Name	Stream	House
------	--------	-------

DEPARTMENT OF MATHEMATICS

S.4 MATHEMATICS-2020

PAPER 1 TEST 2

2 HOURS: 30 MINUTES

- Answer all the ten questions in section A and any five from section B.
- Any additional question(s) answered will not be marked.

SECTION A: (40 MARKS)

- 1. One solution of the equation $2^{x^2-7x+k}=0$ is $x=-\frac{1}{2}$. Find the value of k. (04 marks)
- 2. During a storm, a tree, AB, is blown over and rests on another tree CB. $\angle BAC = 59^{\circ}$, $\angle BCD = 80^{\circ}$, AC = 24 and ACD is horizontal.

Calculate the length AB.

(04 marks)

3. The height of a small box is 2 cm and its volume is 10 cm³. If the height of a similar box is 6 cm, what is its volume? (*04 marks*)

- 4. A bag contains blue, green and red pens of the same type in the ratio 8:2:5 respectively. A pen is picked at random without replacement and its colour noted. Determine the probability that the first pen picked is
 - (a) blue.
 - (b) either green or red. (04 marks)
- 5. Make t the subject of the formula $p = \sqrt[3]{\frac{t+q^2}{2t}}$. (04 marks)
- 6. A point A(0,3) is reflected in the line y + x = 0. Find the coordinate of its image A^0 . (04 marks)

7. Find $M \text{ if } \begin{pmatrix} 1 & 1 \\ -2 & 1 \end{pmatrix} M = 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.$ (04 marks)

8. The total marks scored in a test by 6 pupils was 420. If the mean mark for the first 5 pupils was 68 find the marks scored by the sixth pupil. (*04 marks*)

9. Simplify $\frac{t^2 - 5t}{t^2 - 25}$. (04 marks)

10. A triangle PQR has a height of x cm and a base of (x + 3) cm. if its area is 5 cm², calculate the height of its base. (04 marks)

SECTION B: (60 MARKS)

11. A triangle with vertices A(2,4), B(6,4) and C(1,6), undergoes two successive transformations \mathbf{P}_1 followed by \mathbf{P}_2 . The transformation \mathbf{P}_1 is represented by

the $\begin{pmatrix} 0 & -1 & ! & & \begin{pmatrix} 0.5 & 0 \\ 1 & 0 & \text{matrix} \text{and} \ \mathbf{P}_2 \text{ by the} \end{pmatrix} \text{matrix}.$

- EcoleBooks
- (a) Find the coordinates of the vertices of triangle:
 - (i) $A^0B^0C^0$ the image of ABC under \mathbf{P}_1 .
 - (ii) $A^{00}B^{00}C^{00}$ the image of $A^{0}B^{0}C^{0}$ under \mathbf{P}_{2} .
- (b) Show on the same axes the three triangles ABC, $A^0B^0C^0$ and $A^{00}B^{00}C^{00}$.
- (c) Use your graph in (b), to describe fully the transformations represented by
- (i) P_1 ,
- (ii) \mathbf{P}_2 . (12 marks)
- 12. (a) Determine x and y.

(06 marks)

(b) With the vertices A, B and C of a triangle ABC as centres, arcs are drawn with radii 5 cm each as shown below. If AB = 14 cm, BC = 48 cm and CA = 50 cm, then find the area of the shaded region. (Use $\pi = 3.14$).

13. (a)
$$A = \begin{pmatrix} 1 & -1 & ! \\ 2 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 1 & ! \\ 4 & -1 \end{pmatrix}$, show that $(A+B)^2 = A^2 + B^2$. If and (06 marks)

(b) Given
$$D = \begin{pmatrix} 1 & 2 & & ! \\ 0 & 1 & \text{that and } I \text{ is a 2} \times 2 \text{ identity matrix, obtain the} \end{pmatrix}$$

value of p and q such that $D^2 = pD + qI$. (12 marks)

14. The length of certain plants in cm, were recorded as follows

Length(cm)	11 - 20	21 - 30	31 – 40	41 - 50	51 - 60
Frequency(f)					
Cummulative frequency	4	12	28	48	58

- (a) Complete the table.
- (b) Calculate the mean and madian.
- (c) Plot a histogram and use it to estimate the modal length. (12 marks)
- 15. (a) James' present age is $\frac{1}{3}$ of his father's age. In ten years' time, he will be $\frac{1}{2}$ of his father's age then. How old is his father?
 - (b) Make x the subject of the formula $t^2 = \frac{ax}{a+x}$ and hence calculate x if t=2 and a=6. (12 marks)

16. (a) List the integer values of x which satisfy the inequality

$$2x - 1 < 20 < 3x - 5$$

(b) Write down five inequalities defined by the shaded region below.

(12 marks)

17. (a) Solve the simultaneous equations:

$$4y - x = 6$$

$$5x - 2y^2 = 12$$
.

(b) The equal angles of an isosceles triangle are $(2x + y)^0$ and $(3y - x)^0$. The third angle is $(2y - x)^0$. Find x and y. (12 marks)