuit.

Time base switch: This is connected to the X - plate and is used to move the bright spot on the screen horizontally.

The Time Base or sweep generator

This is a special electrical circuit which generates a "saw tooth" voltage (i.e. a voltage p.d that rises steadily to a certain value and falls rapidly to zero.)
This p.d (time base) is connected to X-plates and causes the spot of electron beam to move across the screen from left to right, This is called a linear sweep.
The spot returns to the left before it starts the next sweep. This is called fly-back. The time for the fly back is negligible.

Note: During the fly back, the control grid is automatically
the spot.
made more negative thereby suppressing the brightness of
(c) Fluorescent Screen:
-

Action of a C.R.O
(a) A.C out put on the screen of a C.R.O
 voltage across the plates has the following traces on the screen of a C.R.O.

(i) Time ba se off. X-plate a.c signal only.	(ii) Time base off. Y-plate a.c signal only	(iii) Time base on,. X and Y-plate a.c signals combined
		Vertical line at the centre

(i) When time base (x - plate) is switched on and there is no signal on the y-plate, the spot is deflected horizontally. The horizontal line is observed at the centre of the C.R.O...
(ii) When alternating current (a.c) is applied to the y-plate and time base (x-plate) is off, the spot is deflected vertically
. The vertical line observed at the centre of the
C.R.O..
(iii) When a.c is applied on the y-plate and x-plate is on ,a wave form is observed on the screen.

When time base is switched off, and no signal to the y plate, a spot is only observed.

(b) D.C out put on the screen of a C.R.O

Connecting a signal in form of direct current (d.c) voltage across the plates has the following traces on the screen of a C.R.O.

(i) Time base off. No signal on the plates	(ii) Time base off. X-plate signal only	(iii) Time base off. Y-plate signal only
Spot at the centre	One direction horizontal line from the centre	One direction vertical line from the centre

Note:

(i) Time base off. d.c signal on the Y-plates	(ii) Time base on, d.c signal on the Y-plates	(iii) Time base on. d.c signal on the X-plates
Spot	One direction horizontalline	One direction vertical line

Uses of a C.R 0
ÉcoleBooks
(i) Measurement of a.c andec voltage
(ii) Measurement of frequency
(iii) Measurement of phase difference
(iv) Displaying pictures in TV sets.
(v) Displaying wave forms

Displaying wave forms:

Damped sine Wave

Sawtooth Wave

Pectangular Wave

Trangle Wave

step

Pulse

Frequency measurements

This is achieved by comparing a wave form of known frequency with unknown frequency

Method

Adjust the time base of a C.R.O until one complete wave is obtained without altering the control grid of the C.R.O , Apply a signal (input to the Y-plate) of known frequency.
A steady waveform of the input will be displayed on the c.r.o.

Then compare the frequency by counting the number of comnlete waves

If a signal repeats, it has a frequency. The frequency is measured in Hertz (Hz) and equals the number of times the signal repeats itself in one second.

Measurement of p.d

A C.R.O can be used as voltmeter because the spot is deflected depending on the p.d between the plates

Method

- Connect a cell 1.5 V to the y-plate and adjust the grid control until the trace indicating the p.d is 1 cm above 0 so that every 1 cm deflection represents a p.d of 1.5 V .
- Get unknown p.d and connect it to y-plate and then compare the deflection by counting the number of of cm Edefledberokhicomqans that we can measure unknown p.d.

Measuring d.c. Potential Difference

- switch off the time-base.
- a spot will be seen on the c.r.o. screen. Adjust the grid control (Y- gain control) until the trace indicating the p.d is 1 cm above 0 so that every 1 cm deflection represents a p.d of 1.5 V
- d.c. to be measured is applied to the Y-plates.
- spot will either be deflected upwards or downwards.
- Deflection of the spot is proportionalto the d.c. voltage applied. Then compare the deflection by counting the number of cm deflected. This means that we can measure unknown p.d.

Measuring d.c. Potential Difference

In this case, the voltage gain or the Y-sensitivity is set at a suitable value. Then the p.d to be measured is connected to the Y-plates and the time base is switched off.
The vertical deflection is measured and the direct voltage is got from:

If the Y-gain control is set at 2 volts/division And the vertical deflection, y , is 1.5 divisions
Then d.c. voltage

$$
\begin{aligned}
& =1.5 \times 2 \\
& =3.0
\end{aligned}
$$

Measuring a.c. voltage

- switch off the time-base
- a spot will be seen on the c.r.o. screen.
- a.c. to be measured is applied to the Y-plates.
- spot will move up and down along the vertical axis
- The spot moves to to the top when the voltage
- increases to its maximum (positive)
- The spot moves to the bottom when the voltage decreases to its lowest (negative).

When the frequency is high.

- The spot will move so fast that a vertical line is seen on the screen.
- Length of the vertical line gives the peak-to-peak voltage (Vpp) applied to the Y-plate.
- \quad The peak voltage $(\mathrm{Vp})=\mathrm{Vpp} / 2$

For a.c voltage
The length \boldsymbol{l} of the vertical trace is measured and $\mathrm{V}_{\mathrm{pp}}=\left[\begin{array}{c}\text { Voltage gain } \\ (\text { or } \mathrm{Y}-\text { sensitivity })\end{array}\right] \times$ Vertical deflection

Where is the peak to peak voltage. The maximum voltage (amplitude, V_{0}) is given by and the actual voltage at root mean square (r.m.s) is given by

$$
\theta \theta \frac{0}{\sqrt{V}}=
$$

Example: 1

A CRO with Y-sensitivity (voltage gain) of $8 \mathrm{Vcm}^{-1}$ has its Y-plates connected (with the time base turned off)
to: (a) A d.c accumulator delivering 16 V ,
(b) An a.c voltage delivering 16 V at root mean square.
(i) Determine the deflection of the spot in (a) above and the length of a vertical line in (b) above.
(ii) Explain with a diagram what will happen if
the plates are connected with time base on to a voltage in (b) above.
Solution

Then from;
$16=8 \times \geqslant$
$\hat{\Delta}=2 \mathrm{~cm}$
(b)

)

$$
\mathrm{V}_{\mathrm{r} . \mathrm{m} . \mathrm{s}}=16 \mathrm{~V}
$$

Voltage gain
$\left[\begin{array}{c}\text { (or Y sensitivity) }\end{array}\right]=8 \mathrm{~V} \mathrm{~cm}^{-1}$

$\mathrm{V}_{\text {r.m.s }}=\frac{\mathrm{V}_{0}}{\sqrt{2}} \Rightarrow 16=\frac{\mathrm{V}_{0}}{\sqrt{2}} \Rightarrow \mathrm{~V}_{0}=16 \sqrt{2} \mathrm{~V}$

$2 \times 16 \sqrt{2}=8 \times$

$$
\rangle=4 \sqrt{ } 2 \mathrm{~cm}
$$

(ii) If the time base is on and Y-plates connected then we shall obtain the wave from below with a peak value $V_{o}=16 \sqrt{2} \mathrm{~V}$

wave form
Example: 2
A C.R.O with time base switch on is connected across a power supply; the wave form shown below is obtained.

Distance between each line is 1 cm
(i) Identify the type of voltage generated from the power source. Alternating current voltage.
(ii) Find the amplitude of voltage generated if voltage gain is 5 V per cm .

Solution:

Voltage gain
$[($ or $\mathrm{Y}-$ sensitivity $)]=5 \mathrm{~V} \mathrm{~cm}{ }^{-1}$
From the graph, Amplidude $=2 \mathrm{~cm}$
$V_{0}=\left[\begin{array}{c}\text { Voltage gain } \\ (\text { or } Y-\text { sensitivity })\end{array}\right] \times$ Amplitude
$V_{0}=5 \times 2$
$\mathrm{V}_{0}=10 \mathrm{~V}$ DOWNLOAD MORE RESOURCES LIKE THIS ON
(iii) base setting on the CR.O is $5 \times 10^{-3} \mathrm{scm}^{-1}$

Solution:

Time sensitivity,
$\left[\begin{array}{c}\text { Time sensitivity, } \\ (\text { Time base setting })\end{array}\right]=5.0 \times 10^{-3} \mathrm{scm}^{-1}$
From the graph, Length for 2 cycles $=8 \mathrm{~cm}$
Time, t for 2 cycles $=$?
Time, t for 2 cycles
Time, $\mathrm{t}=\left[\begin{array}{c}\text { Time sensitivity, } \\ (\text { Time base setting })\end{array}\right] \times$ Legnth on time axis
Time, $\mathrm{t}=\left(5.0 \times 10^{-3}\right) \times 8$
Time, $\mathrm{t}=0.04 \mathrm{~s}$
time, 1 tor 1 cycles (Period time, 1)

Frequency;
Frequency, $f=\frac{1}{T}=\frac{1}{0.02}=50 \mathrm{~Hz}$
Trial Question:
A cathode oscilloscope CRO with time base switched on is connected across a power supply. The wave form shown in figure below is obtained.

				A					
$-A$									
									B

The distance between each line as 1 cm .
(i) Identify the type of voltage generated by the power supply.
(ii) Find the amplitude of the voltage generated if the voltage gain is $5 \mathrm{Vcm}^{-1}$.
(iii) Calculate the frequency of the power source, 1 the time base setting on the C.R.O is $5 \times 10^{-3} \mathrm{scm}^{-1}$.

Example: 3

Determine the frequency of the signal below, if the time base is set at 10 mill-second per cm .

2 cycles occupy	$=15 \mathrm{~cm}$
1 cycle occupies	$=15 / 2=7.5 \mathrm{~cm}$

Period time, $\mathrm{T}=\binom{$ Legnth }{ for 1 cycle }$\times($ Time base setting $)$
Period timedleborkd. COflqm ${ }^{-1}$
Period time, $\mathrm{T}=75 \mathrm{~ms}$
Period time, $\mathrm{T}=75 \times 10^{-3} \mathrm{~s}$
Frequency;
Frequency, $f=\frac{1}{T}=\frac{1}{75 \times 10^{-3}}=13.33 \mathrm{~Hz}$

Note

If the CRO has no calibrated time base setting, when the unknown frequency f_{2} of the signal is determined from the relation

$$
\text { Since, } \mathrm{f} \propto \frac{1}{\mathrm{~d}} \Rightarrow \geqslant \gg
$$

Where

d_{1} - horizontal distance occupied by signal 1 for one cycle
d_{2} - horizontal distance occupied by signal 2 for one cycle

Advantages of a C.R.O over an ammeter and voltmeter
(i) It has infinite resistance and therefore draws very little current from the circuit.
(ii) It can be used to measure both a.c and d.c voltages.
(iii) It has instantaneous response.
(iv) It has no coil that can burn out.

X - RAYS

These are electroma gnetic radiations of short wave length. They are produced wたen fast moving electrons are suddenly
stopped by metaltarget.
stopped by a metaltarget.
The process involved in the production of X-rays is the inverse of Photoelectric emission.

Production of X-Rays

X-rays are produced in an X-ray tube.

$$
\begin{aligned}
\mathrm{E} & =\text { Evacuated tube (or Vacuum), } \\
\text { A } & =\text { Copper }
\end{aligned}
$$

The cathode is heated to emit electrons by thermionic
gmisisip n_{p} using aploweyoltage surgly electrons towards the a node.
When the cathode rays strike the metaltarget, about 99% of their kinetic energy is converted to heat energy and 1% is converted to X - rays.

Energy Changes in the X
 ThácoleBooks

Electrical \rightarrow Heat enegy in \rightarrow K. E of \rightarrow E/m energy \rightarrow the filament \rightarrow electrons \rightarrow energy

Note:

(i) The x - ray tube is evacuated to prevent fast moving electrons from being hindered by friction due to air resistance.
(ii) The heat generated is conducted away thru the copper a node to the cooling fins, or by use of a circulating liquid, oil or water through the hollow anode.
(iii) The curvature of the cathode helps to focus the electrons onto the a node.
(iv) The target is made of tungsten because tungsten has a very high melting point (33800).
(v) The lead shied is used to absorb stray X-rays hence preventing exposure of X-rays to un wanted regions.

Intensity of X-rays:

Intensity of X-rays refers to the number of X-rays produced.

- The intensity of X-rays increases when the filament current or heating current (the low P.d) is increased. This is because when the filament current is increased, the number of electrons hitting the target increases.
- The intensity also increases with the applied voltage across the tube since the applied voltage increases the energy with which the electrons hit the target hence increasing energy for X-ray photons.

Penetrating Power (Strength or Quality) of X-rays:

- The penetrating quality of X-Rays increases with the applied voltage across the tube
- X-rays of low frequency or low penetrating power are called soft X-rays and are produced when a fow voltage
- If applied across the tube.
- If the applied voltage is high, X-rays (hard X-rays) of
- high frequency are produced. penetrating power of X-rays is independent of the filament current.

Ti) ${ }^{\text {Typhof }} \mathbf{x}$ X-rays are X-rays of low penetrating power i.e low frequency and long wave length produced when a low accelerating p.d is applied across the x-ray tube.
(ii) Hard \mathbf{x}-rays are X-rays of high penetrating power i.e high frequency and short wave length produced when a high accelerating p.d is applied across the x-ray tube.

Properties of x-rays

- They can penetrate matter (the penetration increases with the frequency and its minimum in materials of high density e.g. lead.).
- They travel in straight lines at the speed of light.
- They are not deflected by both electric and magnetic fields since they are not charged.
: They canionise agasimareasing its firnductivity.
- They cause some substances to fluoresce e.g. Zinc sulphide.
- They are electromagnetic radiations of short wave length.
- They can produce photo electric emission.
- They undergo refraction, reflection and diffraction.

Ecolebooks.com

Health hazards of X-rays

Frequent exposure to X-rays can lead to dangers like;

- They destroy cells especially hard x-rays.
- Cause gene mutation or genetic change.
- Cause damage of eye sight and blood.
- Cause cancereg Leukemia (cancer of the blood)
- Produce deep seated skin burns.

Safety Precautions

- Avoid unnecessary exposure to x -rays.
- Keep exposure time as short as possible.
- The x-ray beam should only be restricted to parts of the body being investigated
- Soft X-rays should be used on human tissues
- Workers dealing with x -rays should wear shielding jackets with a layer of lead.
- Exposure should be a voided for unborn babies and very young children.

Uses of X-rays

a) Medicine (Hospital Use)

- Used to investigate bone fractures.
- Detecting lung tuberculosis.
- Used to locate swallowed metalobjects.
- Used to detect internal ulcers along a digestive track
- Used to treat cancer especially when it hasn't spread by radiotherapy i.e very hard x-rays are directed to the cancer cells so that the latter are destroyed.

How an x-ray is used to locate broken parts of a bone.

Bones are composed of much denser material than flesh hence if x - rays are passed thru the body, they are absorbed by the bones onto a photographic plate which produces a shadow of the photograph the bone that is studied to locate the broken part
b) Industrial use

- Used to detect cracks in carengines and pipes.
- Used in inspection of cartyres
- Used to locate internal imperfections in welded joints
e.g pipes, boilers storage tanks e.t.c.
- Used to detect cracks in building.

c) X-ray crystallography

d) Security:
 custom security check point.

Differences between cathode rays and x-rays

Cathode rays	X-rays	
Negatively charged	Have no charge neutral highly penetrating cannot\quad be	

| Low penetrating power | High penetrating power |
| :--- | :--- | :--- |
| Deflected by both
 Magnetic and electric fields | Notodeflectedkince they |
| | have no charge. |

Exercise:

1. Thermionic emission may occur when
A. Fast moving electrons hit a metal
B. A metal is given heat energy
C. Metalreceives light energy.
D. A substance undergoes radioactive decay
2. Which one of the following will affect the number of electrons emitted in a thermionic tube?
(i) The p.d between a node and cathode
(ii) The pressure of the filament
(iii) The current flowing in the filament circuit
A. (i) and (ii) only
C. (i) and (iii) only
B. (ii0 and (iii) only
D. (iii) only
3. What is the process by which electrons are emitted from a hot filament?
A. Radioactivity
B. Nuclear reaction
C. Thermionic emission
D. Thermo-electric effect
4. Which one of the following are properties of cathode rays?
(i) They travel in straight lines
(ii) They can penetrate a thick sheet of paper
(iii) They darken a photographic plate
(iv) They are deflected by a magnetic field
A. (i), (iii) and (iv) only
C. (i), (ii) and (iv) only
B. (i), (ii) and (iii) only
D. (iv) only
5. The phenomenon by which electrons are released from a metalsurface when radiation falls on it is known as
A. Radioactivity
C. Photoelectric effect
B. Thermionic emission
D. Reflection
6. Streams of electrons moving at high speed are called?
A. X-rays
C. Gamma rays
B. Cathode rays
D. Alpha particles
7. The process by which electrons are emitted from the surface of a metalby application of heat is known as

B: Ehotoelectric emission

8. Fig below shows a beam of electrons incident mid way
between two charged metal plates.

Which one of the following is correct? The beam
A. Is deflected towards the positive plate
B. Is deflected towards the negative plate
C. Moves perpendicular to the plates
D. Passes through the plates undetected.
9. The particles that are emitted from a hot metal surface are called
A. Electrondebooks.conNeutrons
B. Protons D. Alpha
10. Cathode rays are;
A. Electromagnetic waves
B. Streams of X-rays
C. Protons emitted by a hot cathode
D. Streams of electrons moving at high speed
11. A Zinc cathode was enclosed in an evacuated glass tube as shown in fig below.

