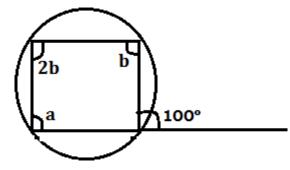
456/1 MATHEMATICS PAPER I JULY 2017 2 ¹⁄₂ HOURS

ST. JOSEPH OF NAZARETH HIGH SCHOOL UGANDA CERTIFICATE OF EDUCATION INTERNAL MOCKS EXAMINATION 2017 MATHEMATICS PAPER I 2 ½ HOURS

INSTRUCTIONS TO CANDIDATES:

- Answer all questions in Section A and any five questions from Section B.
- Any additional question(s) answered will not be marked.
- All necessary calculators must be done in the answer booklet provided. Therefore, no paper should be given for rough work.
- Graph paper is provided.
- Silent, non programmable scientific calculators and mathematical tables with a list of formulae may be used.


Ecolebooks

© 2017 Math department Jonahs

SECTION A (40 MARKS)

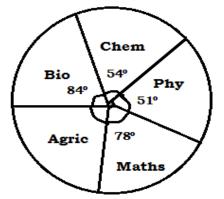
Attempt all questions in this.

- 1. Make x the subject of the formula $A = (px^2 q)^{\frac{1}{3}}$. (4 marks)
- 2. Find the integral values of x which satisfies the inequalities : $2x 1 < 7 + x \le 3x + 1$
- 3. Find the value of *a* and *b* in

(4 marks)

(4 marks)

- 4. A point P(-3,2) is reflected through the mirror line y x = 0. Find the coordinates of the point image P^1 . (4 marks)
- 5. Two doctors are chosen randomly one at ago without replacement from a medical staff consisting of 2 women and 3 men to attend an HIV/AIDS workshop. Calculate the probability that the two doctors chosen are:
 - (i) of the same sex (2 marks)
 - (ii) of opposite sex (2 marks)
- 6. Solve for x in (x + 3)(x 2) = 14 (4 marks)
- 7. Determine the value of y for which the matrix below has no inverse.


$\begin{pmatrix} y \\ y^2 \end{pmatrix}$	$\binom{2}{1}$	(4 marks)
.,		

Ecolebooks

8. Given that $m * n = m^2 - 2n$	
Find (i) 3 * 2	(2 marks)
(ii)(3 * 2) * 5	(2 marks)
9. If $\tan \theta = \frac{3}{4}$ for $0^{\circ} \le \theta \le 90^{\circ}$, find the value of; $\sin \theta + \cos \theta$	(4 marks)

10. The total marks scored by a student in five subjects was 240.

The pie - chart below represents the marks scored in each subjects.

What was the score in Agriculture?

(4 marks)

SECTION B (60 MARKS) Attempt any five questions from this section.

11. The table below shows the masses to the nearest kg of 80 animals on a certain farm.

Mass (Kg)	1 – 10	11 – 20	21 - 30	31 – 40	41 – 50
No. of animals	5	13	32	27	3

- (a) State the modal class
- (b) Calculate the mean mass of the animals.
- (c) Draw a histogram to represent the above data and use it to find the modal mass (12 marks)

