Ecolebooks.com

456/2 MATHEMATICS PAPER 2 MAY 2019 2 ½ HOURS

KCB DEPARTMENT OF MATHEMATICS

UGANDA CERTIFICATE OF EDUCATION MOCK 1 EXAMINATIONS, 2019 MATHEMATICS PAPER 2

TIME: 2 ½ HOURS

INSTRUCTIONS

- Answer **ALL** questions in Section A any **FIVE** in Section B.
- Any additional question(s) answered will not be marked.
- All necessary calculations must be done in the answer booklet provided. Therefore no papers should be given for rough work.
- Graph paper is provided.
- Silent non programmable scientific calculators and Mathematical tables with list of formulae may be used.

Ecolebooks

SECTION A

 $\left(\frac{16}{81}\right)^{\frac{-1}{4}}$ Simplify: 1. (04mks) 2. Find the equation of the line passing through the point P(5, 9) and parallel to the line joining the point Q(15, -2) to point R(-3, 4). (04mks) 3. Musa bought a car at a discount of 5%. The market price of the car was 24,000,000/=. How much did he buy the car. (04mks) Given that R(2,3) and S(5,8) are two points in a plane, determine the; 4. vector **RS** (a) (b) magnitude of **RS** (04mks) Solve the equation: $\log_{10}(7y + 2) - \log_{10}(y - 1) = 0$ 5. (04mks) 6. In a class of 30 students, 15 liked Mathematics, 18 liked English and 4 liked neither Mathematics nor English. Find the number of students who like both Mathematics and English. (04mks) The function $f(x) = ax^2 + 4x$. If f(-1) = 3. Find the value of *a*. 7. (04mks) 8. The capacity of a cylindrical tin is 2 litres. Its radius is 8*cm*, find its height. (04mks) 9. Express 2.6363 as a fraction in its simplest form. (04mks) 10. The scale on a map is 1:2000. A building is represented on a map by an area of 3cm. Find the actual areas in cm^2 occupied by building. (04mks)

SECTION B

- 11. If h(x) = bx + 3 and h(4) = 23
 - (a) find the value of;
 - (i) b

12.

13.

Ecolebooks

		(ii)	h(0)			
		(iii)	h(-5)	(07mks)		
	(h)	determine				
	(0)	(i)	$h^{-1}(\mathbf{x})$			
		(ii)	$h^{-1}(13)$	(05mks)		
A quantity x is partly constant and partly varies as the square of y. When $y = 2$ when $y = 3$, $P = 65$.						
	(a)	form	an equation connecting x and y .	(08mks)		
	(b)	deter	mine y when x is 100.	(04mks)		
	In a cl play H the th	ass of 4 ockey ree gau	0 students, 18 play Hokey (H), 15 play Tennis (T) and 22 play Footl and Tennis, 9 play Tennis and Football, 8 play Hockey and Football nes.	oall (F). 7 . 4 play all		
	(a)	Repre	esent the given information on a venn diagram	(06mks)		
	(b)	Find t	he number of students who do not play any of the three games.	(02mks)		

- (c) Find the probability that a student picked at random plays only:
 - (i) one game
 - (ii) two games (04mks)
- A cyclist sets off from town A at 4:00 am at a speed of 20km/hr to go to town B 100km away. A motorist sets off from town A at 7:30 am at a speed of 100km/hr to go town B. Find the:

(a)	distance from A when the motorist over takes the cyclist.	(06mks)
(b)	the time when the motorist over takes the cyclist.	(03mks)
(c)	time the cyclist reached B.	(03mks)

15. In the figure below; PQRS is a right pyramid with a rectangular base PQ = 24cm, QR = 18cm. The slanting edges are 25cm each.

Calculate the:

(a)	Height of the pyramid.	(06mks)
(b)	Angle between slanting face QRT and the base.	(03mks)

(b)Angle between slanting face QRT and the base.(03mks)(c)The volume of the pyramid.(03mks)

16. Given that the point A(-8, 6) and vector $AB = \begin{pmatrix} 12 \\ 4 \end{pmatrix}$, M is the midpoint of AB.

- (a) Find the:
 - (i) column vector *AM*
 - (ii) coordinates of *M*
 - (iii) magnitude of **OM** (08mks)
- (b) Draw the vector *AB* on a graph paper from your graph, state the coordinates of B. (04mks)

<u>END</u>