Electromagnetic radiation
(e.g Ultra-violet radiation)

When the cathode was irradiated with ultra violet radiation, the ammeter gave a reading
(i) Explain why the ammeter gave a reading.
(ii) A gas was gradually introduced into the glass tube. Explain what happened.
12. (a) What is meant by the following?
(i) Thermionic emission.
(ii) Photoelectric effect
(b) State the conditions necessary for photoelectric effect tc) Occur- ${ }^{\text {an }}$ the aid of a diagram, describe how cathode rays are produced by thermionic emission.
13.

The wave form.pbtained when X and Y are connected to a
cathode ray oscilloscope is:
A.
B.
C.
D.

14. A sinusoidal wave is observed on a cathode ray oscilloscope r is whennected to the Y- plates with time base
B. Afflow frequency alternating voltage is connected to the Y-plates with time base on.
C. Ah thighfpdquennithltamerbingoontage is connected
D. A cell is connected to the Y- plates with the time base on.
15. The Cigere.below, (a) shows a spot of light on the screen

(a)
ÉcoleBooks
(b)

The spot can be turned into a horizontal straight line shown in (b), by;
A. Switching off the time base.
B. Switching on the time base.
C. Making one of the plates positive.
D. Connecting the ac voltage to the Y - plates
16. The cathode ray oscilloscope may be used to;
(i) Measure energy.
(ii) Measure potential difference.
(iii) Display wave forms.
A. (i) only.
C. (ii) and (iii) only.
B. (i) and (ii) only.
D. (i), (ii) and (iii).
17. Which of the following represent the appearance on the screen of a cathode ray oscilloscope when a d.c voltage is connected across the Y - plates with the time base switched on?
A.
\pm
B.
C.
D.

18. The brightness on the screen of a T.V is determined by;
A. Darkness in the room.
B. Size of the screen.
C. Number of electrons reaching the screen.
D. Direction of the aerial.
19. Which one of the following sketches represents. the
appearance the wave form observed in a C.R.O chennested across an ac supply when the time base of
A.
B.
C.
D.

20. The brightness of the spot on a C.R.O screen is controlled by;
A. X - Plates.
C. Grid.
B. Anode.
D. Cathode.
21. The X and Y - plates in a cathode ray oscilloscope make up the:
A. Electron gun.
C. Deflection system
B. Focusing system.
D. Accelerating system.
22. (a) (i) Draw a well labeled diagram of a cathode ray qifillasqupene friction of each part you have labeled in
(i) above.
(b) The diagrams below show the traces of a cathode ray beam on the screen of a cathode ray tube

(c) Give two uses of a C.R.O.
23. The diagram below shows the main parts of a cathode ray oscilloscope (C.R.O).

(a) Name the parts labeled; A, B, C, D, E, U, V and X.
(i) Explain why the C.R.O is evacuated.
(ii) Describe briefly the principle of operation of a C.R.O.
(iii) Describe how a bright spot is formed on the screen.
(b) Using diagrams, show what is observed when on the screen of the C.R.O when;
(i) The CRO is switched on and no signal is applied to the Y - plates.
(ii) The time base is switched on and no signal is applied to the Y - plates.
(iii) An alternating signal is applied to the Y- plates while the time- box is switched off.
(c) Give two applications of a cathode ray oscilloscope.
24. Which of the following is the correct sequence of the energy conversions in an X - ray tube?
人). Electrical Heat energy $\rightarrow_{\text {energy }} \rightarrow$ K.E $\rightarrow \quad$ energy
仓) Heat \rightarrow Electrical \rightarrow K. $\underset{\rightarrow}{ }$ Electro magnrtic
energy \rightarrow energy energy
. Electrical $\rightarrow \underset{\text { energy }}{\text { Heatgy }} \rightarrow \underset{\text { energy }}{\text { Electro magnrtic }} \rightarrow$ K.E
$\stackrel{\text { energy }}{\mathrm{K} . \mathrm{E}} \rightarrow \underset{\text { energy }}{\text { Electrical }} \rightarrow \underset{\text { energy }}{\text { Heat }} \rightarrow \underset{\text { energy }}{\text { Electro magnrtic }}$
25. Which of the following is true about X - rays?
(i) Cause photographic emissions.
(ii) Deflected by an electric field.
(iii) Ionize matter
(iv) Not deflected by a magnetic field.
A. (i), (ii) and (iii).
C. (ii) and (iv).
B. (i) and (ii).
D. (i), (iii) and (iv).
26. The following are some of the uses of X - rays except;
A. Detection of flaws in a material.
B. Detection of affected tissues in living organisms.
C. Destruction of cancer cells.
D. Preservation of cereals.
27. The difference between X - rays and ultra - violet rays is that X - rays have;
(i) Greater velocity.
(iii) Lower frequency.
(ii) Shorter wavelength.
(iv) More energy.
A. (i), (ii) and (iii).
C. (i) and (ii).
B. (ii) and (iv).
D. (i), (iii) and (iv).
28. The difference between soft and hard X - rays is that;
A. Hard X- rays travel faster than soft X - rays.
B. Hard X - rays penetrate more than the soft X-rays.

RADIOCTIVITY

Radioactivity is the spontaneous disintegration of heavy unstable nu Heuslobooksstablennucleus accompanied by release of radiations.

Activity is the number of disintegrations (or break down emissions) per second.

The radiations emitted are:
Alpha particles ($\boldsymbol{\alpha}$), beta particle ($\boldsymbol{\beta}$) or gamma radiations (γ). Elements that emit radiations spontaneously are said to be radioactive elements.
Radioactivity is considered as a random process because
you can not tell which atoms of a molecule will disintegrate at a particular instant.

Properties of Radiations emitted

(a) Alpha particle

An alpha particle is a helium nucleus which is positively charged i.e.

- It is positively charged with a charge of +2 .
- It has a low penetrating power because of its relatively large mass and due to this; it can be stopped or absorbed by a thin sheet of paper.
 negative plate.
- It has a high ionising power due to its high charge or great charge.
- It has a low range in air.

Note: When un stable nuclej emits an alpha particle the
When a nuclide decays by release of an alpha particle, it loses two protons and two neutrons. This can be expressed as below:

Parent
nuclide
Daughter nuclide
alpha particle

Example

(i) Uranium decays by emitting alpha particles to become thorium;

$$
{ }^{2392} \mathrm{U} \longrightarrow{ }_{82}^{206} \mathrm{Tr}+{ }^{4} \mathrm{He}
$$

(ii) Polonium - 210 undergoes alpha decay to become lead-206;

Question:

 the process.
2. A radioactive substances undergoes decay and emits two alpha particles to fomjriclabebovatics a balanced equation for the process.

(b) A beta particle

A beta particle is a high energy electron i.e.

Properties

- It is negatively charged with a charge of -1 .
- It has a low ionising power because of its low charge (-1).
- It has a higher penetrating power because of its low mass and due to this; it can be stopped or absorbed by
- It can also be foil (a few cm).
- It can also be deflected by both electric and magnetic fields at a higher angle and it is deflected towards a
positive plate.
- It has a high range in air.

Note:
When a radioactive nuclei decays by emitting a beta particles. Its mass number is not affected but the atomic

When an element decays by emitting a beta particle, it loses an electron. This results from the decay of a neutron to a proton:

Beta decay can be expressed as:

Example

Radioactive sodium undergoes beta decay to become magnesium. This can be written as:

(is) Its atgmic numberincreaspes byone.

Questions:

1. An unstable nuclide
\mathbf{Y} Y
by enitting abetaipartickfide X be affected if a beta particle was emitted instead of the alpha particle?
(iii) Compare the nature and properties of an alpha particle with those of a beta particle,

0
 emits
3. (a) Consider the equation below.

DOWNLOAD MORE RESOURCES LIKE THIS ON ECO\& EBOOKS? \rightarrow

Name the particle emitted at each of the stages (i) and (ii).

(c) GammalRansoks.com

These are neutral electromagnetic radiations with the shortest wave length.

Properties

They are neutral (not charged) and therefore can not be deflected by both electric and magnetic fields.
They have the highest penetrating power because of their light mass and due to this they can be stopped or absorbed by a lead metal or shield which has the highest density.
They can also cause ionisation of a gas by knocking off electrons from the neutral atoms but this is by small amounts.
They have the highest possible range in air.

Question:

1. (a) Describe the composition of the atom. (b)
partiêt and
is a rery
high energy element Y. Write a balanced equation for the nuclear reaction.

2. A radioactive nuclide emits 4 alpha particles, 2 beta particles and gamma radiations to turn into a nother nuclide, Y. Find the mass number and atomic number of Y .
3. A radioactive nuclide decays to nuclide Z according to the decay process 2elow.
(a) Identify the particles or radiations A, B and C.
(b) State two differences between radiations A and B.

Note: In a chemical reaction or equation,

(ii) The totalatomic number on the left must be equal to the totalatomic number on the right hand side.

Deflection of Alpha, Betcand Gamma radiations in electric andmagnetic fields (TEcoleBooks

Lead Box containg a radioactive substance. e. g Radium

Alpha particles are deflected in a direction towards the South Pole while beta particles are deflected towards the North Pole.
Alpha particles are less deflected than beta particles implying that alpha articles are heavier than beta particles. The gamma rays are not deflected in the magnetic field

If the radiations are subjected to an electric field, the paths below are seen.

Alpha particles are deflected towards the negative plate since they are negatively charged, while beta particles are dratlegted towards the positive plate since they are negatively

The gamma rays are not deflected in the electric field implying that they have no charge.

Penetration Power of Alpha, Beta and Gamma radiations

$\overline{\text { Ionising effects of the radiations }}$
Ultra violent radiation is incident on a clean zinc plate resting on the cap of a charged G.L.E as shown below

- When a radioactive source is brought near the cap of a charge G.L.E, the leaf falls, this show that the G.L.E has been discharged as a of the ionization of air around the cap.
- If the G.L.E is positively charged negative ions or (electrons) from air attracted and the gold leaf falls and if is negatively charged, irons are attracted and leaf also falls.

Question:

Explain what is observed when;
(i) The G.L.E is positively charged.
(ii) Radio wave is used instead of ultra violent radiation.

Answer

(i) No further divergent of the leaf is observed because the ultra violent radiation eject electrons from the metal surface but the electrons are immediately attracted back hence no loss of charge.
(ii) Radio waves have low energy thus are unable to release electrons so there will be no effect on the leaf divergence of the electroscope.

Back ground radiation

These are radiations which are naturally existing even in the absence of radioactive source .they are caused by natural tracks of radioactive materials in rocks. Cosmic rays from outer space.
These cosmic rays are very high energetic radiated particles which come from deep in space. So the correct count rate $=$ actual rate plus back ground count rate.

Example:

Given that the back ground rate is 2 counts per minute and the Geiger Muller count rate is 25 , determine the approximate number of radiations present.

$$
\begin{aligned}
\text { Count rate } & =25-2 \\
& =23 \mathrm{C} \mathrm{~min}^{-1}
\end{aligned}
$$

Comparisons of the Radiations

(a) Similarities between alpha and beta particles.

- Both ionize gases.
- They both penetrate matter.
- They are both deflected by and magnetic fields.
(b) Differences between alpha and beta particles.

Property	Radiation EcoleBooks	
	Alpha partiele	Beta particle
Charge	Positive energy	
Nature	Helium particles which have lost the electrons	High egative electrons
Deflection in fields	Towards negative plate and south pole	Towards positive plate and north pole
Penetrating power	Low: Penetrate thin paper but stopped by thick ones.	High: Penetrate thick paper and thin alluminium foil but stopped by thick alluminium sheets.
Ionizing power	High (Most)	Moderate
Absorbed by	Thick sheets of paper	5mm of alluminium

(c) Differences between Gamma rays and X-rays

	Gamma rays	X-rays
(i) Wave	Shorter wave length Length X-rays.	Longer wave length than gamma rays.
(ii) Origin	From nuclei of atoms as a result of radioactivity.	From cathode rays suddenly stopped by matter.

(d) Comparison of Alpha, Beta and Gamma radiations

Property	Radiation		
	Alpha particle	Beta particle	Gamma rays
Charge	Positive $(+2)$	Negative (-1)	No charge (0)
Nature	Helium particles which have lost the electrons	High energy electrons	High energy electromagne tic radiation.
Deflection in fields	Towards negative plate and south pole	Towards positive plate and north pole	Not deflected
Penetrating power	Least	Moderate	Most
Ionizing power	Most	Moderate	Least
Absorbed by	Thick sheets of paper	5 mm alluminium	Thick sheet of lead
Range in air (in m)	0.05	3	100

Note:
(iii) Range of radiation is the maximum distance covered by a radiation in air before it is totally absorbed.
(iv) Ionisation is the process of changing the neutral atoms of a gas into positive and negative ions.

Detectors of the radiations

These include:
(i) Ionjsationchabider.com
(ii) Geiger Muller Tube (G.M tube)
(iii) Cloud chamber (both expansion type and diffusion cloud chamber)
(iv) Scintillation counter

Cloud chamber tracks for the Alpha, Beta and Gamma radiations
When an ionising radiation from a radioactive source, enters the chamber the ions are produced.
Alcohol droplets in the cloud chamber will collect around these ions produced forming strings.
Using a strong illumination, the droplets can be photographed by using a camera.
The type of radiation depends on the thickness or length of the traces of ions formed.

Alpha particles produce, thick short, straight and continuous tracks, Beta particles produce longer but wavy tracks and Gamma rays have an irregular and faint tracks as shown below.

Alpha particle	Beta particle	Gamma rays
Short, straight and continuous tracks	Long and wavy tracks	Irregular and faint tracks

Dangers of radiations.

(i) Alpha particles;

Alpha particles are less dangerous unless the source enters the body.
(ii) Beta Particles and Gamma radiations:

These are very dangerous because they damage skin tissues and destroy body cells.
They cause:
(i) Radiation burns. (i.e. redness and sore on the skin).
(iii) Leukemia, (Blood cancer).
(iii) Sterility, (Inability to reproduce).
(iv) Blindness, (i.e. they damage the eye sight)
(v) Low body resistance to normal diseases, due to
(vi) Mamage of blood corpuscles.
(vi) Mutation. (A harmful genetic change, that occurs
 generations. E.g, a child may be born with one arm or both but when one is shorter than the other.
Safety precautions when dealing with radioactive Rourfective sources should be handled with care. In that;

* Thdyonwithabaerheqdidsith forceps or a pair of tongs
* Avoid eating, drinking or smoking where radioactive sources are in use.

ÉcoleBooks

* Radioactive sources mustbe kept in lead boxes when not in use.
* Wash hands thoroughly after exposing them to radioactive materials.
* Any cut on the body should be covered before dealing with radioactive sources.
* Operators should put on gloves and lead coats.
* During experiments with radioactive materials, the radiations should not be directed towards the people.

Applications of Radioactivity

(Uses of alpha, beta ,and gamma rays)

The uses in various fields are based on the following

* Gauge control and fault finding:

If a radioisotope is placed on one side of a moving sheet of material and a GM tube on the other, the count rate decreases if the thickness increases. Flows in a material can be detected in a similar way; the count-rate will increase where a flaw is present.

* Radioactive tracers:

A small amount of a weak radioisotope is injected into the system and traced by a GM tube or other detectors.

* Radiotherapy

Gamma rays are used in the treatment of cancer and detecting breakages in bones.

* Sterilization

Gamma rays are used to sterilize medical and industrial instruments and foods.

* Archaeology

Living plants and animals take in radioactive carbon. When a tree dies, no fresh carbon is taken and the carbon starts to decay. By measuring the residual activity of carbon containing material such as wood, charcoal the age of archaeological remains can be estimated.

(a) Industrial uses:

They are used;
$\checkmark \quad$ in tracer techniques to investigate the flow of liquids in chemical plants. (Identifying oil leakages in oil pipe lies).
\checkmark in the automatic control of thickness or uniformity of materials in industries. (e.g Cigarettes)
$\checkmark \quad$ In the study of wear and tear in machinery.
\checkmark To detect faults in thickness of metals sheets in welded
joints. (gamma rays)
$\checkmark \quad$ in food preservations.
$\checkmark \quad$ to sterilize equipments in food industry
\checkmark intopesso productinatrieflyclear reactors use radio
\checkmark (b) LAEedicalustes ancerous cells. (Radiotherapy).
\checkmark They are used to kill bacteria in food (x-rays).