Ecolebooks

12. (a) Given that $A = \begin{pmatrix} 1 & 0 \\ -2 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 3 & 0 \\ 2 & 1 \end{pmatrix}$ and $C = 2AB - A^2$. Determine matrix C. (4 marks) (b) Find the inverse of $\begin{pmatrix} 2 & 5 \\ 3 & -2 \end{pmatrix}$. Hence or otherwise. Solve the equations; 2x + 5y = 11 and 3x - 2y = 7. (4 marks) (c) Opio bought 5 Biology books and 6 Chemistry books for a total of shs. 2440. Magambo bought 7 Biology books and 9 Chemistry books for a total of shs. 3560. Form a matrix equation to represent the above information. (i) Use matrix method to find the price of one Biology book. (ii) (4 marks) 13. Four towns P, Q, R and S are such that Q is 84km directly to the north of *P* and *R* is on a bearing of 295° from *P* at a distance of 60km. S is on a bearing of 340° from *R* and at a distance of 30km. (a) Using a scale of 1cm to represent 10km make an accurate scale drawing to show the relative position of the towns. (7 marks) (b) Find; The distance and bearing of Q from R(i) (ii) The distance and bearing of *S* from *Q*. The bearing of *P* from *S* (iii) (5 marks) 14. (a) Use the graphical method to solve the simultaneous equations, $y = 8 - 2x - x^2$ and y = 4 - 2x for $-5 \le x \le 3$. (12 marks)(b) Find also the roots of the equation $8 - 2x - x^2 = 0$ from the graph 15. (a) Factorise: $p^2 - q^2$. Hence, find the exact value of $2557^2 - 2547^2$. (4 marks) (b) If $x = 8.52 \times 10^{-1}$, $y = 2.4 \times 10^{-2}$ and $z = 4.0 \times 10^{-3}$, without using tables or calculator evaluate $\frac{x-y}{z}$, give your answer in standard form. (4 marks) (c) Kamoga spent $\frac{1}{3}$ of his net salary on school fees. He also spent $\frac{1}{4}$ of the remainder on rent. He then spent $\frac{1}{8}$ of what was left on transport. If finally he had shs. 4200. What was his net salary? (4 marks)

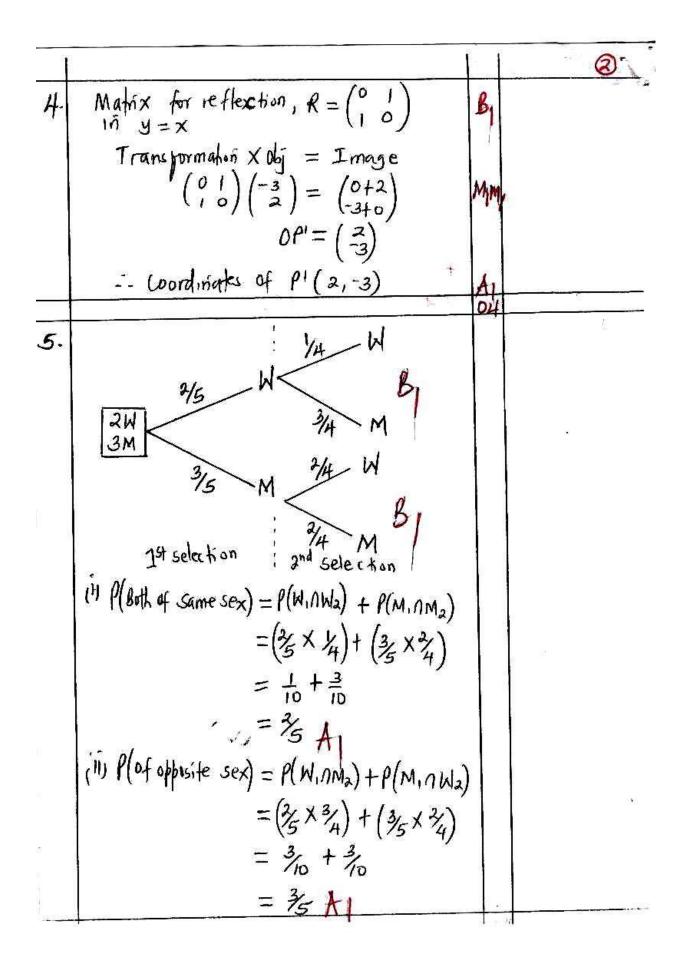
- 16. The coordinates of the vertices of rectangle *ABCD* are A(1,1), B(6,1), C(6,4) and D(1,4).
 - (a) (i) Find the coordinates of the vertices of its image, $A^{1}B^{1}C^{1}D^{1}$ under the transformation defined by the matrix $\begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$.
 - (ii) Draw the object and its image on the graph paper provided.
 - (iii) On the same graph, draw the image, $A^{11}B^{11}C^{11}D^{11}$ of $A^1B^1C^1D^1$ under the transformation given by $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$

