Name......Btream.....Bouse....

DEPARTMENT OF MATHEMATICS

S.4 MATHEMATICS-2020

PAPER 1 TEST 2

2 HOURS : 30 MINUTES

- Answer all the ten questions in section A and any five from section B.
- Any additional question(s) answered will not be marked.

SECTION A: (40 MARKS)

1. One solution of the equation $2^{x^2 - 7x + k} = 0$ is $x = -\frac{1}{2}$. Find the value of *k*. (04 marks)

2. During a storm, a tree, *AB*, is blown over and rests on another tree *CB*. $\angle BAC = 59^{\circ}, \angle BCD = 80^{\circ}, AC = 24$ and *ACD* is horizontal.

Calculate the length *AB*.

(04 marks)

- 3. The height of a small box is 2 cm and its volume is 10 cm³. If the height of a similar box is 6 cm, what is its volume? (*04 marks*)
- 4. A bag contains blue, green and red pens of the same type in the ratio 8:2:5 respectively. A pen is picked at random without replacement and its colour noted. Determine the probability that the first pen picked is
 - (a) blue.

7.

- (b) either green or red. (04 marks)
- 5. Make t the subject of the formula $p = \sqrt[3]{\frac{t+q^2}{2t}}$. (04 marks)
- 6. A point A(0,3) is reflected in the line y + x = 0. Find the coordinate of its image A^0 . (04 marks)

$$M \text{ if } \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} M = 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$$
 (04 marks)

8. The total marks scored in a test by 6 pupils was 420. If the mean mark for the first 5 pupils was 68 find the marks scored by the sixth pupil. (*04 marks*)

9. Simplify $\frac{t^2 - 5t}{t^2 - 25}$. (04 marks)

10. A triangle *PQR* has a height of *x* cm and a base of (x + 3) cm. if its area is 5 cm², calculate the height of its base. (*04 marks*)

SECTION B: (60 MARKS)

11. A triangle with vertices A(2,4), B(6,4) and C(1,6), undergoes two successive transformations P_1 followed by P_2 . The transformation P_1 is represented by

the $\begin{pmatrix} 0 & -1 & ! \\ 1 & 0 \\ matrix and \mathbf{P}_2$ by the $\begin{pmatrix} 0.5 & 0 \\ 0 & 0.5 \end{pmatrix}$ matrix.

- (a) Find the coordinates of the vertices of triangle:
 - (i) $A^{0}B^{0}C^{0}$ the image of *ABC* under **P**₁.
 - (ii) $A^{00}B^{00}C^{00}$ the image of $A^0B^0C^0$ under \mathbf{P}_2 .
- (b) Show on the same axes the three triangles ABC, $A^0B^0C^0$ and $A^{00}B^{00}C^{00}$.
- (c) Use your graph in (b), to describe fully the transformations represented by
- (i) **P**₁,
- (ii) **P**₂. (12 marks)
- 12. (a) Determine *x* and *y*.

(06 marks)

(b) With the vertices *A*, *B* and *C* of a triangle *ABC* as centres, arcs are drawn with radii 5 cm each as shown below. If AB = 14 cm, BC = 48 cm and CA = 50 cm, then find the area of the shaded region. (Use $\pi = 3.14$).

value of *p* and *q* such that $D^2 = pD + qI$. (12 marks)

14. The length of certain plants in cm, were recorded as follows

Length(cm)	11 – 20	21 - 30	31 - 40	41 – 50	51 - 60
Frequency(f)					
Cummulative frequency	4	12	28	48	58

- (a) Complete the table.
- (b) Calculate the mean and madian.
- (c) Plot a histogram and use it to estimate the modal length. (*12 marks*)
- 15. (a) James' present age is $\frac{1}{3}$ of his father's age. In ten years' time, he will be $\frac{1}{2}$ of his father's age then. How old is his father?
 - (b) Make *x* the subject of the formula $t^2 = \frac{ax}{a+x}$ and hence calculate *x* if t = 2 and a = 6. (12 marks)

```
EcoleBooks
```

- 16. (a) List the integer values of *x* which satisfy the inequality 2x - 1 < 20 < 3x - 5
 - (b) Write down five inequalities defined by the shaded region below.

(12 marks)

- 17. (a) Solve the simultaneous equations: 4y - x = 6 $5x - 2y^2 = 12.$
 - (b) The equal angles of an isosceles triangle are $(2x + y)^0$ and $(3y x)^0$. The third angle is $(2y - x)^0$. Find x and y. (12 marks)