\checkmark Asses the a mount of blood in a patient
(c) Archeological uses
\checkmark Used to determine the time that has elapsed since death of a certain organism occurred in a process called carbendaltitgooks.com
(d) Geology
\checkmark They are used to determine the age of rocks.
(e) Biological uses
\checkmark Used to study the uptake of fertilizers by plants.
\checkmark Used to sterilize insects and hence eliminate pests that destroy crops.
(f) Defense
\checkmark Nuclear reactions of fusion and fission are used in manufacture of weapons of mass destruction like nuclear and atomic bombs.

Exercise:

1. Which one of the following radiations has the listed properties?
(i) Long range in air.
(ii) Not deflected by magnetic and electric fields.
A. (iii) Aphause very little ionization of a ir molecules.
B. Beta.
D. X - rays.
2. A radioactive source decays by emission of all the three radiation. The radiation enters normally into electric field as shown in figure 3.

Fig. 3.
(a) Which radiation is most likely to detect at;
(i) Position A .
(ii) Position B.
(iii) Position C.
(b) (i) What can you deduce about the charges of the radiation?
(ii) State two differences between radiation A and B.
(iii) What happens when the radioactive source is completely covered with an ordinary sheet of paper.
(iv) Draw diagrams to show the paths of the particles named in (d) above.
(c) A radioactive source that emits all the three radiations is placed in front of the cardboard aluminum and lead sheets as shown in the figure above. Name the radiations likely to be between the card board.

In some cases, the original mass may not coincide with the zero (0) time.

Calculations of Half life:
Method I: Using a table

Method II: Arrow Diagram (Crude method)

Where,
is the numb
fives in a time,

Method III: Using the formula

The mass remaining after a time t, M_{t}, when an original sample of mass M_{0} decays with a half- life of $t_{\frac{1}{2}}$ is given by;
$\hat{\theta}=\hat{\theta}$

Case I: Finding the half life when the final mass, M and time taken, t are given,

* In this method, we continuously half the initial count rate or initial mass until the given count rate or final mass.
* Then we use the formula; $\rangle=$ 人 time
taken for the decal to half number of half lives.

Example 1:

($\mathbf{1 9 9 4}$ Qu. 15): The count rate of a radioactive isotope falls from 600 counts per second to 75 counts per second in 75 minutes. Find the half life of the radio isotope.

Method I: Using a table

$\mathrm{M}_{0}=600 \mathrm{Cs}^{-1} ; \mathrm{M}_{\mathrm{t}}=75 \mathrm{Cs}^{-1} ; \mathrm{t}=75 \mathrm{~s}$

Count rate $\left(\mathrm{Cs}^{-1}\right)$	Number of half-lives, n
$\mathrm{M}_{0}=600$	0
300	1
150	2
$\mathrm{M}_{\mathrm{t}}=75$	3

Then from;

$$
\begin{aligned}
3 t_{1} & =75 . \\
t_{1}^{2} & =25 \text { minutes }
\end{aligned}
$$

Method II: Arrow Diagram (Crude method)

Then from;

$$
\begin{aligned}
3 \mathrm{t}_{\frac{1}{2}} & =75 . \\
\mathrm{t}_{1}^{2} & =25 \text { minutes }
\end{aligned}
$$

Method III: Using the formula

The mass remaining after a time t, M_{t}, when an original sample of mass M_{0} decays with a half- life of t_{1} is given by;
$\hat{\theta}=\left(\frac{1}{0}\right)$ Where,
$M_{t}=M_{0}\left(\frac{1}{2}\right)^{n}: \quad$ Alternatively; At the stage
$75=600 \frac{Z_{1}}{2}$ (
$75=600\left(\frac{7}{2}\right):$
$75=600\left(2^{-1}\right)^{\mathrm{n}}$

$$
\begin{gathered}
(2)^{-n}=\frac{75}{600} \\
2^{-n}=\begin{array}{c}
1 \\
8
\end{array} \\
2^{-n}=2^{-3} \\
-n=-3 \\
n=3
\end{gathered}
$$

$$
2^{-n}=\frac{1}{8}
$$

Introducing logarithms to base 10 on both sides;

$$
\begin{aligned}
& \log 2^{-\mathrm{n}}=\log 0.125 \\
& -\mathrm{n} \log 2=\log 0.125 \\
& -\mathrm{n}=\frac{\log 0.125}{\log 2} \\
& -\mathrm{n}=-3 \\
& \mathrm{n}=3
\end{aligned}
$$

Then from;

$$
\begin{aligned}
& \text { 2 }=2 . \\
& 3 \mathrm{t}_{\frac{1}{2}}^{2}=75 . \\
& \mathrm{t}_{\frac{1}{2}}=25 \text { minutes }
\end{aligned}
$$

Example 2:

(1987 Qn. 6): After 18 hours, a sixteenth of the original mass of a radioactive isotope remained. What is the half life of the isotope.

Solution:

Method I: Using a table

Let the initial a mount be N ;
$N=$? ; $N_{t}=\frac{N}{16} ; t=18$ Hours

$4 \mathrm{t} 1=18$.
$\underset{\underline{\underline{2}}}{\mathrm{t}_{1}^{2}}=4.5$ hours

Method II: Arrow Diagram (Crude method)

Then from;

$$
4 \mathrm{t}_{\frac{1}{2}}=18 .
$$

$\mathrm{t}_{\frac{1}{2}}=4.5$ hours

Method III: Using the formula-

The mass remaining after a fing sample of mass M_{0} decays with-a half-life of $t_{\frac{1}{2}}$ is given by;

$$
\begin{array}{l|l}
N_{t}=N\left(\frac{1}{2}\right)^{n}: & \begin{array}{l}
\text { Alternatively; At the stage } \\
\text { of; } \\
\frac{N}{16}=N\left(\frac{1}{2}\right)^{n}:
\end{array} \\
\quad 2^{-n}=\frac{1}{16}
\end{array}
$$

$$
\begin{gathered}
\frac{1}{16}=\left(\frac{1}{2}\right)^{n} \\
2^{-n}=2^{-4} \\
-n=-4 \\
n=4
\end{gathered}
$$

Introducing logarithms to base 10 on both sides;

$$
\begin{aligned}
& \log 2^{-n}=\log 0.0625 \\
& -\mathrm{n} \log 2=\log 0.0625 \\
& -\mathrm{n}=\frac{\log 0.0625}{\log 2} \\
& -\mathrm{n}=-4 \\
& \mathrm{n}=4
\end{aligned}
$$

Then from;

$$
\begin{aligned}
& \text { es } \\
& 4 t_{\frac{1}{2}}^{2}=18 . \\
& t_{\frac{1}{2}}=4.5 \text { hours }
\end{aligned}
$$

Case II: Finding the mass left when half life and time taken are given

* Half the original mass continuously until we reach the time given.
* The mass that corresponds to the time given is the mass left.

Example 3:

(1994 Qn. 6): The half life of a radioactive element is 2 minutes. What fraction of the initial mass is left after 8 minutes?

Solution:

Method I: Using a table

Let the initial a mount be N ;
$\mathrm{N}=$? ; $\mathrm{N}_{\mathrm{t}}=\frac{\mathrm{N}}{16} ; \mathrm{t}_{\frac{1}{2}}=2$ minutes; $\mathrm{t}=8$ minutes;

Mass	Number of half-lives, n	Time taken, $\quad \mathrm{t}$ (minutes)
$\mathrm{M}_{0}=\mathrm{N}$	0	0
$\frac{1}{2} \mathrm{~N}$	1	2
$\frac{1}{4} \mathrm{~N}$	2	4
$\frac{1}{8} \mathrm{~N}$		6
$\mathrm{M}_{\mathrm{t}}=$	N	8

Method II: Arrow Diagram (Crude method)

From the above, the fraction left after 8 minutes $=\frac{1}{16}$

Method III: Using the formula

The mass remaining after a time t, M_{t}, when an original sample of mass M_{0} decays with a half-life of $\frac{t_{2}}{2}$ is given by;

$$
\begin{aligned}
& \text { :Where, } \\
& \quad \mathrm{n}=\frac{\mathrm{t}}{\mathrm{t}_{1}}=\frac{8}{2}=4
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{N}_{\mathrm{t}}=\mathrm{N}\left(\frac{1}{2}\right)^{\mathrm{n}}: \\
& \mathrm{N}_{\mathrm{t}}=\mathrm{N}\left(\frac{1}{2}\right)^{4}:
\end{aligned}
$$

$$
\stackrel{N}{t}_{\neq(-)}^{1}
$$

$$
\begin{array}{ll}
\mathrm{N} & 2
\end{array}
$$

$$
\underline{\#}_{\underline{t}}
$$

$$
\frac{1}{\mathrm{oft}} \stackrel{-}{\mathrm{N}+\mathrm{ta}}
$$

Thus, the fraction leffafter 8 minutes $=$

Example 4:

(1994 On. 6): The half life of Uranium is 24 days. Calculate the mass of Uranium that remains after 120 days if the initial mass is 64 g .

Solution:

Method I: Using a table

Let the initial a mount be N ;
$\mathrm{M}_{0}=64 \mathrm{~g} ; \mathrm{M}_{\mathrm{t}}=? ; \mathrm{t}_{\frac{1}{2}}=24$ days; $\mathrm{t}=120$ days;

Method II: Arrow Diagramef(Cude method)

Try using the crude method youkwiqbeligeethermas left after 120 days $=$

Method III: Using the formula

The mass remaining after a time t, M_{t}, when an original sample of mass M_{0} decays with a half- life of t_{1} is given by;

$\mathrm{n}=\frac{\mathrm{t}}{\mathrm{t}_{\frac{1}{z}}}=\frac{120}{24}=5$
$\mathrm{N}_{\mathrm{t}}=\mathrm{N}\left(\frac{1}{2}\right)^{\mathrm{n}}$
$N_{t}=64 \times\left(\frac{1}{2}\right)^{5}$:

$$
\mathrm{N}_{\mathrm{t}}=64 \times \frac{1}{32}
$$

$\mathrm{N}_{\mathrm{t}}=2$
Thus, the mass left after 120 days $=2 \mathrm{~g}$

Case III: Finding the mass decayed when half life and time taken are given

* Half the original mass continuously until we reach the time given.
* The mass that corresponds to the time given is the mass left.
* Find the mass decayed from the expression:

Where: Original mass $=$ massatatime $t=0$.

Example 5:

(2001 Qu. 4) (e) : The half life of a radioactive substance is 24 days. Calculate the mass of the substance which has decayed after 72 days, if the original mass is 0.64 g .
Solution:

Method I: Using a table

Let the initial amount be N ;
$\mathrm{M}_{0}=0.64 \mathrm{~g} ; \mathrm{M}_{\mathrm{t}}=$? ; $\mathrm{t}_{1}=24$ days; $\mathrm{t}=72$ days;

From the table, the mass left after 72 days $=0.08 \mathrm{~g}$

Method II: Arrow Diagram (Crude method)
Try using the crude method, you will still get the mass

Method III: Using the formula

The masExembetbogotfec@10ime t, M_{t}, when an original sample of mass M_{0} decays with a half-life of $t_{\frac{1}{2}}$ is given by;
人
$\mathrm{n}=\frac{\mathrm{t}}{\mathrm{t}_{\frac{1}{2}}}=\frac{72}{24}=3$
$N_{t}=N\left(\frac{1}{2}\right)^{n} \quad:$
$\mathrm{N}_{\mathrm{t}}=0.64 \times\left(\frac{1}{2}\right)^{3}$:

$$
\mathrm{N}_{\mathrm{t}}=0.64 \times \frac{1}{8}
$$

$\mathrm{N}_{\mathrm{t}}=0.08$
Thus, the mass left after 72 days $=0.08 \mathrm{~g}$

Example 6:

(2002 Qn. 23): The half life of a radio active substance is 10 s . How long will it take for a mass of of 16 g of the substance to reduce to 2 g ? [Ans: $\mathbf{t}=\mathbf{3 0}$].

Example 7:
(2008. Qn.8) (c): A radioactive element has a half life of 4 minutes. Given that the original count rate is 256 counts per minute,
(i) Find the time taken to reach a count rate of 16 counts per minute. [Ans: $\mathbf{t}=\mathbf{1 6}$ minutes]
(ii) What fraction of the original number of atoms will be left by the time the count rate is 16 countsper minute? [Ans:

Example 8:

(a) The table below shows results obtained in an experiment to determine the half life of a radioactive substance.

Count rate	250	175	76	38	25
Time (min.)	0	5	10	15	20

Draw a graph of count rate against time and use it to determine the half life of the radioactive substance.
(b) Explain why radioactive substances must be stored in thick lead containers.
(c) The nuclide \qquad has a half life of 3000 years and
to nuclide Y by emission of an alpha particle. and three beta particles
(i) State the meaning of the statement "Half- life of a nuclide is 3000 years."
(ii) Write a balanced equation for the decay process.
(iii) What percentage of the original sample of the nuclide, remains after three half lives.

Solution:

(a)

From the grapn a oove, naif me,

(b) Radioactive materials emit radiations, alpha, beta particles and gamma rays which are harmfulto human life.
Lead containers absorb these radiations and prevent them from coming into contact with people.
(c) (i) The element takes 3000 years to decay to half its original mass.
(ii)

(iii)

Method I: Using a table

\%age mass	Number of half-lives
100	0
50	1
25	2
12.5	3

Therefore, 12.5% of the original mass will remain after 3 half lives.

Method II: Arrow Diagram (Crude method)

Thus the percentage of the original sample that remains after 3 half lives is given by;

$$
\begin{aligned}
& =\frac{\text { Mass left }}{\text { Original mass }} \times 100 \% \\
& =\frac{27.5}{220} \times 100 \%
\end{aligned}
$$

Method III: Using the formula

 sample of mass M_{0} decays with a half-life of t_{1} is given by;

$M_{t}=M_{0}\left(\frac{1}{2}\right)^{n}:$
$M_{t}=220\left(\frac{1}{2}\right)_{1}^{3}:$
$M_{t}=220 \times{ }_{8}^{1}$.
$M_{t}=27.5 \mathrm{~g}$

Thus the percentage of the original sample that remains after 3 half lives is given by;

$$
\begin{aligned}
& =\frac{\text { Mass left }}{\text { Original mass }} \times 100 \% \\
& =\frac{27}{\frac{.5}{220}} \times 100 \%
\end{aligned}
$$

Exercise:

1. If a radioactive element of mass 32 decays to 2 g in 96days .calculate the half life.
2. A certain radioactive substance takes 120 years to decay from 2 g to 0.125 g . Find the half life.
3. The half life of substance is 5days. Find how long it takes for its mass to disintegrate from 64 g to 2 g .
4. A radioactive sample has a half life of 3×10^{3} years. Find how long it takes for three quarters of the sample to decay.
5. The activity of a radioactive element with a half life of 30 days is 2400 counts per second. Find the activity of the element after 120 days.
6. The count rate from a radioactive source is 138 counts per minute when the back ground rate is 10 counts per minute. If the half life of the source is 6 days, find the count rate after 18 days.
7. A radioactive element has a half life of 4 years .if after 24 hours 0.15 g remains calculate the initial mass of the radioactive material.
8. A certain mass of a radioactive material contains $2.7 \times$ 10^{24} atoms, how many atoms decayed after 3200 years if the half life ${ }_{24}$ material is 1600 years?
[Ans: 2.025×10^{24} atoms]
9. (a) The activity of a radioactive source decreases from 4000 counts per minute to 250 counts per minute in 40 minutes. What is the half life of the source?
(b) A carbon source initially contains 8×10^{6} atoms.

Calculate the time taken for 7.75×10^{6} atoms to decay.
10. The table below shows the count rates of a certain radioactive material.

Count rate $\left(\mathrm{s}^{-1}\right)$	6400	5380	3810	2700	1910	1350
Time (min)	0	1	3	4	7	9

Plot a suitable graph and use it to find the half life of the material.
11. The following values obtained from the readings of a rate meter from a red oattive isdepoobibdine

Time (min)	0	5	10	15	20
Count rate $\left(\mathrm{min}^{-1}\right)$	295	158	86	47	25

Plot a suitable graph and find the half life of the radioactive iodine.
12. The following figures were obtained from Geiger miller counter due to ignition if the sample of radon gas

Time (min)	0	102	155	\ldots	300
Rate $\left(\mathrm{min}^{-1}\right)$	1600	\ldots	200	100	50

(a) i) Plot a graph of count rate against time
ii) determine the half life
iii) Find the missing values
(b) (i) what is the count rate after 200 minutes
(ii) after how many minutes is the count rate 1000 minutes
13. The following figures were obtained from Geiger miler counter due to ignition of the sample of radon gas

Time (min)	0	102	155	208	300
Rate $\left(\mathrm{min}^{-1}\right)$	1600	1400	200	100	50

a) Plot a graph of count rate against time.
b) Determine the half life.
c) What is the count rate after 200 minutes?
d) After how many minutes is the count rate 1000 minutes?