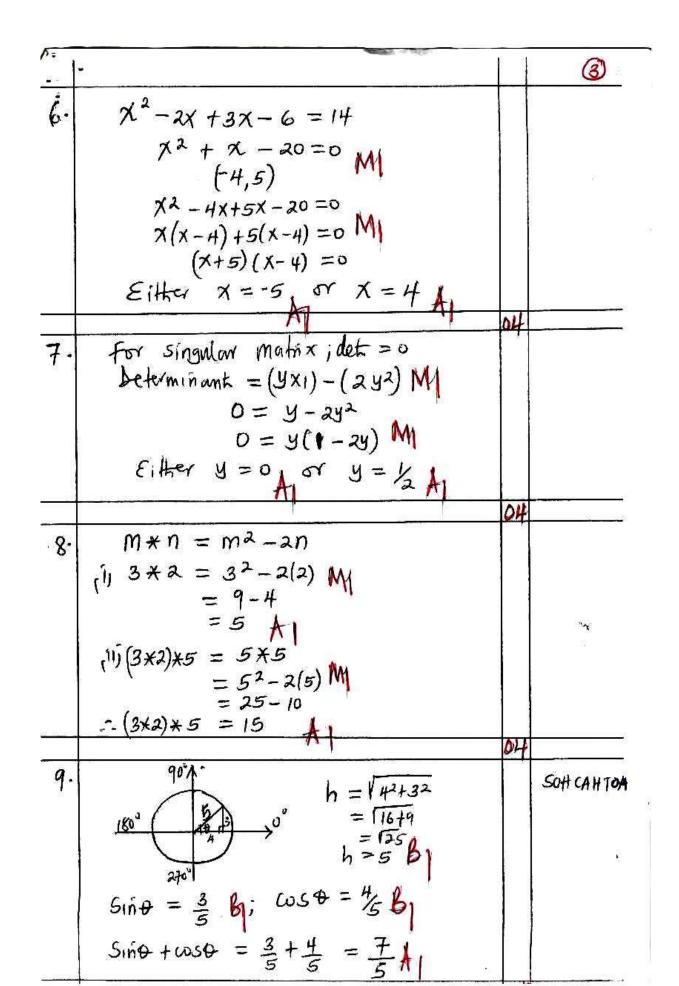
(b) Find a single matrix which would map $A^{11}B^{11}C^{11}D^{11}$ onto *ABCD*.

```
(12 marks)
```

- 17. Nyakana makes two types of shoes *A* and *B*. He takes 3 *hours* to make one shoe of type *A* and 4 *hours* to make one shoe of type *B*. He works for a maximum of 120 *hours* to make *x* pairs of type *A* and *y* pairs of type *B*. It costs him *sh*.400 to make a pair of type *A* and *sh*.150 to make a pair of type *B*. His total cost does not exceed *shs*.9000. He must make at least 8 *pairs* of type *A*, and more than 12 *pairs* of type *B*.
 - (a) Write down four inequalities representing the given information.
 - (b) On a graph paper, draw the inequalities and shade the unwanted regions.
 - (c) Nyakana makes a profit of *shs*. 40 on each pair of type *A* and *shs*. 70 on each pair of type *B* shoes.

Use your graph to determine the maximum possible profit he makes. (12 marks)

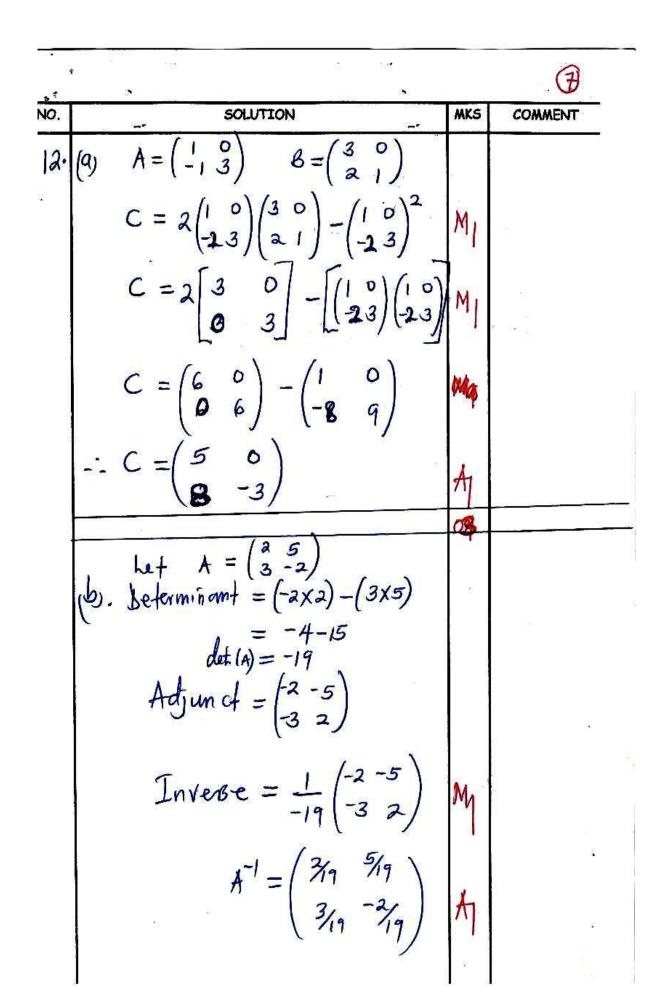

~END~


F	ST. JOSEPH OF NAZARETH HI INTERNAL MOCK EXAMS S.H MATHS P.1 MARI	2013	7	0
No.	SOLUTION	MKS	COMMENT	
1.	$A^{3} = \left[(p x^{2} - q)^{\frac{1}{3}} \right]^{3}$	MI		
	$A^{3} = px^{2} - q$ $bx^{2} = A^{3} + q$	BI		
	$bx^{2} = A^{3} + 9$ $x = (A^{3} + 9)^{1/2} \text{or } x = \sqrt{A^{3} + 9}$ $b^{1/2} \text{or } x = \sqrt{A^{3} + 9}$	A		
2.	$2x-1 < 7+x \leq 3x+1$	04		
	$\begin{array}{rcl} 2x - 1 &< 7 + \infty & \text{and} & 7 + x \leq 3x + 1 \\ x &< 8 & 6 \leq 2x \\ x &< 8 & 3 \leq x \end{array}$	MI		
	: 34× 28			
	X = {3, 4, 5, 6, 7 } A	04		-
3.	$b = \frac{1}{2b} \frac{1}{2$	M		
	a+b = 180 (bpb 25 of lydr grad $a = 180^{5} - 50^{3}$ $a = 130^{5} + 1$	1	<u>12</u>	