NUCLEAR REACTIONS:

A nuclear reaction is a process in which energy is produced by either splitting a heavy nucleus or combining two lighter nuclei at high temperatures.
A nuclear reaction takes place in a nuclear reactor.

Types of nuclear reactions:
 (i) Nuclear fission

This is the splitting of a heavy unstable nucleus into two lighter nuclei with the release of energy.
This process can be started by bombardment of a heavy nucleus with a fast moving neutron. The products of the
process are two light atom and more neutrons which can make the process continue.

Example:

When Uranium - 235 is bombarded with slow moving neutrons, Uranium - 236 is formed
Uranium - 236 then under goes nuclear fission to form
Barium, (Ba) and Krypton, (Kr) with the release of neutrons and energy according to the equation below.

The energy released in a single nuclear fission reaction of a single Uranium atom is about 200 MeV .

Conditions for nuclearfission to occur:

* Low temneratures.
* Fast moving neutrons

Application of nuclearfission:
ECO EIB(0)MKSnGGMidbombs.

* Used to generate electricity.
* Used to generate heat energy on large scale.

Note: Nuckearebeacthss. woake use of controlled nuclear fission while atomic bombs make use of un controlled nuclearfission.

(ii) Nuclear fusion:

This is the union (or combining) of two light nuclei at high temperatures to form a heavy nucleus with the release of energy.

Example:

When two Deuterium (Heavy hydrogen) nuclei combine at very high temperature (of about $10^{8} \mathrm{~K}$), Helium - 3 and a neutron are produced accompanied by the release of energy according to the equation below.

Reactions of this type occur in the in the sun and stars and are the source of the sun's or star's energy.

Conditions for nuclear fission to occur:

* Very high temperatures.
* The light nuclei should be at very high speed to over nuclear division.

Applizationeqf pughearifissignalirogen.

* Used in making atomic bombs.
* Used to geneatae heateqitygy on large scale.

Similarities between nuclear fission and nuclear fusion.
 heat or in atomic bombs.

* Energy changes in a nuclear reactor:

$$
(\text { (vardegr }) \rightarrow(\text { Chememigigal }) \rightarrow(\text { Kennetiig }) \rightarrow(\text { Eleeteriggl })
$$

Differences between nuclear fission and nuclear fusion.

Nuclear fission	Nuclear fusion
Is the disintegration of a heavy nucleus into two lighter nuclei..	Is the combining of two lighter nuclei to form a heavy nucleus.
Requires low temperature.	Requires high temperatures
Requires slow neutrons for bombardment	Neutrons are not required. For fusion to occur
High energy is released	Lower energy is released
Results into 4 products	Results into 3 products

Exercise:

1. (a) What is meant by radio activity?
(b) The equation below shows a reaction which takes place in a nuclear reactor.
${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{92}^{236} \mathrm{U} \rightarrow{ }_{\mathrm{x}}^{141} \mathrm{Ba}+{ }_{36}^{\mathrm{y}} \mathrm{Kr}+3{ }_{0}^{1} \mathrm{n}+$ Energy
(i) Name the reaction represented by the equation
(ii) Find the values of x and y.
2. ($\mathbf{1 9 9 1}$ Qn. 1). The process, whereby the nuclei of a light elements combine to
A. Fission
B. Fusion
C. Ionisation
D. Radioactivity
3. (1993 Qn. 22). The process by which a heavy nucleus split to form lighter nuclei is called?
A. Fission
B. Fusion
C. Ionisation
D. Radioactivity
4. (1994 Qn. 18). ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{56}^{144} \mathrm{Ba}+{ }_{36}^{92} \mathrm{Kr}+$

The equation above represents a nuclear reaction. Identify \boldsymbol{x}.
A. Proton
B. Neutron
C. Alpha particle
D. Beta particle
5. (2000 Qn. 7). In the a tomic bomb, energy is produced by:
A. Fission
B. Fusion
C. Thermionic emission
D. Radioactivity
6. (2001 Qn. 17). When Uranium - 235 is bombarded with a neutron, it splits according to the equation;

A	56	141
		N
B	199	58
D	107	128

7. (a) (i) Distinguish between nuclear fission and nuclear (if) ${ }^{2}$ ang conditions necessary for each to occur.
(b) State one example where nuclear fusion occurs naturally.
(c) State one use of nuclearfission.
(d) The following nuclear reaction takes place when a

同会tron bombard a sulphuratom.
(i) Describe theromposition of nuclide Y formed.
 atomic number of the nuclide.

MAGNETISM

Magnetism is the force exerted by a magnetic field.
A magnet is a piece of metal that attracts other metals. It has two poles i.e. North Pole and South Pole.
A magnet is a substance which has the capacity of attracting and holding the other substance e.g iron, steel, Nickel etc.

Examples of magnets include Lodestone magnet, which is a form of Iron (ii) oxide called magnetite which is a naturally occurring magnet.
It always points in north and south directions if it is freely suspended.

$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Types } \\ \text { material } \end{array} \\ \hline \end{array}$	Definition and magnetic properties.	Examples
(a) Magnetic material	This is a material which has the property of being attracted or repelled by a magnet.	iron, steel, nickel, e.t.c.
(i)Ferro- magnetic materials	These are materials which are strongly attracted by a magnet. F ir magnetic dipoles line up more readily. * When $\begin{gathered}\text { magnetic } \\ \text { placed } \\ \text { field, }\end{gathered}$ in they retain their magnetism after the external field is removed.	iron, cobalt and' nickel, (Gd)
Ferromagnetic materials.,	weakly attracted by a magnet? e.g. iron, cobalt and nickel	
magnetic materials * Dia-	These are materials that are slightly or weakly attracted by a strong magnetic field. * They become more magnetic when they are very cold. These are materials that are	Aluminitm, Wood, brass, copper, platinum, uraniumetc. Zinc, gold, \qquad
matentics (b) Non-	meabalytirentelled by a strong - Whagnetic in fiedd, stulqeng hecometized in a dirbecidily oppgenetitaing fiedd. the These are materials which	Biamath, ahdaridy, Danzene, e.t.c.
matarials	evopher, ribkersset fivood, plastic,	

Note: Magnets strongly attract ferromagnetic materials, weakly attract paramagnetic materials and weakly repel diamagnetic material.

Hard and soft magnetic materials

(i) Hard magnetic materials.

These are ferro-magnetic materials which are not easily magnetized but retain their magnetism for a long period. E.g steel
Hard magnetic materials are used for making permanent magnets used in instruments like
\checkmark Electricity meter
\checkmark Radio loudspeaker
\checkmark Telephone receiver
(ii) Soft magnetic materials

These are ferro-magnetic materials which are easily magnetized but lose their magnetism easily. E.g iron
Soft magnetic materials are used in
$>$ Transformer
> Magnetic keepers

- Makng of temporary magnets used in: electric bells, relays, electromagnets, dynamos, motor armatures, etc

Experiment to distinguish between hard and soft magnetic materials

Procedure

Shboritaibevef iron and steel are attracted to a magnet as
The arrangement is then dipped in the iron fillings.
OligerMadiension fillings are attracted to the iron strip than

(ii) Qra dratiexing dhesfermanent magnet almost all iron stherlgs onsterth fall off and very few if any fall from
 permanent.

Conclusion

Iron is a soft magnetic material i.e temporarily magnetized while steel Esconedroondlycompgetized and thus hard magnetic material.

Assignment: give some differences between steel and iron as magnetic materials

Storing magnets

Magnets tend to become weaker with time due to repulsion of the free like poles of molecular magnets near the ends. This upsets the alignment of the atomic dipoles.
To prevent this self demagnetization of magnets, bar magnets are stored in pairs with un like poles put together and pieces of soft iron called magnetic keepers are placed at
the end as shown below.

Explanation

How magnetic keepers are used to store magnets
> Magnetic keepers become induced magnets and their poles neutralize the poles of the bar magnets. In other words, the keepers and the bar magnets form a closed loop with no free poles thus eliminating self demagnetization.

Uses of magnets

$>$ Used in industries to lift heavy loads
$>$ Tapes and tape recorders use a special type of magnetic materials with very fine powder where each particle can be magnetized
$>$ Used in electric motors and generators to rotate the wheels of a machine
> Used in a relay reed switch and as a circuit breakers
$>$ Used in telephone receivers and loud speakers. etc

Polarity of a magnet

Polarity of a magnet refers to the points at the ends of a magnet that have opposite magnetic properties where the magnetic strength is more powerful. The points are called poles.
Magnets are never found as monopoles. (Single magnetic poles). Every magnet has two poles called North pole(N) and South pole (S).
The North Pole is the pole which is attracted to the geographic north and the South Pole is the pole which is attracted to the geographic south.

Law of magnetism:

It states that, unlike poles attract and like poles repel.
Note: The attraction or repulsion between two magnets depends on the strength of the magnets and the distance between them.
The further apart the magnets are, the less they attract or repel one a nother.

- Magnets attract on
- Magnets have two ends called magnetic poles. Its at these ends where the attractive forces are strongest
\{Assn. Describe an experiment to show that attractive forces of a magnet are strongest at its ends\}
This is shown by dipping a magnet into a container of iron fillings.
Iron fillings are seen in large numbers at the magnetic poles than in the middle of the magnet.
- Magnets with two poles i.e. North Pole \& South Pole when freely suspended come to rest in the north-south direction.
\{Assn. Describe an experiment to show that a freely suspended magnet comes to rest in the north-south direction\}
- Magnets have a basic law which states that unlike poles attract while like poles repel.
\{Assn, Describe an experiment to verify the law of magnetism $\}$

Testing polarity/magnetism [How to identify the pole of a magnet]
(a) By suspension method

Procedures:

$\checkmark \quad$ Suspend a given un marked magnet with a help of a thread so that it can rotate freely.
\checkmark Wait until the magnet comes to rest.

Observation:

The magnet points in north-south direction.

Conclusion:

The end facing the geographic north is the North pole and the end facing the geographic south is the south pole.
(b) Using a magnet of known poles

Procedures:

$\checkmark \quad$ Suspend an iron bar and mark its ends X \& Y
\checkmark EBrindbeokrotoona magnet slowly towards the end X and after towards end Y. Note the observations in each case.
\checkmark Repeat the above procedures using the S - pole of a known pole magnet.

Observations

(i) Attraction: Probably due to attraction between unlike poles or due to attraction between a magnet and a magnetic material.
Therefore we cannot make a conclusion here.
(ii) Repulsion: It is due to like poles. If repulsion occurs, then the unknown pole is similar to the known pole of the magnet.
In this case we can make our conclusion of the unknown pole.

	North Pole	South Pole	Magnetic Substance
North Pole	Repulsion	Attraction	Attraction
South Pole	Attraction	Repulsion	Attraction
Nagmettc Substances	Attraction	Attraction	No effect

Note: Repulsion is the only sure way of testing for the
polarity of a intagnet and not attraction because atfraction occurs for both magnets and magnetic materials.

Methods of magnetizing a magnet

(i) Single touch/stroke method
(ii) Divided/double touch/stroke method.
(iii) Electrical method using direct current.
(iv) Induction method.
(v) Absolute method

Single touch method

In this method, the steel bar is stroked from end to end several times in one direction with one pole of a permanent magnet.

The polarity produced at the end of the bar is of the opposite kind to that of the stroking pole.

Double touch method

In this method, the steel bar is stroked several times from the centre outwards with unlike poles of the two permanent magnets.
After each stroke, the stroking pole should be raised higher and higher to avoid weakening of the induced magnetism in the steel bar.
The polarity produced at the end of the bar is also of the opposite kind to that of the stroking pole.

Consequent pole magnet.

Consequent poles of a magnet are double like poles both at the centre and at the ends.

Consequent poles are obtained when a steel bar is double stroked using two like poles from the centre outwards as shown below.

If fruch a magnet is freely suspended in air, it does not come

Qn. (a) What is a consequent pole magnet?
(b) Briefly describe how a consequent pole magnet is made..

Electricalmethod

The materialto be mhaqpetized is inserted into a solenoid to which a steady d.c is connected to flow.

The current is switched on for a few minutes and then off. When the steel bar is removed, it is found to be magnetized.

The current flowing in the same direction makes the atomic magnets in the Domains to point in same direction.

Determining the polarity of the magnet produced.

The polarity of the magnet produced depends on the direction of 贯equitarbajlhe ebdyof the solenoid.
It can be established by using one of the following methods:
(i) Using the direction of flow of current.

Look at the ends of the solenoid;

* If the current is flowing in a clockwise direction, that will be a South Pole.
* If it is flowing in an anti-clockwise direction, then that will be the North Pole.

(ii) Using the Right hand grip rule.

Grip the solenoid such that the fingers point in the direction of current in the solenoid. Then, the thumb points in the North pole.

Absolute method.

In this method, the steel bar is heated to red hot, hammered and allowed to cool while facing in the north- south direction.

Induced magnetism

A piece of un-magnetized steel/iron becomes magnetized when its either near or in contact with a pole of a magnet.
This is a process called induced magnetism or magnetization by magnetic induction. The end nearest to the pole of the magnet acquires an opposite pole.

Magnetic saturation

When a magnetic material is magnetized, it reaches a point where it cannot be magnetized further. This is called magnetic saturation.

* Demagnetization

It is the process by which a magnet loses its magnetism. i.e. the atomic magnets are now in a random arrangement and facing in different directions.
It can be demagnetized by:

	Method	Explanation
(i)Hammerin g	The magnet is hammered while lying in the E-W direction.	
(ii)	Dropping	The magnet is dropped on a hard surface several times.
(iii) Heating	The magnet is heated until it becomes red hot and then allowed to cool while lying DOWNin	

QN. Explain in terms of the molecular theory how a steel bar gets magnetized and demagnetized.
When a mqgetliebstroked. comnthe steel bar the magnet domain are forced to align in the direction of the magnetic field from the magnet. They do so and remain in that direction hence the bargets magnetized.
However, when a magnet is heated strongly, dropped on a rough surface or alternating current passed through it, the
domain is set to point in opposite directions which aren't north - south hence weakening the magnet. This is called demagnetization.

Magnetic saturation:
Is the limit beyond which the strength of a magnet can't be increased at constant temperature.

QN. Explain why increase in temperature destroys the magnetism of a magnet.
When a substance is heated molecules vibrate with greater
energy, these increa sed vibrations destroy alignment oft tiny magnets in the domain and the magnetism is decrease.

MAGNETIC FIELDS

A magnetic Field is a regionorepaceqRomheks

- A magnetic dipole (magnet) experiences a force.
- A current carrying conductor experiences a force or a moving charge experiences a force.
- An emf is induced in a moving conductor.

Magnetic flux.

Magnetic flux is a group of magnetic field lines passing through a certain area.

Field lines are used to represent the direction and magnitude of the magnetic field. The strength of the magnetic field is proportionalto the density of the field lines.
The direction o the magnetic field is represented by the magnetic field lines. The magnetic field lines are taken to
pass through the magnet, emerging from the North Pole and returning via the South Pole. The lines are continuous and do not cross each other.
Magnetic lines of force do not intersect or touch and can pass through a non-magnetic substance.

Methods of locating magnetic flux

(i) Using a plotting compass.

-Place a magnet on a flat surface and then place a piece of paperon top of the magnet.
-Place a plotting compass near one pole of the magnet, note and mark the position of the North pole of the compass needle using a pencil dot.
-Move the compass needle onto the dot marked on the paper and make a second dot.
-Continue the process until you reach the south pole of the magnet.
-Join the dots to give a line of force and show the direction of the force using an arrow.

(ii) Using Iron fillings.

-Place a magnet on a flat surface and then place a piece of paperon top of the magnet.
-Sprinkle iron fillings all over the paper.
-Tap the paper gently
Observation: The iron fillings re-arrange themselves as shown above.

Magnetic flux patterns

(a) Isolated barmagnet

(b) Unlike poles close together (attraction)

(c) Two like poles (repulsion)

A_neutralpoint in a magneticfields

A neutral point is a point in a magnetic field where the resultant magnetic field strength is zero (0). The opposing magnetic fields are of equal strength and therefore cancel out.

Magnetic shielding or screening
This is the creation of a m EtyodeBabsplce or region in the neighbour hood of the magnetic field irrespective of the strength of the field.

Iron has the ability of drawing and concentrating all the flux from its surroundings through itself. It is thus said to be more permeable to the magnetic flux than air.

Iron in form of a ring causes the lines of force to pass through its walls and no magnetic flux passes the surrounding ring.
The space inside the ring is said to be shielded or screened from magnetic flux.

All lines of force incident on the ring induce magnetism into it. These create a neutral region inside the ring Magnetic shielding can be applied

- In non digital watches
- In T.V tubes and cathode ray tubes
- In electron beams

They are used to shield them from external magnetic field by placing a strong iron cylinder along the neck of the tube.

The earth's magnetic field

A freely suspended bar magnet always comes to rest pointing in the North-South direction.
This is due to the magnetic field of the earth
The earth behaves as though it contains a short bar magnet inclined at a small angle to its axis of rotation with its South Pole in the northern hemisphere (geographic North) and the North Pole pointing to the Southern hemisphere (geographic South).