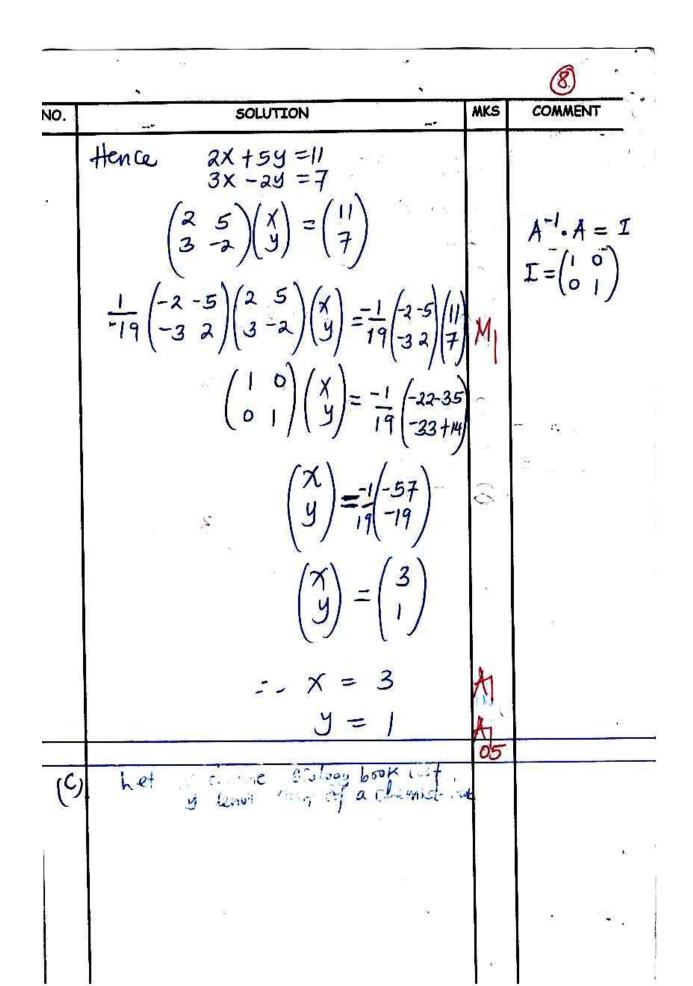
fcolstooks

teoletooks

fcolstooks



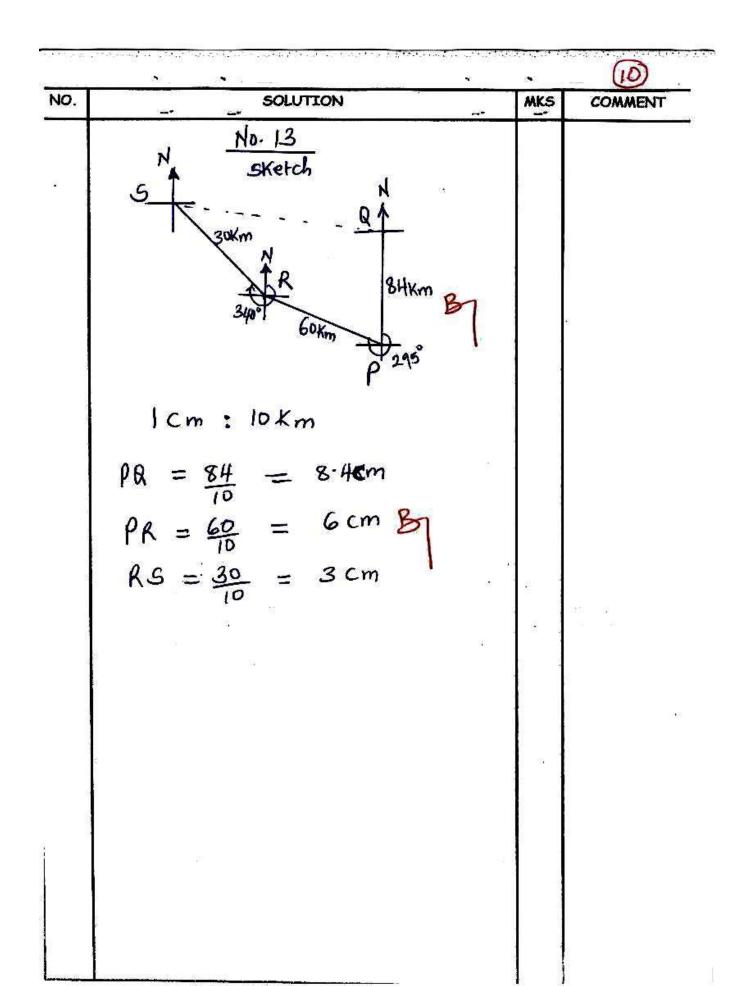
fcolstooks


Ecolebooks

(4) Agriculture Sector = $360^{\circ} - [84^{\circ} + 54^{\circ} + 51^{\circ} + 78^{\circ}]$ = $360^{\circ} - 267^{\circ}$ = 93° B₁ 10-Score in Agric = $\frac{93^{\circ}}{360^{\circ}} \times 240$ = 62 marks DL **,**

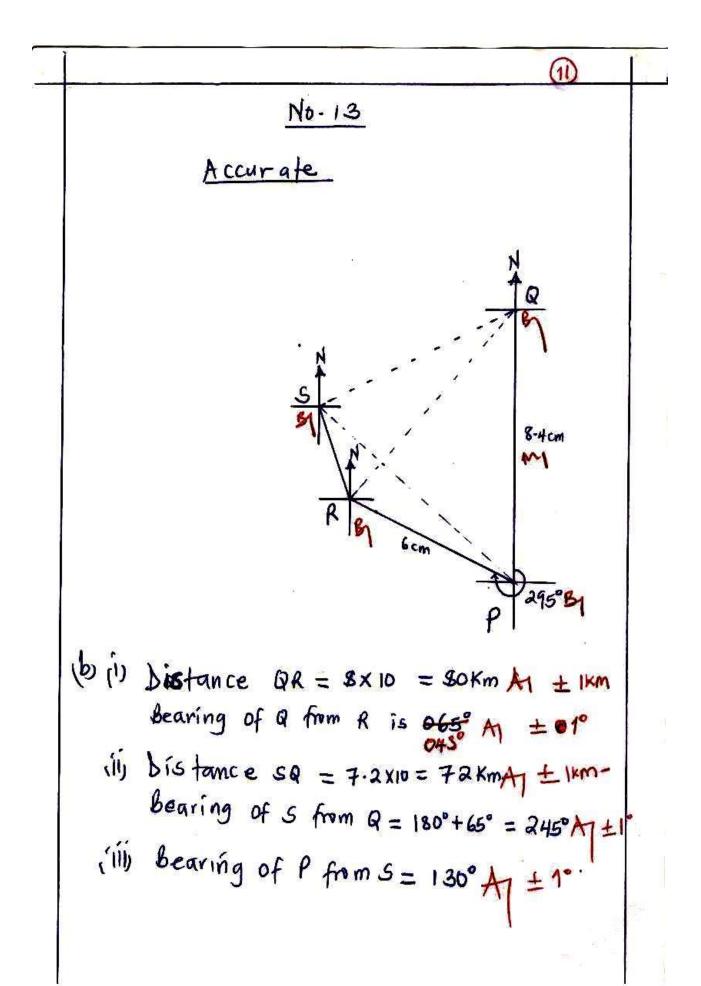
fcolstooks

fcolstooks



fcolstooks

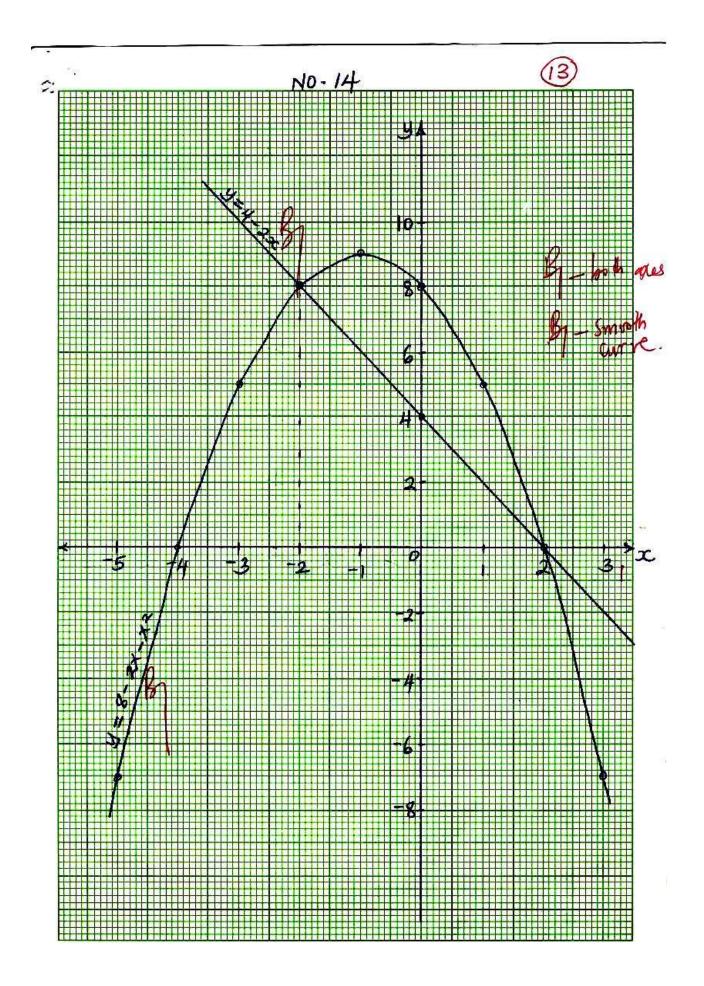
No.
NO.
SOLUTION MRS COMMENT
(C) Let B denote cost of a biology LOOK
C clearate cost of a chamistry bux
(i) 5B + 6C = 2440