$\theta=$ Angle of declination or angle of variation
$\alpha=$ Angle of dip
$B_{\mathrm{V}}=$ Vertical component
of earth's field
$\mathrm{B}_{\mathrm{H}}=$ Horizontal component of earth's field

Magnetic meridian: this is the vertical plane containing or passing through the earth's magnetic north and south poles

Geographical meridian: This is the vertical plane passing through the geographical north and south directions

Angle of Dip, : This is the angle between the earth's magnetic field and the horizontal; OR Angle of dip is the angle that the axis of a freely suspended bar magnet makes with the horizontal when the magnet sets.

Angle of declination (Magnetic variation) is the angle between the earth's magnetic and geographical meridian This is the angle between geographic North Pole and the magnetic north pole.

Magnetic axis: is the imaginary line passing through the earth's magnetic north and south poles.

Geographical axis: This is the imaginary line through the center of the earth and passing through the geographical north and south

Variation of Angle of dip, as one moves from the magnetic equator up to the North Pole
Magnetic Equator: This is the greatest circle in a horizontal plane perpendicular to the magnetic meridian where a freely suspended bar magnet experiences zero magnetic dip.

Explanation

At the magnetic equator, the earth's magnetic field lines are parallel to the horizontal; therefore the angle of dip at the equator is zero,
As one moves along a given longitude towards the North Pole, the resultant magnetic field lines meet the earth's
surface at angles greater than 0° but less than 90° thus the angle of dip at such a position is also greater than zero but
less. than 90°.
At fhe Noft Pole the magnetic field lipes areingmat to the equizanted.i. Therefore the angle of dip at the North Pole

Generally, the angle of dip inereases from at the equator up to at the North Pole

ÉcoleBooks

Earth's magnetic field;

This is the series of parallel lines running from geographic south to geographic north as shown below.

Interaction of earth's field with a bar magnet.

Magnetic effect of an electric current.

Any straight conductor carrying current experiences a magnetic field around it.
The field pattern obtained can be studied by using iron fillings or plotting compass.
It is found that the magnetic lines of force form concentric circles with the wire as the centre.

The direction of a magnetic field around the conductor is given by the right hand grip rule. which states that imagine a conductor to be griped in the right hand with the thumb pointing in the direction of the magnetic field, then the fingers will point in the direction of the current.

Right hand grip rule

It states that imagine a conductor to be griped in the right hand with the thumb pointing in the direction of the magnetic field, then the fingers will point in the direction of Grip the soft iron bar with the right hand figure, following the difieftipoleof current. The end where the thumb points is

(i) Magnetic fields due to a straight wire carrying current
Current out of the page \quad Current into the page

Maxwell's right hand rule:
This is used to find the direction of the field.
If one grasps the current carrying straight wire in the right hand with the thumb pointing in the direction of current, then the fingers curl pointing in the direction of the magnetic field.
(ii) Magnetic field due to a current carrying circular coil.

Alternatively the field lines of a current carrying circular coil can be sketched as follows;

The field lines around each side are concentric circles. Magnetic fields near the centor of the cilealaooikare uniform hence the magnetic field lines are nearly straight and parallel

(iii) Magnetic flux due to a current in a solenoid

A solenoid is a coil whose diameter is smaller than its length.

The field pattern due to a solenoid is similar to that of a bar magnet when current is switched on.

The direction of the field is determined as follows:"if the coil (solenoid) is viewed from one end and the current flows in an anticlockwise direction at that end, then the end is a North Pole and if the current flows in a clockwise direction, then that end is a south pole"

The strength of the flux density depends on:

- The current in the solenoid
- Number of turns

Exercise:

1. (1991 Qn. 23).

SECTION A

1994 Qn. 1	1993 Qn. 37	1997 Qn. 29	1998 Qn. 32
$\begin{array}{ll} \hline 2000 & \text { Qn. } \\ 36 & \\ \hline \end{array}$	$\begin{array}{ll} \hline 2002 & \text { Qn. } \\ 20 & \\ \hline \end{array}$	2004 Qn. 8	$\begin{array}{ll} \hline 2006 & \text { Qn. } \\ 14 & \\ \hline \end{array}$
$\begin{array}{ll} \hline 2008 & \text { Qn. } \\ 18 & \\ \hline \end{array}$	$\begin{array}{ll} \hline 1991 & \text { Qn. } \\ 23 & \\ \hline \end{array}$		

SECTION B

2. (2008 Qn. 3). (a) Define the following terms as applied to magnetism:
(i) Ferromagnetic material.
(ii) Neutral point
(b) Sketch he magnetic field pattern around a bar magnet whose axis lies along the magnetic north.
(c) (i) State one method of magnetizing a magnet.
(ii) What is meant by a magnetically saturated material?
3. (1995 Qn. 7). (a) With the aid of a diagram, explain how a piece of iron can be magnetized by a single touch method.
(b) How can you determine the polarity of a magnet?
(c) Explain why a magnet loses its magnetism when placed
in a coil of wire carrying alternating current.
4. (2004 Qn. 41). (a) List two ways by which a magnet may lose its magnetic properties. $\stackrel{\text { may lose its }}{S . C O M}$
(b) The figure below shows an iron ring between two opposite magnetic poles.

(i) Sketch the magnetic lines of force on the diagram.
(ii) Explain what happens to the steel nails.
5. (2004 Qn. 4). (a) (i) What is a magnetic field?
(ii) State the law of magnetism
(b) Sketch the magnetic field pattern of two bar magnets whose north poles are facing each other.
6. (2006 Qn. 3). (a) Distinguish between angle of dip and angle of declination.
(b) Draw a diagram to show the magnetic field pattern around a bar magnet placed in the earth's field with the north pole of the magnet pointing to the earth's magnetic south.
(c) Describe what happens to the compass needle, C , as it is moved closer to the bar magnet along the dotted line shown below.

7. (2002 Qn. 6). (a) What happens when a magnet is ;
(i) Dipped in iron filings.
(ii) Freely suspended in air.

 released, it floats above the magnet Q as shown below.

(i) plaimy P floats above Q .
(ii) why are plastic pins used instead of steel pins.
(iii) Whims twemeutemloanedeat thertiagenet to magnet P if all the
(ge) SERplanintine debystrofking. domain theory how a steel bar

FORCE ON A CURRENT CARRYING CONDUCTOR IN A MAGNETIC FIELD

(a) Origin of the force that causes motion of a current carrying conductorplaced across a magnetic field.
When a current carrying conductor is placed across a magnetic field (e.g between the poles of a powerful magnet), it sets up a magnetic field around itself.
The two fields then interact with each other causing a resultant force.
If the field or the current is reserved, the direction of the force also reverses.

The combined field exert a force on the current carrying conductor. The force is towards the region with fewer field lines (i.e less flux density).

Combined fields

On one side of the conductor, the magnetic fields oppose feathivether wand somefachncel out resulting in formation of a

On the other side of the conductor, the applied magnetic foim dings oa re sforfed tognemicqueld ghencentrate resulting in

Theire theesmoeedfieldidines above the wire since both fields
A force is therefore exerted on the conductor that moves it from a region of strong magnetic field to a weaker magnetic field.

If we suppose field lines to be a stretched elastic material, these below will try to straighten out and in so doing will exert a down ward force on the wire.
[See the kicking wire experiment for verification]
Fleming's Left Hand Rule (Motor rule)

Left Hand Rule.

It states that if the thumb, first and second fingers of the left hand are held mutually at right angles with the thu $\mathbf{M b}$ pointing in the direction of magnetic force (or Motion), the First finger indicates the direction of the field while the
seCond finger indicates the direction of current in the conductor.

(b) Factors affecting the magnitude of a force on a current carrying conductor.
Experiments show that the magnitude of the force exerted is proportional to the:-
(i) Current I in the conductor
(ii) Length, l, of the conductor
(iii) Strength of the magnetic field by a quantity called magnetic flux density, B.
(iv) Number of turn in the conductor, N
(iv) The angle where is the angle between the conductor and the magnetic field.
All these factors can easily be generated from the expression for the force on a current carrying conductor below.

Note: current flowing into the paper is donated by (\mathbf{X}) and currentflowing out of the paper is denoted by, (\cdot)

Current into the paper

Current out of the paper

Force between two straight conductors carrying current
Two current carrying conductors (wires) exert a force on in a vacuum
up around each conductor.
each other due to the interaction of the magnetic fields set
Gonductors, the force exerted can be;
Bepending, on the direction of the currents, in the two
(ii) Repulsive (Different directions of current)
(i) Attractive (Same direction of current)

Magnetic field due to two straight wires carrying current

in the same direction

The fields in the middle of the conductors are in opposite directions. Hence they attract each other.

A force on each wire acts from a region of strong field hence straight parallel wires carrying current in the same direction attract. i.e. "like currents attract"

Magnetic field due to straight wires carrying current in opposite directions

"Unlike currents repel"
The fields in the middle of the conductors are in the same direction. Hence they repel each other.
hence straight parallel wires carrying current in opposite A force on each wire acts from a region of strong field
direction repel. i.e. "Unlike currents repel"

Applications of Electromagnets

acts as a magnet.en is any current carrying conductor which
magnetized only when the current is flowing.
If a soft iron is placed in a solenoid, it will be strongly
When the current is switched off, all the magnetism acquired is lost.

The soft iron inside the solenoid is acting as an electromagnet. The strength of the field of an electromagnet can be increased by:

- Placing an iron core inside the coil.
- Increasing the magnitude of the current.
- Increasing the number of turns in the coil.

Applications of electromagnets

Electromagnets are used in:

- Electric bells
- Moving coil loud speaker
- Telephone receivers
- Magnetic Relays, e.t.c.

(i) Lifting magnets

They are mainly used for lifting and transporting heavy steel from one place to a nother in a factory. The coils are made of insulated copper wire wound on a U-shaped soft iron so that opposite polarity is produced. The opposite adjacent poles increase the lifting power of the electromagnet.

The coil is wound in opposite directions on each of the soft iron.

(ii) Electricbell

It consists of a hammer, a gong, soft iron armature, contact adjusting screw, a push switch, steel spring and an electromagnet made of two coils wound in opposite directions on the iron cores.

Action

* When the switch is pressed, current flows through the electromagnet which becomes magnetized.
* It attracts the soft iron armature and hence breaking the contacts.
* This causes the hammerto strike the gong and sound is
* heard. As the armature moves, the current is broken causing

* qYRetaffisemsaisereatited on and on hence a continuous sound will be heard.
(iii) Telephone receiver
 diaphragm and a permanent magnet which attracts the diaphragm and keeps it under tension.

Action :

* When the phone is lifted, a steady current flows through the solenoids. However when a person speaks into the microphone on the other end, the sound energy is converted into varying electrical energy of the same frequency as the original sound.
* This is transferred through the cables to the receiver and magnetizes the electromagnet.
* The strength of the electromagnet varies according to the magnitude of the electric current which also depends on the original sound.
* This causes the magnetic alloy diaphragm which is under tension to have a varying pull. As a result, the diaphragm vibrates reproducing the vibration of the speech and so the speech is reproduced.

(iv) Magnetic relav

A magnetic relay switch uses a small current in the primary circuit to control a larger current in the secondary circuit.

When current flows in the coil from the primary circuit AB , the soft iron core is magnetized and hence attracts the L shapedironarmaturetracted, its top rises making it rock on ititckiv.せdrncetedosinethe contacts at C in the secondary

The relay is then said to be energized or on.
(v) The moving coilloud speaker

Structure

It consists of a light coil of wire known as a speech coil wound tightly round a cylindrical former to which a large thin cardooard cone is fapidly attached. The coil is in a
radical magnetic field provided by the permanent magnet which has circular pole.

Action

* Varying electric currents from an amplifier flows continuously in the speech coil through the leads.
* The yarxing current produces a varying electromagnetic
* fingungreasthe frymentand the paper cone to vibrate at

* The greater the electrical energy supplied to the coil, the louder the note produced.
Applications of the force on a current carrying conductavinoving coil Galvanometer
poisntisddifferdacect and measure an electric current and

It consists of a rectangular coil with many insulated turns

 springs.

Action:

ÉcoleBooks

When the current to be measured flows through the coil, a resultant magnetic field is set up. By Fleming's left hand rule, two equaland opposite parallel forces act on the two vertical sides of the coil. The two forces together form a deflection couple causing the coil to rotate until the deflecting couple is just balanced by the opposing couple setup by the hair springs.

As the coil rotates, the pointer moves with it and hence the magnitude of the current can be obtained from the linear scale.

Sensitivity of the moving coilgalvanometer

A galvanometer is said to be sensitive if it can detect very small currents.
The sensitivity can be increased by;

- Using yery strong magnet to provide a strong
- Using very weak hair springs
- Suspending the coil so that it can turn freely
- Using a coil with many turns

Adyantages

(1). It has a linear scale because of the uniform field
(ii). provided by the radialfield

Gfiryersiondofofmeteving coil galvanometer into an (i). Conversion of a galvanometer to an ammeter
$\mathrm{Ar}_{1} \mathrm{Us} \mathrm{sen}_{\mathrm{m}} \mathrm{f}$ shethts constructed in such a way that it has a very low resistance so that a large current passes through it.

I_{g} is the full-scale $I_{g} \bar{I}_{\text {deflection of the galvanometer }}$
P. d across the shunt $=$ P. d across galvanometer

$$
\Leftrightarrow(\hat{\theta}-\hat{\theta}) \hat{\theta}
$$

Most of the current will pass through the shunt and only a small part through the galvanometer.

Example:

 into an ammeter to measure a maximum of 3 A ?
(i).

Solution

(i) Ecolebooks.com

Let Rs be the resistance of the shunt required.

P. d across the shunt $=$ P. d across galvanometer

$$
\Leftrightarrow\left(I-I_{g}\right) R_{s}=I_{g} R_{g}
$$

$\Leftrightarrow(3-0.015) \mathrm{R}_{\mathrm{s}}=0.015 \times 5$
$2.985 \mathrm{R}_{\mathrm{s}}=0.075$

Thus a low resistance resistor of 0.025Ω should be

Example1.

A moving coil galvanometer gives a full scale deflection of 4 mA and has a resistance of 5Ω. How can such instrument be converted into an ammeter giving a ful-scale deflection of 10A?

Solution:

Let Rs be the resistance of the shunt required.

P. d across the shunt $=$ P. d across galvanometer
$\left(I-I_{g}\right) R_{s}=I_{g} R_{g}$
$\Leftrightarrow(10-0.004) \mathrm{R}_{2}=0.004 \times 5$.
Thus a low resistance resistor of 0.002f 16 ld be connected in parallel with the instrument.

Examp2ng coil galvanometer gives a full scale deflection of 6 mA and has a resistance of 4Ω. How can such instrument be conyerted intoimeter giving a ful-scale deflection of 15 A ?
(ii). A voltmeter reading up to 20 V ?

Solution:

Let Rs be the resistance of the shunt required.

R_{s}
P. d across the shunt $=$ P. d across galvanometer

$$
\Leftrightarrow\left(\mathrm{I}-\mathrm{I}_{\mathrm{g}}\right) \mathrm{R}_{\mathrm{s}}=\mathrm{I}_{\mathrm{g}} \mathrm{R}_{\mathrm{g}}
$$

$\mathrm{R}_{\mathrm{m}}=\frac{32-0.008(5)}{0.008}$
Ecolebooks.com
人

(i). Conversion of a galvanometer to a voltmeter

A voltmeter has a high resistance so that no current passes through it.

To convert a galvanometerto a voltmeter, a high resistance called a multiplier is connected in series with it.

Use of multipliers

$$
\mathrm{V}=\mathrm{V}_{\mathrm{m}}
$$

$V=\binom{$ P. d across the }{ multiplier }$+\binom{$ P. d across }{ gal vanom eter }
$\mathrm{V}=\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{g}}$
$V=I_{g} R_{m}+I_{g} R_{g}$
$\hat{\nu}=\hat{\nu}\rangle+\hat{\nu}\rangle$
(Fleming's
(ii) In the above example, if the galva nometer is to measure a maximum p.d of 1.5 V , the value of R can be obtained as below.

$V=\binom{$ P. d across }{ the multiplier }$+($ P. d across galvanometer $)$
$\mathrm{V}=\mathrm{V}_{\mathrm{m}}+\mathrm{V}_{\mathrm{g}}$
$V=I_{g} R_{m}+I_{g} R_{g}$
$R_{m}=\frac{\hat{y}-I_{g} \underline{R}_{g}}{I_{g}}$
$\mathrm{R}_{\mathrm{m}}=\frac{1.5-0.015(5)}{0.015}$
$\hat{\nu}=\hat{\nu} \boldsymbol{\gamma}$
Thus resistance of 95Ω must be connected in series with the galvanometer.
(b) The simple direct current (d.c) motor

The d.c motor changes electićácelegyonknechanical energy.

Structure:

It consists of a rectangular coil which can rotate about a fixed axis in a magnetic field provided by the permanent magnet. The ends of the coil are soldered to two halves of a copperring (commutator).
Two carbon brushes press lightly against the commutators.

Action

* When current flows in the coil, side BC experiences a downward force and AD an upward force. left hand rule).
* The two forces constitute a couple which rotates the
\because vrilen me con reacnes me verucan posmon, me viusnes lose contact with the commutator and current is cut off. However the coil continues to rotate past this vertical position because of the momentum gained.
* The current in the coil reverses as the brushes change contact with the commutator, side AD now experiences a downward force and BC an upward force. Thus the coil continues to rotate as long as the current is flowing.

Energy losses in a d.c motor

1. Energy losses in the winding of the armature $\left(I^{2} R\right)$
2. Eddy current losses.
3. Energy losses due to friction e.g. between the brushes and the commutator. These can be minimized by;
(i) Using low resistance copper wire
(ii) Eddy currents are minimized by winding the coil on a laminated core.
(iii) Energy losses due to friction are minimized by lubrication,

Exercise:

1. (1994.Qn. 2). (c) A moving coil galvanometer, has a coil of resistance 4Ω and gives a full scale deflection when a current of 25 mA passes through it. Calculate the value of the resistance required to convert it to an ammeter which reads 15 A at full scale deflection.[Ans: 6.68×10^{3} ?
2. (1999.Qn. 10). A galvanometerhas a resistance of 5Ω and range $0-40 \mathrm{~mA}$. Find the resistance of the resistor LDWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKSh.COMS be connected in parallel with the
galvanometer if a maximum current of 10 A is to be measured. [Ans: 0.02Ω]

Ecolebooks.com

3. (1994.Qn. 2). A galvanometer of reads 0.05 A at full scale deflection and has resistance of 2.0Ω. Calculate the resistance that should be connected in series with it to convert it to a voltmeter which reads 15 V at full scale deflection. [Ans: 298 Ω]
4. A galvanometer of internal resistance 100Ω gives full a fsd of 10 mA . Calculate the value of the resistance necessary to convert it to:
(a) Voltmeter reading up to 5 V . [400 Ω]
(b) Ammeter reading up to 10 A . $[0.1 \Omega]$

Exercise:

1. (1988.Qn. 24).

An electron beam is incident into the page at right angles to the magnetic field formed between two magnets R and S as shown in the above diagram. The beam will be deflected.
A. Down wards.
B. Towards magnet R
C. Towards magnet S .
D. Upwards.
2. (1991 Qn. 13). The diagram below shows a beam of electrons directed to pass between the poles of a magnet.

The electron beam would be;
A. deflected towards the S-pole. B. deflected downwards
C. Slowed down.
D. reflected backwards.
3. (2003 Qn. 22). Which of the following factors affect the magnitude of force on a current -carrying conductor in a magnetic field?
(i) Direction of current.
(ii) Amount of current
(iii) Direction of the magnetic field
(iv) Strength of the magnetic field.
A. (i) and (ii) only.
B. (ii) and (iii) only
C. (i) and (iii) only.
D. (ii) and (iv) only.
4. (1997 Qn.31). The figure below shows a current carrying coil PQRS pivoted about XY between two magnets.

Which of the following statements are true about the coil?
(i) The sides PS and QR shall experience a force.
(ii) As seen from X, the coil will rotate anticlockwise.
(iii) The force on the coirean be increased by increasing the number of turns.

EcoleBooks
(iv) The coil will come torest with PQ at right angles to the magnet field.
A. (i), (ii) and (iii) only.
B. (i) and (iii) only
C. (ii) and (iv) only.
D. (iv) only.
5. (2005 Qn. 2). The direction of motion of a conductor carrying current in a magnetic field can be predicted by applying;
A. Faraday's law. B. Maxwell's screw rule
C. Fleming's left hand rule. D. Fleming's right hand rule.
(1990 Qn. 4), 1994 Qn. 38, 1995 Qn. 40, 1998 Qn. 31. SECTION B
6. (1992 Qn. 10). An Alluminium foil carrying a current is placed in a magnetic field as shown below.

ELECTROMAGNETIC INDUCTION

Ecolebooks.com

Electromagnetic induction is the producing of an electromotive force (electric current) in a circuit from magnetism by varying the magnetic flux linked with the circuit.

An electric current produces a magnetic field around the conductor through which it flows. Similarly, a magnetic
field induces a current in a conductor when the conductor cuts the field. This effect is called electro magnetic induction.

The means that current or (e.m.f) can be induced when;

- The magnetic field strength around an electromagnet is increased and decreased.
- Constantly moving a permanent magnet in and out of a coil of wire.
- Constantly moving a conductor near a stationary permanent magnet.
Electromagnetic induction forms the basis of working of power generation, dynamos, generators etc.

Types of electromagnetic induction:

* Self induction
* Mutualinduction.

Self induction

Self induction is the process where an e.m.f is induced in a coil (or circuit) due to a changing current in the same coil.
The flux due to the current in the coil links that coil and if the current changes, the resulting flux change induces an emf in the coil itself.
When current flows in a coil, it sets up a magnetic field within the coil and when it is switched off, the magnetic field collapses (changes). A current is induced in the coil to oppose the change.
This effect is called self induction. The coil is said to have self inductance, (L) and the coil is said to be an inductor.
Back e.m.f is the e.m.f induced in a coil (or circuit) due to a changing current in the same coil (or circuit).
The induced e.m.f tends to oppose the growth of current in the coil.

Demonstration of self induction

Consider a coil of known number of turns connected in series with the battery and switch k as shown below.

hence inducing ane.m.fin the coil
-The magneticit flux linking the tuirns of the coil changes Alternatively;
-The current, I is varied by using a variable resistor, R.
-The magnetic flux linking the turns of the coil changes hence inducing an e.m.f in the coil.
-This e.m.f tends to oppose the growth of current in the coil. EcoleBooks
-Switch k is opened, current, I decays out from the coil and the bulb (lamp) first lights up brightly and then gradually goes off.
-The magnetic flux linking the turns of the coil changes hence inducing an e.m.f in the coil.
-This e.m.f tends to oppose the decay of current in the coil.
Note: Just as self induction opposes the growth of current in a circuit when K is closed; it also opposes its decay when K is opened.

Mutual induction

This is the generation of an e.m.f in one coil due to change in current in the nearby coil.
A magnet can be used to induce current in a coil. A secondary coil carrying current can be used instead of the magnet to induce current

Assignment; describe briefly an experiment to show mutual induction with the aid of a diagram.

Demonstration of Mutual induction

a) Based on changing magnetic field.

Experiment to show that the induced current (or e.m.f) is as a result of a changing magnetic field.
(a)Coil-coil experiment

* Consider cols A and B wound on a soft iron rod as shown below.

* When switch, \mathbb{K} is closed, current flows in the prima ry coil, A and the galvanometer momentarily deflects in one direction and no more deflection there after as the switch remains closed.
* When the rheostat, R is adjusted so as to decrease the resistance (hence increasing current), a deflection on one side of the galva nometer is obtained.
* When the rheostat, R is adjusted so as to increase the resistance (hence decreasing current), a deflection on the opposite side of the galvanometer is obtained.
* When the switch is opened (at a break), the galvanometer deflects in the opposite direction and no more deflection there after as the switch remains open.
coils are arranged as shown below.
(b) Simiar observations above could be made when the

i) Larger deflections are obtained when a bunch of soft iron is inserted into the coil compared to hard solid iron bar or air cored coil.
ii) The deflection obtained in the secondary coil (coil B) depends on the induced e.m.f in it, which depends on the;
- Number of turns in coils A and B
- Area of coils A and B.
- Proximity of the two coils (distance between the coils)

Similar observations above could be made when there is relative motion between a magnet and a coil as shown Below.

* When both the magnet and coil are stationary (or moved with the same velocity in the same direction), there is no deflection. This is because, there is no varying magnetic field created hence no e.m.f is induced in the coil, and so the galvanometer does not deflect.
* When the coil is fixed and the magnet moved into the
towards the magnet. The magnet experiences an coil or when the magnet is fixed and the coil moved in such a direction that the magnetic flux due to it opposing force. This is because the induced e.m.f flows
A varying magnetic field is created which induces an e.m.f opposes that due to the magnet.
* When the magnet is withdrawn from the field, the in the coil, hence the galva nometer deflects in one direction. threading the coil decreases. The induced e.m.f flows in

deflects in the direction opposite to the first one. enhances that due to the magnet. The galvanometer Observations from the a bove experiments:
(i) Whenever there is relative motion between a coil and a
indicates that current is induced in the coil.
magnet, the galvanometer shows a certain deflection. This relative motion between the coil and the magnet continues.
(ii) The deflection is temporary. It lasts so long as the motion.
(iii) The deflection increases with increase in relative
(iv) The direction of the deflection is reversed when either the pole of the magnet risedcolelbediedetion of motion of either the magnet or collis reversed.

Assignment; describe briefly an experiment to show mutual induction with the aid of a diagram.

Laws of electromagnetic Induction:

(i) Faraday's law.

* Whenever a conductor moves through a magnetic flux or whenever there is a change in magnetic flux linked with a circuit, an e.m.f is induced.
* The magnitude of induced e.m.f in a circuit is directly proportional to the rate of change of the flux linking it.

(ii) Lenz's law.

The direction of the induced current is such as to oppose the change causing it.
It followed Faraday's law when Lenz studied the direction of the induced current in a complete circuit.

Direction of induced e.m.f
The direction of induced e.m.f (or induced current) is qbtained bay thing Lenz's law being induced by the motion of a conductor in a magnetic field, it is more convenient to use the Cork's screw rule or Fleming's Right hand Rule (dynamo rule).

Fleming's right handrule

finger of the right hand are held mutually at right angles It states that: When the thumb, first finger and second
finger in the direction of the magnetic filed, then the second with the thumb pointing in the direction of motion, the first
finger points in the direction of the induced current"
finger - current.
In summary; thuMb - motion, First finger - field ,seCond produced or (RDC).
Note: we use the Right hand for Direction of Current
A wire is placed between the poles of a permanent magnet Direction of the induced current in a straight wire. down at right angles to the magnetic flux.
and connected to a galvanometer. The wire is moved up and
galvanometer deflects to the right meaning that induced
> It's observed that when the wire is moved down, the
> When the wire is moved up, the deflection is reversed current is flowing in the clockwise direction.
The above observation can be verified using Fleming's right indicating that the current is reversed. (anticlockwise)

Assignment: draw a coil in a magnetic field and show its rotation when current is moving in different direction.

Experiment to verify Lenz's law
(Illustration of Lenz's law)

-A battery is connected in series with a galvanometer and a mega ohm resistor. Switch K is closed and the direction of flow of current is noted from the deflection of the galvanometer.
-The battery is then replaced by a coil $A B$ of known sense of winding as shown below.

* When the North Pole of the magnet is moved towards the coil, the current induced in the coil flows in the direction such that the magnetic flux due to the coil opposes that due to the magnet (i.e it flows in a direction that makes end, A a north pole). The galvanometerdeflects in the clockwise direction. End A of the coil becomes the North Pole. (Like poles repel).
* When the magnet is moved away from the coil, the galvanometer deflects in the opposite direction. The induced current flows in a direction such that the magnetic tiux aue to the coll remiorces that due to the magnet. (i.e it flows in a direction that makes end, A a south pole).. The galvanometer deflects in the antclockwise direction. Thus end A of the coil becomes the South Pole.
* In both cases, the induced current flows in a direction so as to oppose the change in flux causing it. This is Lenz's law.

Lenz's law and conservation of energy

Lenz's law is an example of conservation of energy. In order not to violate the principle of conservation of energy, the effect of the induced e.m.f must oppose the motion of the
magnet, so that the work done by the external agent in moving the magnet is the one converted to electrical energy.

Other wise the induced magnetic field would ingrease the the
induced e.m.f helped rathet than opposed, the principle of conservation of energy wo lid be vade Books

Applications of Electromagnetic Induction.

1. Generators
2. Transformers
3.Induction coils

1) GENERATORS

A generator transforms mechanical energy into electrical energy.
(a) D.C generator

Structure:

The d.c generator is a device used for producing direct current energy from mechanicalenergy.

Part	Function
(i)Permanent magnet poles	Provide a strong radial magnetic field.
(ii)Armature (Rectangular coil)	It's the moving part in the radial field. It brings about electromagnetic induction in the generator.
(iii) Commutator (C 1 and C_{2}).	Two half rings from which current is tapped by brushes.
(iv) Carbon brushes	Blocks of carbon which convey current between the moving and the stationary parts of the generator.

Mode of operation

-When the coil rotates with uniform angular velocity in the magnetic field, in accordance to Fleming's Right Hand rule. The magnetic flux density linked with it changes and an emf is induced in the coil.
The induced emf is led away by means of the slip rings S_{1} and S_{2}.
-Applying Fleming's right hand rule, the induced current enters the coil via, $A B$ and leaves the coil via CD.
-When the coil passes over the vertical position, after half
the rotation, the slip ring changes contact. C_{1} goes into contact with B_{2} and C_{2} goes into contact with B_{1}.
-The forces on the sides of the coil change thus the current in the coil is reversed. The current flowing through the load thus continues to flow in the same direction.
-Hence the direction of the induced e.m.f doesn't change in the external circuit during one complete revolution of the a mateur edid Thaddtusoethagenerator is unidirectional.

Variation of induced e.m.f, E of a D.C generator with time Induced e.m.f, E

Note:
-The induced e.m.f and hence current are maximum when the plane of the coil is horizontal. This is because cutting between the coil sides and the magnetic field lines are greatest.
-The induced e.m.f and hence current are minimum (zero) when the plane of the coil is vertical. This is because there is no cutting between the coil sides and the magnetic field lines.

A simple A.C generator (Alternator)
 Structure

-The simple a.c generator consists of a rectangular coil, ABCD, mounted between, N, S - pole pieces of a strong magnet and freely to rotate with uniform angular velocity. -The ends of the coil are connected to copper slip rings S_{1} and S_{2}, which press against carbon brushes B_{1} and B_{2}.

Mode of operation

* When the coil rotates with uniform angular velocity in the magnetic field, in accordance to Fleming's Right Hand rule. The magnetic flux density linked with it changes and an emf is induced in the coil. The induced emf is led away by means of the slip rings S_{1} and S_{2}.
* When sides AP and CD interchange positions, the current in the terminals X and Y reverse the direction and the coil continues rotating in the clockwise direction.
* Therefore, the induced e.m.f generated flows following a sinusoidal wave.

Factors affecting the magnitude of e.m.f induced in a rotating coil.

- Number of turns on the coil.
- Magnetic flux density (field strength)
- Position of the coi EcoleBooks
- Frequency of rotationof the coil.

Variation of induced e.m.f, E of an A.C generator with time

Structural modifications to convert A.C generator to a D.C generator:
-Replace the slip rings with two halves of slip rings (commutators)

2) THE TRANSFORMERS

This is a device which transfers electrical energy from one circuit to a nother by Mutual electromagnetic induction.

Structure

-It consists of a laminated soft iron ring around which primary and secondary coils are wound.
-Ideally the primary coil has zero resistance and the secondary coil has high resistance.

Action:

* An alternating voltage, V_{p} is applied to the primary coil at some instant and an alternating current I_{p} flows in the primary coil.
* This sets up a varying magnetic field in the soft iron core, which links up the secondary coil.
* The magnetic flux density B, is changing hence an e.m.f is induced in the secondary coil.
The induced e.m.f is proportional to the number of turns in the secondary coil.

Types of Transformers:

There are two types of mains transformers;
(i) Step Up transformers
(ii) Step down transformers.

(i) Step-up transformer

It has more turns in the primary circuit than in the secondary.
(ii) Step-up transformer

It has more turns in the secondary circuit than in the primary.

This is usually installed in power stations and transmission stations. It changes the voltage to a higher value by using more turns in the secondary coil than in the primary to the ratio of the output voltage required
If $\mathrm{N}_{\mathrm{s}}>\mathrm{N}_{\mathrm{p}}, \mathrm{V}_{\mathrm{s}}>\mathrm{V}_{\mathrm{p}}, \mathrm{I}_{\mathrm{s}}<\mathrm{I}_{\mathrm{p}}$ and the transformer is called stepup.

For an ideal transformer, (A transformer which is 100% efficient), the power in the primary is equal to the power developed in the secondary i.e. $\mathbf{V}_{\mathbf{p}} \mathbf{I}_{\mathbf{p}}=\mathbf{V}_{\mathbf{s}} \mathbf{I}_{\mathbf{s}}$, where I_{p} and I_{s} are flowing in the primary and secondary coils respectively.

WoteTransformers operate only on a.c and not dc because dc

* bri pha etiecgyrdansfestmers are not 100% efficient because

Electric power transmission

causes some power loss in the transmission lines.

* Electric power is stepped up before transmission and steparmenswn at the consumers' end by using

Cause of Energy or power loss	How it is minimized
(i) Resistance in the windings: -Some of the energy is dissipated as heat due to the resistance of the coil (joule-ohmic energy loss), hence power loss through the	Use thick copper wires of low mechanism. resistance.
(ii) Eddy currents	

Cause of Energy or power loss
(i) Resistance in the windings:
-Some of the energy is dissipated (jouteoh ic hence power loss through the
mechanism.
$\hat{\theta}^{\theta}{ }^{\theta}$
(ii) Eddy currents

Eddy currents are currents induced in the soft iron core due to the changing magnetic flux linking the core..
They cause unnecessary heat in the合 mechanism and therefore reduce the amount of electrical power transferred to the secondary.

(iii)Hysteresis(Magnetic
 reversal):

constantly magnetized and
demagnetized.
Each tize
Each time the directron of magnetization of the frame is reversed, some energy is wasted in overcoming internal friction.
When a core which can not be easily magnetised and
demagnetised is used, power losses occur.

(iv) Magnetic flux leakage

Flux leakage occurs when all the magnetic flux due to the currents in the primary coil do not link up with the secondary coil. A small amount of flux associated with the primary coil fails to pass through the secondary coil.

Transformer Equation

Efficiency a transformer

Example. 1

 1. A transfo (No transformer) is perfect/ideal and therefore onncted to 3.0Ω resistor. If the primary is connected to 240 V a.c supply. If the transformer is 80% efficient, calculate the current flowing in the primary circuit.Solution:

$$
\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{~V}_{\mathrm{p}}}=\frac{\mathrm{N}_{\mathrm{s}}}{\mathrm{~N}_{\mathrm{P}}}
$$

$$
\text { Efficiency }={ }_{P_{\text {in }}}^{\frac{P_{0}}{\times} 100}
$$

$$
\frac{80}{100}=\frac{46}{\mathrm{P}_{\text {in }}}=
$$

$1200 V_{s}=240 \times 60$ $1200 \bar{F}_{C} \mathrm{C}$ HeAt 400 kS	$\begin{aligned} & 0.8 \mathrm{P}_{\text {in }}=46 \\ & \mathrm{P}_{\mathrm{in}}=57.5 \mathrm{~W} \\ & \mathrm{com} \end{aligned}$
$\mathrm{V}_{\mathrm{s}}=12 \mathrm{~V}$	$\begin{aligned} \mathrm{P}_{\mathrm{in}} & =\mathrm{I}_{\mathrm{P}} \mathrm{~V}_{\mathrm{P}} \\ 57.5 & =\mathrm{I}_{\mathrm{P}} \times 240 \end{aligned}$
$\mathrm{V}_{\mathrm{s}}=\mathrm{I}_{\text {s }} \mathrm{R}$	$\mathrm{I}_{\mathrm{P}}=4.174 \mathrm{~A}$
$\begin{aligned} 12 & =\mathrm{I}_{\mathrm{s}} \times 3 \\ \mathrm{I}_{\mathrm{s}} & =4 \mathrm{~A} \end{aligned}$	
$\begin{aligned} & P_{o}=I_{s} V_{s} \\ & P_{o}=4 \times 12 \\ & P_{0}=46 \mathrm{~W} \end{aligned}$	

Exercise:

1. UNEB 1998:

A transformer is designed to work on a $240 \mathrm{~V}, 60 \mathrm{~W}$ supply.
It has 3000turns in the primary and 200 turns in the secondary and it is 80% efficient. Calculate the current in the secondary and primary coils.

$\mathrm{V}_{\mathrm{p}} \frac{\mathrm{~V}_{\mathrm{s}}}{=} \frac{\mathrm{N}_{\mathrm{s}}}{}$	$\text { Efficiency }{\stackrel{P_{0}}{=}}_{P_{\text {in }}} \times 100$
$\frac{\mathrm{V}_{\mathrm{s}}}{\text { that }}=\frac{200}{}$	$\left.\theta_{0}=0\right\rangle$
2403000	80
$3000 V_{s}=240 \times 200$	$60=\overline{100}^{\text {P }}$ in
$\mathrm{V}_{\mathrm{s}}=16 \mathrm{~V}$	$\mathrm{P}_{\text {in }}=75 \mathrm{~W}$
$\mathrm{B}_{0} \equiv \mathrm{If}_{4} \mathrm{~V}_{5} \times 16$	$\mathrm{P}_{\text {in }}=\mathrm{I}_{\mathrm{P}} \mathrm{V}_{\mathrm{P}}$
$\mathrm{I}_{\mathrm{S}}=0.27 \mathrm{~A}$	

2. UNEB 1999 37, 2000 No. 6 (c), 2002 No. 5 (c), 2004 No. 5 (d),

Example

1. A transformer connected to 240 V A.C mains is used to light a $12 \mathrm{~V}, 26 \mathrm{~W}$ lamp.
(i) What current does the lamp need to light correctly?
(ii) If the efficiency of the transformer is 75%, what current is taken from the mains?
(iii) Calculate the magnitude of the series resistor that would be necessary if the lamp were connected directly to the mains.
2. A transmission line between a power station and a factory has resistance of 0.05Ω in each of the two wires. If 100 A is delivered at 100 V .
(i) What useful power is delivered into the load.
(ii) How much power is wasted is wasted during transmission.
(iii) What total power must be supplied by the generator?
3. A transformer with a ratio of $\mathbf{5 : 2}$ and efficiency of 90% has a primary voltage of 240 V . If a current of 2.5 A flows through the primary coil, determine the current through the secondary coil.
4. A step up transformeris designed to operate from a 20 V supply and deliters greggla B500KsIf it is 90% efficient,
a) Determine the primary and secondary currents when the output terminals are connected at $250 \mathrm{~V}, 100 \mathrm{~W}$ lamp.
b) Find the ratio of the primary turns to the secondary turns..

Assignments;

1. a) Describe with the aid of a diagram the operation of a transformer.
b) A 240 V step down mains transformer is designed to light ten $12 \mathrm{~V}, 20 \mathrm{~W}$ ray box lamps and draws a current of 1 A in the primary coil. Calculate the:
i) Power supplied to the primary coil.
ii) Power delivered in the secondary coil
iii) Efficiency of the transformer.
2. A transformer connected to 240 V A.C mains is used to light a 12 V 26 W lamp.
a) What current does the lamp need to light correctly?
b) If the efficiency of the transformer is 75%, what current is taken from the mains?
c) Calculate the magnitude of the series resistor would be necessary if the lamp were connected directly to the mains.
3. A transmission line between a power station and a factory has resistance of
wires.
B) Hhat usefulpower is deliveryd into thellogd
c) Wansmissian power must be supplied by the generator?

Calculating the value of alternating current.
The maximum value of an alternating current is known as its
peak value which is reached momentarily, twice for every revolution of the coil.
We need to obtain the mean square value and then root-
mean square value (r.m.s). value of the alternating voltage (or current) in order to a void zero a verage.
The peak value is related to the root-mean square value by an equation;

1. Peak value is the maximum $\sqrt{ }$ alue of alternating current or voltage.
Peak value is just momentarily reached twice every complete revolution. It is therefore greater than the effective value of the supply.
2. Root -mean square value is the effective value of alternating current or voltage.
It is equivalent to the direct current (or direct voltage) which would dissipate the same amount of power when passing through a resistor as the alternating current of peak value.

Example. 1

In Uganda, the A.C mains voltage is 240 V . calculate the peak value efthempains.s.com
peak value $=240 \mathrm{~V}$
r.m. $s=\frac{\text { peak value }}{\sqrt{2}}$
$240=\frac{\text { peak value }}{\sqrt{ } 2}$

$$
\begin{aligned}
\mathrm{V}_{0} & =240 \times \sqrt{2} \\
& =339.4
\end{aligned}
$$

Advantages of a.c over d.c

- A.C is easy to generate.
- A.C is is easy to transmit to around the country with minimal power loss.
- Alternating current can easily be stepped up and down for home consumption.

Disadvantages of a.c over d.c

- A.C cannot be used to charge a battery.
- A.C cannot be used in electroplating.
- A.C cannot be used in electrolysis.

Rectification is the converting of A.C to D.C which is already discussed under electronics in modern physics.

Similarities between a.c and d.c.
Both can be cause:
-Magnetisation
-Heating
-Lighting
Differences between a.c and d.c.

D.c	A.c
-Can be used in electrochemical processes. E.g electro plating	-Ac is useless in this aspect
-Can be used in electric trains for locomotion.	-The train would simply move forward and backwards at the frequency of the a.c supply.
-Can't be stepped up or down	-Can easily be stepped up and down by using transformers.
-cannot	-Can be transported for long distances with minimum power loss
-D.c can't be conducted by capacitors	-A.c can be conducted by capacitors
-D.c is already rectified	-A.c can easily be converted to d.c using rectifiers

RECTIFICATION

Rectification is the p iécodes Benodred to d.c.
During rectification, a diode which shows low resistance to the flow of current in one direction and a very high resistance to current flow in the opposite direction is used.

Types of Rectification:

(a) Half-wave rectification

This is where a.c is converted to d. c such that current in the second half cycle is blocked by the diode.

-When current flows clockwise, the resistance of the diode is low.
-In the $2^{\text {nd }}$ half cycle, when current would be flowing in the opposite direction (anti- clockwise), the resistance of the diode is very high and so current is switched off.
-The energy in the switched off half cycle appears as heat energy and warms up the diode.

Alternatively, we can use a vacuum- tube.

When the anode becomes positive, electrons are attracted from the cathode hence current flows in the circuit.
And when the anode becomes negative, electrons from the cathode are repelled and therefore no flow of current.

The result is that the current in the circuit is uni-directional.

Or:

A moving coil galvanometer can be used to measure the average value of the current, $\langle\mathrm{I}\rangle$.

(b) Full-wave rectification:

Although culfenthalsberksectifind and made to flow in one direction, during half wave rectification, half of the energy is lost.
To over come this problem, we use full- wave rectification in which four diodes are arranged in a circuit bridge below.

- During the $1^{\text {st }}$ half cycle, point A is positive relative B . Thus current flows through diodes 1 and 2 . Diode 2 takes back the current to the source.
- During the $2^{\text {nd }}$ half cycle, point B is made positive relative B. Thus current flows through diodes 3 and 4 .

Diode 4 takes back the current to the source.

- Thus there is always a current flowing in the same direction through the load, R.
Current (A)

 From the definition of mean value;

EXERCOLSF to produce an e.m.f. what causes the e.m.f?

A. The attraction between the coil and the magnet
B. The magnetic field outside the coil
C. The magnet placed close to the coil.
D. The variation of magnetic lines linking the coil.
14. (2000 Qn.22): In figure 6 below when switch K is closed, the two soft iron cores will;

5
A. Repel each other all the time
B. Attract each other all the time.
C. Attract each other for just a brief moment
D. Have no force of attraction or repulsion between them.
15. (2002 Qn.5): The figure below shows a coil connected to a center zero galvanometer G.

The poles produced at the ends X and. Y of the coil when the north pole of the magnet approaches it, is;
A. X-north pole Y-south pole
C. X-north pole Y-north pole
D. X-south pole X-south pole
16. (2002 Qn.40): The induced current in a generator
A. Is a maximum when the coil is vertical
B. Is a minimum when the coil is horizontal
C. Changes direction when the coil is horizontal
D. Increases when the speed of rotation increases
17. (2004 Qn.9): Which of the following is the correct order of energy changes or conversions in a generator
A. Heat energy in cylinder \rightarrow
kinetic energy in piston \rightarrow electrical energy
B. chemical energy from fuel \rightarrow
heat energy from cylinders \rightarrow
kinetic energy in pistons \rightarrow rotational kinetic energy in dynamo \rightarrow electrical energy
C. chemical energy from fuel \rightarrow rotational kinetic energy in a dynamo \rightarrow rotational kinetic energy in piston \rightarrow electrical energy.
D. electrical energy \rightarrow rotational kinetic energy in dynamo \rightarrow rotational kinetic energy in pistons \rightarrow sound energy.
18. (2004 Qn.42):
a) State two differences between a.c and d.c generators.
b)

Briefly describe what happens when a magnet is moved into a coil as shown in figure above.
19. (2001 Qn.47):
a) State one advantage of a.c over d.c in a main supply.

The graph in figure above sows the variation of an a.c with time. Find;
(i) The peak value.
(ii) The frequency
20. (1999 Qn.37): A transformer is used to step down an alternating voltage from 240 V to 12 V . Calculate the number of turns on the secondary coil if the primary coil has 1200 turns.
A. . 3
B. 5
C. 60
D. 100
21. (1995 Qn.31) A transformer has twice as many turns A. the primary is 4 B . Find the output voltage. D. 16 V
22. (1997 Qn.10): A transformer whose efficiency is 80% has an output of $12 \times V$. Calculate the innut current if
the input votage is 240 . (Ans: $0.0625 A$).
23. (2003 Qn.6): A transformer is connected to 240 V a.c mains is used to light a $12 \mathrm{~V}, 36 \mathrm{~W}$. What current
A. 20.0 A
B. 6.7 A
C. 3.0 A
D.
0.33 A
24. Which of the following is true about a transformer
B. The efficiency is 100%
B. The magnitude of e.m.f induced in the secondary does not depend on the e.m.f induced in the primary coil.
C. There are no power losses as the core is well
D. Paminated. effect on the secondary coil.
25. Which one of the following would be suitable to use in

B. Soft iron
D. Aluminium
26. The main function of a step-up transformer
27. A transformer because a d.c
A. Has an extremely high heating effect
B. Reduces the efficiency of the transformer
C. Cannot produce a changing magnetic field
D. Cannot provide voltages required for power transmission.
28. An a.c input voltage of 250 V is connected to a transformer with 100 turns. Calculate the number of turns in the secondary coil, if an output of 15 V is required.
29. Which one of the following is the mpst economical means of transmitting electricity over a long distance?
A. At a high voltage and a low current
B. At a high voltage and a high current
C. At a low voltage and a low current
D. At a low voltage and a low current.
30. The figure below shows a transmission line from power station to a consumer several kilometers a way.

Which one of the following is the correct type of transformers at P and Q ?

		Q
A	Step-up $_{\text {Step-town }}$	Step-up
¢	Step-4p	$\begin{array}{\|l} \hline \text { Step-down } \\ \text { Step-up } \end{array}$

31. When transmitting energy, electrical power over long distances. the voltage is stepped up in order to
B. Reduce power loss

D: Increase current for transmission
32. Power loss due to eddy currents in the core of a transfqrmercan be minimized by
B. Using thick copper wires in the windings
D. Winding the secondary coil on top of the primary coil
33. A voltage of 440 V is applied to a primary coil of a transformer
secondary is
qik , what is the the voltage across the segondary coil?
C. 80
34.
B. 5×10^{4}
D. 8.0×10^{4}
a) Give the advantages of alternating current over
b) Describe, with the aid of a diagram, the
construction and action of a transformer
EBOStruction and action
c) A transformer is designed to operate at 240 V mains supply and deliver 9 V . The current drawn from the mameisllebtiflese effigiency of the transformer is 90\%, calculate;
(i) The maximum output current
(ii) The power loss
d) State the possible causes of the power loss in © (ii) above
35.
(i) Explain briefly what is meant by mutual induction
(ii) Mention the causes of energy loss by a transformer and state how the loss can be minimized
(iii) A transformer has 200 turns on the primary coil. Calculate the number of turns on the secondary coil if 240 V is to be stepped to 415 V
36.
a) What is a transformer?
b) The diagram in fig below shows a model of a transformer in which the primary coil \mathbf{P} is connected to d.c and the secondary coil, \mathbf{S} is connected to a galva nometer.

(i) What is observed just as the switch K is closed?
(ii) What would be the effect of closing switch K very fast in (i) above?
(iii) What is observed when the switch K is closed?
(iv) What is observed just as switch K is opened?
(v) What would be observed if the d.c source is replaced by an a.c source of a low frequency.
c) A transformer of efficiency 80% is connected to 240 Va .c supply to operate a heater of resistance 240Ω. If the current flowing in the primary circuit
(i) Casculate the potential difference (p.d) across the heater.
(ii) If the transformer is cooled by oil of specific heat capacity $2100 \mathrm{Jkg}^{-1} \mathrm{~K}^{-1}$ and the temperature of the oil rises by $20^{\circ} \mathrm{C}$ in 3 minutes, find the mass of the oil in the transformer
37.
a) Describe briefly the structure and action of a transformer.
b) (i) State any three causes of energy losses in a transformer.
(ii) How are these losses reduced in a practicaltransformer?
c) Explain why it is an advantage to transmit electrical power at high voltage.
d) Electrical power is generated at 11 kV . Transformers are used to raise the voltage to 440 kV for transmission over large distances using cables. The output of the transformer is 19.8 MV and they are 90% efficient. Find the;
(i) Input current to the transformer.
(ii) Output current to the cables
38. The circuit below shows diodes and bulbs connected to a d.c supply.

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

a) Name and state the use of each parts labeled;
(i) W
(ii) Z
b) Sketch the wave form that is obtained from terminals XX.

DON'TS IN AN EXAMINATION

* Don't cross out work that may be partly correct

Avoid this 廿ugleboboks.eofinished replacing it with something better.

* Don't write out the question. This wastes time.

The marks are for your solution!

* What are the examiners looking for?

The most common compliant of the examiner is "candidate failing to answer the question" This complaint is expressed in a number of ways, e.g.

- Answer too short
- Answer too long
- Irrelevant material included
- Relevant material left out
- Answer suffers from lack of substance, absence of diagram(s) graphs / Calculations which are clearly asked for, entire parts of questions missing
- Failure to give correct responses to questionbeginning with the direct words (or key words) e.g.define,state, explain, describe, etc.

DIRECTION WORDS USED BY EXAMINERS IN

 NSTRUCTIONS Qgetetriesponise.physics examinations may use any of the
 Interpreting this, word wrongly can be yery expensiye in answer should be, a student can use:
terms of marks or time lost. To determine how long an
Marks allocated to the question

1. Define (the term (s)......)
absolutely precise
This only requires a formal statement, definitions must be
Thekteannot be a nearly correct definition.

Anewton is the force which gives a mass of 1 kg an Define a newton?
acceZeraStatef $1 \mathrm{~ms}^{-2}$
You can write your answer without having to show how it This requires a concise answer with no supporting argument. a precise form.
was obtained. Physical laws and principals must be stated in

Problem:

Boyle's law states thatthe volume of a fixed mass of a gas is Stuarsebyle ronartional to its pressure if temperature is

3. What is meant by?

constant.

relevant comment and the terms concerned.
This normally requires a definition, together with some interpreted in the light of indicated mark value

What is meant by dispersiongtáigh?eBooks Solution
Dispersion of light is the splitting of white light into its components colours by a glass prism.
This is because glass (prism) has different refractive indices for the different colours of white light.

4. Explain

This requires a candidate to make a given term or piece of information clear. Some laws and principal may be applied. Sometime a diagram or a graph may be useful.
Problem:
Explain how heat is transferred in metals.. Solution

Heat is transferred in metals by conduction.
When a metal is heated at one place, the electrons there
gain more kinetic energy and therefore move faster towards the cooler part. They collide with other electrons and atoms

This $\mathbf{5}^{\text {req Ditescribe }}$ ndidate to state in words (with the aid f
 ofrtolaepfariourlacaspethine amswer should include reference to

Problem
apparatus and treatment of result are required.
Solution:See question 3(c),2002 P_{2}
Describe an experiment to verify Hook's law using a spring.
details if the question asks to "describe briefly" or to Note: The candidate must be careful to cut back on the
"the key feature of the experiment / topics is being tested
"describe concisely". Here the candidate's ability to isolate
With the aid of a diagram, describe briefly how a pure Problem
Solution:See question 6(b), 2004/2
spectrum is produced
This requires a number of points with no collaboration. If 6. List
exceeded.
fluebhewnber of points is specified, this should not be
Solution:
List three properties of alpha-particles

- They are deflected towards the negative plate in an
- They carry a positive charge
- They are deflected in a magnetic field. electric field.
It should be noted that in this case only the first three
considered.
properties given whether correct or wrong will be
The following steps are suggested in questions involving
7 Calculations.
$\checkmark \quad$ Summaries the information given in the question. Use calculations
not standard) and convert quantities too S 1 units.
\checkmark A sketch diagram may sometimes be helpful.
\checkmark Spot the law or principle and equations which relate to the Esidyadibookfich.cogessary, make reasonable assumptions or approximations and show clearly where it is done.
\checkmark Write down all your working [Remember that marks are given for the correct working even if the final answer is wrong!
\checkmark Evaluate your answer to the lowest form. Do not give answer like $\frac{0}{5}$ unless you are running out of time
$\checkmark \quad$ Indicate units on your final answer.
\checkmark Check that your final answer is sensible with the context of the question.

Problem

A sound wave has a velocity of $330 \mathrm{~ms}^{-1}$ and a wavelength of 1.5m. Calculate itsfrequency

Solution:

* (Summaries the given information using standard symbols and with correct units)

Given:

$V=330 \mathrm{~ms},{ }^{1} x=1.5 \mathrm{~m}, F=$?

* (Write down the relevant equation)

Using the wave equation:
$V=f K$

* (Show your working)
$330=f \times 1.5$
1.5 - 330
$1.5=1.5$
$f=220 H z$
* (Final answer with units)

Hence the frequency of the wave is 220 Hz .

USEFUL INFORMATION IN PHYSICS

(1) MECHANICS

(1) MECHANICS	
Mass	Mass is the quantity of matter which a body contains.
Volume	Volume is the amount of space occupied by an object
Density	Density is mass per unit volume of a substance
	$\text { Density }=\frac{\mathrm{Mas} \mathrm{~S}}{\text { Volume }}$
Relative density	Relative density is the ratio of the density of a substance to the density of an equal volume of water.
	$\begin{aligned} & \text { RelativeDensity } \\ & =\frac{\text { Dens it } \mathrm{y} \text { of a s ubsta nc e }}{\text { Density of equal vol. water }} \\ & =\frac{\text { Mass of substance }}{\text { Mass of equal Volume of water }} \\ & =\frac{\text { Weight of substance }}{\text { Weight of equal Volume of water }} \end{aligned}$
WNLOAD	E RESOURCES LIKE THIS on ECOL

MOMENTS

Moment	Moment of a force is the product of the force and the perpendicular distance of its line of action from the point. $\binom{\text { Moment }}{\text { of a force }}=\text { force X }\binom{\text { perp. }}{\begin{gathered} \text { distance } \\ \text { from } \\ \text { pivot } \end{gathered}}$ Principle Moments: When a body is in equilibrium the sum of the clockwise moment about ay point equal the sum of the anti clock wise moment. For parallel forces in equilibrium * Sum of upward force = sum of downward forces * Sum of anticlockwise moments = Sum of clockwise moments
Couple	A Couple: Is a pair of equal but opposite parallel forces. - It causes rotation of the body - It cannot be replaced by a single fore. It can only be balanced by an equal but opposite couple. A torque: Is the moment of a couple.
Centre of gravity	Centre of gravity of a body is the point of application of the resultant force due to the earth's attraction on it.

Mechanic al AdvantagE e	Mechanical advantage is the ratio of the load to effort. $\text { cpleboooks.com }{ }^{\text {mechaticat Advantage }} \text { (M. A) }=\frac{\text { Load }}{\text { Effort }}$
Velocity ratio	Velocity ratio is the ratio of distance moved by effort to distance moved by the load in the same time. $\begin{aligned} & \text { Velocity Ratio(V. R) }=\frac{\text { Effortdistance }}{\text { Loaddistance }} \\ & \text { V. R of aninclined Plan } \\ & \text { lengthoftheplane } \\ & ={ }_{\text {heightoftheplane }}=\frac{-}{h} \end{aligned}$ $\begin{aligned} & \text { V. } R \text { of ascrew } \\ & \text { circumferanceofcirclemadebyeffort } \\ & =\frac{2 \pi r}{P} \quad \text { Pitchofthescrew } \\ & =\frac{1}{P} \end{aligned}$ V. R of awheel and axle $=\frac{\text { circumferanceofwheel }}{\text { Circumferenceofaxle }}$ $=\frac{2 \pi R}{2 \pi r}=\frac{R}{r}$
Efficiency	Efficiency is the ratio of useful work done by a machine to the total work put into in the machine. $\begin{aligned} & \text { Efficiency }=\frac{\text { workoutput }}{\text { workinput }} \times 100 \% \\ & \text { orEfficiency }=\frac{\text { M.A }}{\text { V.R }} \times 100 \% \end{aligned}$
	UNEB sample Questions:
Mac 1999 1994 1987	Lines 1988 Qn. 34 1992 Qn. 6 Qn. 2 1991 Qn. 26 2001 Qn.42 Qn.8 1998 Qn.6 2007 Qn. Qn.36 2006 Qn. 4
PRESSURE	
Pressure	Pressure is the force acting normally per unit area. $\text { Pressure } \left.=\frac{\text { Force }}{\text { Area }} \quad \text { i.e }\right\rangle$ Pressureinliquid height of Density $=(\text { liquid }) \times(\text { of liquid }) \times$ column column Acceleration due to gravity

Heat capacity	Heat temp Ed Head $=c \Delta$ $=\left(\theta_{2}\right.$	Heat capacity is the heat required to raise the temperature of any mass of a body by 1 K . deaferfgy.gyfh out (received) $\begin{aligned} & =c \Delta \theta \\ & =\left(\theta_{2}-\theta_{1}\right) \end{aligned}$	
Specific heat capacity	Specific Heat capacity is the heat required to rise the temperature of 1 Kg mass of a substance by 1 K . Heat energy given out (received) $\begin{aligned} & =m c \Delta \theta \\ & =m c\left(\theta_{2}-\theta_{1}\right) \end{aligned}$		
Latent Heat	Latent heatis the quantity of heat required to change the state of a substance at constant temperature.		
		Specific latent heatis the quantity of heat required to change the state of a 1 Kg mass of a substance without change of temperature. Heat energy given out or gained $=\boldsymbol{m} \boldsymbol{l}$ (During change of state). Specific Latent heat of fusion is the quantity of heat required to change a 1 Kg mass of a substance from solid state to liquid state without change of temperature. Specific latent heat of vaporization is the quantity of heat required to change a 1 Kg mass of a substance from liquid sate to vapor state without change of temperature.	
UNEB sample Questions:			
Measurement of heat			
	1992 Qn4	2003 Qn39	1987 Qn14
	2003 Qn13	2007 Qn28	1988 Qn19
	2000 Qn4	Section B	1999 Qn15
	1993 Qn3	1991 Qn3	2001 Qn34
	1997 Qn15	2007 Qn2	2007 Qn8
	2001 Qn34	2008 Qn2	Section B
	1997 Qn4	Latent heat	1988 Qn5
	2000 Qn3	1995 Qn11	1998 Qn2
	2000 Qn38	2004 Qn3	1999 Qn3
	2002 Qn26	1989 Qn33	2003 Qn3
	2003 Qn33	2006 Qn8	1992 Qn8

Evaporatio n	Is the gradual change of state from liquid to gas that occurs at the liquid's surface.
Saturated Vapour	A saturated vapour is one which is in a dynamic equilibrium with its own liquid
Saturated Vapour Pressure	Saturated vapor pressure is the pressure exerted by a vapour is in a dynamic equilibrium with its own liquid
Boiling Point	Boiling point of a substance is the temperature at which its saturated vapour pressure becomes equal to the external atmosphenc pressure.

Dew point	Dew point jothe temperature at which the water vapour prosenclen choksir is just sufficient to \$aturate it.		
UNEB sample Questions:			
Boiling, Evaporation and vapours			
$\begin{aligned} & \hline 1987 \text { Qn15 } \\ & \text { 1989 Qn35 } \\ & 1990 \text { Qn10 } \end{aligned}$		1991 Qn31	19
		1997 Qn16	1997 Qn9
		2001 Qn6	1995 Qn4
		2008 Qn4	2008 Qn41
3 GEOMETRIC OPTICS:-LIGHT			
REFLECTION			
Reflection	Reflection is the change in the direction of a light ray or a beam of light after striking a surface.		
	A ray is the direction of the path taken by light.		
	A beam is a stream of light energy		
$\begin{aligned} & \text { Focal } \\ & \text { length } \end{aligned}$	Focal length is the distance between the principal focus and the pole (for a mirror) or optical centre (for a lens).		
Principal focus	Is a point on the principal axis at which all rays close and parallel to the principal axis converge after reflection at the mirror or refraction at the lens.		
Centre of curvature	Is the centre of the sphere of which the mirror or lens forms part.		
Radius of curvature	Is the radius of the sphere of which the mirror or lens forms part.		
Magnificati on	Is the ratio of the height of the image to the height of the object. It is also defined as the ratio of the image distance to the object distance.		
Real image	Is the image formed by actual intersection of reflected rays. It's the image which can be formed on a screen.		
Virtual image	Is the image formed by apparent intersection of reflected rays. It's the image which cannot be formed on a screen.		
UNEB sample Questions:			
Rectilinear		1997 Qn. 4	Reflection ${ }^{\text {at }}$
propa	gation of	1998 Qn. 7	curved surfa ces
light		Reflection	2001 Qn. 8
		at plane	2003 Qn. 20
2000	Qn. 34	surfaces	2005 Qn. 29
2002	Qn. 27	1996 Qn. 25	2007 Qn. 2
2006		1999 Qn. 28	Section B
2006	Qn. 27	1997 Qn. 24	1995 Qn. 5
Sectio		2005 Qn. 40	1997 Qn. 2 PP ${ }^{2}$
1992		2007 Qn. 16	2002 Qn. 2 PP 2

Mutual induction:	process where an due to a changing BOGRnnectefth th sformer equation nary voltage ary voltage umber of turns in umber of turns in	. f is induced in a rent in a near by st one. ondary mary
Rectificatio Is n curr A r d.c. OR pas 	he process of ch nt to direct current. ctifier is a device It is a device whic in one direction only	ging alternating h converts a.c to llows current to
UNEB sample Questions:		
Magnetism	1994 Qn38	Transformers
Magnets and	1995 Qn40	1999 Qn37
materials	1997 Qn31	1995 Qn31
1991 Qn23	1998 Qn31	1997 Qn 10
1994 Qn 1	2001 Qn23	2003 Qn25
1993 Qn37	2003 Qn22	1989 Qn6
1997 Qn29	2005 Qn2	1989 Qn37
1998 Qn32	Section B	1992 Qn29
2000 Qn36	1992 Qn 10	1993 Qn30
2002 Qn20	1997 Qn9	1994 Qn 19
2004 Qn8	2000 Qn 10	1994 Qn35
2006 Qn 14	2007 Qn7	1995 Qn32
2008 Qn 18	1987 Qn8	2002 Qn32
2004 Qn41	1993 Qn8	2005 Qn25
1995 Qn7	1997 Qn7	2007 Qn31
2002 Qn6	2001 Qn6	Section B
2004 Qn4	Electromagnetic	1987 Qn8
2006 Qn3	Induction	1993 Qn8
2008 Qn3	2000 Qn6	1997 Qn7
Magnetic	2000 Qn22	2001 Qn6
effect of	2002 Qn5	Rectification
electric	2002 Qn40	1987 Qn32
current	2004 Qn9	1993 Qn17
1994 Qn2	Section B	1994 Qn30
1999 Qn 10	2004 Qn42	2000 Qn39
1990 Qn 19	2001 Qn47	Section B
1988 Q24		1992 Qn8
$\begin{aligned} & 1990 \text { Qn4 } \\ & 1991 \text { Qn13 } \end{aligned}$		1995 Qn9

© ELECTRICITY

1 st electricity:	Like charges repel, unlike charge attract.
A coulomb	Is the charge passing any point in a circuit when a current of 1 ampere flows for 1 second.

Cell	Is a devise-which produces electricity from a chemcaret ctionleBooks
Primary cells	Cells that produce electricity from an irreversible chemicalreaction. Or are cells which cannot be restored to their original condition once their components are used up.
Secondary cells	Cells that produce electricity from a reversible chemical reaction. They are cells which can be recharged after they run down by passing a current through them.
Polarization	Is a defect in a simple cell which results from formation of a layer of hydrogen bubbles on the copper plate.
Local action	Is a defect in a simple cell due to impurities in zinc which results in the zinc being used up even when current is not supplied.
Resistance	Is the opposition of a conductor to the flow of current. Effective resistance for resistors in series: $\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\ldots \ldots$ Effective resistance for resistors in parallel: $\frac{1}{\mathrm{R}}=\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}}+\frac{1}{\mathrm{R}_{3}}+\ldots \ldots .$
	An Ohm is the resistance of a conductor in which a current of $\mathbf{1 A}$ flows when a p.d of $\mathbf{1 V}$ is applied across it.
	Ohm's Law: The current passing through a metallic conductor is directly proportional to the potential difference between its ends at constant temperature. Voltage (P. d) $=$ Current \times Resistance
Potential different(p. d)	P.d between two points is the work down when 1C of electricity moves from one point to the other.
Electromoti ve force(e.m.f)	E.m.f of a cell is its terminal p.d on an open circuit. OR: Is the terminal p.d of the cell when it is not supplying current.
A volt	Is the p.d between two points such that $\mathbf{1 J}$ of electrical energy is changed into other forms of energy when 1C of charge passes from one point to the other. OKS.COM

[^0]: * It slows down motion.

[^1]: $\hat{\beta}_{\theta}-\hat{\nu}_{0}$
 $\theta=($ ($) \times 100{ }^{100}$ NLOAD MORE RESOURCES LIKE THIS ON E