$$7B + 9C = 3560$$

 $\binom{5}{7} \binom{6}{7}\binom{8}{7} = \binom{2440}{3560}$
 $\binom{10}{-7} \binom{5}{-7}\binom{5}{7}\binom{8}{-7} = \binom{9-6}{-7}\binom{2440}{3560}$
 $\binom{45-42}{-7} \frac{54-54}{-7}\binom{8}{-7} = \binom{9-6}{-7}\binom{2440}{3560}$
 $\binom{45-42}{-7} \frac{54-54}{-7}\binom{8}{-7} = \binom{9-6}{-7}\binom{2440}{3560}$
 $\binom{3}{-3}\binom{8}{-3} = \binom{6}{-7}\binom{2}{-7}\binom{2440}{-7}$
 $3B = \binom{600}{-720}$
 $3B = 600$
 $\therefore B = 200$
 $3C = 720$
 $4B C = 240$
 -7 The price of one Biology A1
 $brok$ is sh-200/= 04

fcolstooks

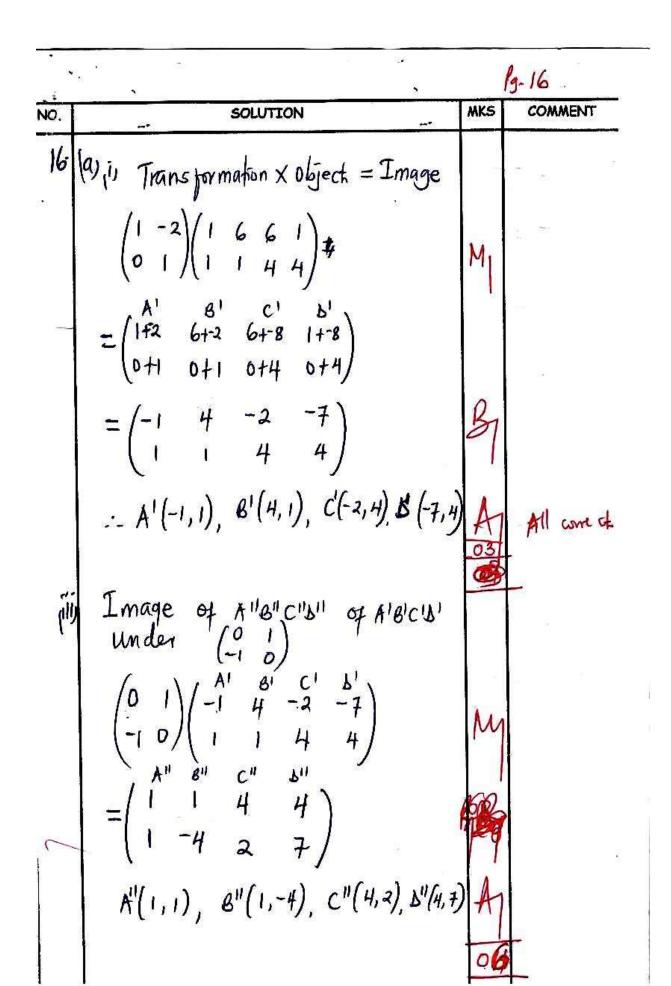
fcolstooks


Ecoletooka

fcolstooks

S	OLUTION			MKS	COMMEN
y = 8 - 2	(- X ²	-54 X	≤3.		
x -5 -4 -3	-2 -1 0	12	3		
8 8 8 8	8 8 8	8 8	8		
-2X 10 8 6	420	-2-4	-65	1	
-x2 -25 -16 -9	-4 -1 0	-1 -4	-9 B		
y-705	898	50	-7 B		
line y:	= 4 - 2 x				
×	0 2	- n		÷)	-8
y	4 0	b	1.		
(0	,н) (2,	0)	а в		
· · · ·	i a	25			ñ
from the gr	aph, The	. Soln	fian		
the simult	menus e	quat	no nīs		
y = 8 - 2x $y = 4 - 2x$					
/		Λ.			
$\int \mathcal{A} = -2$	9 = 8	A			
かんころ	y =0	A			
b from the 8-2x-			s of		
8-2x-	x2 = 0	ane			

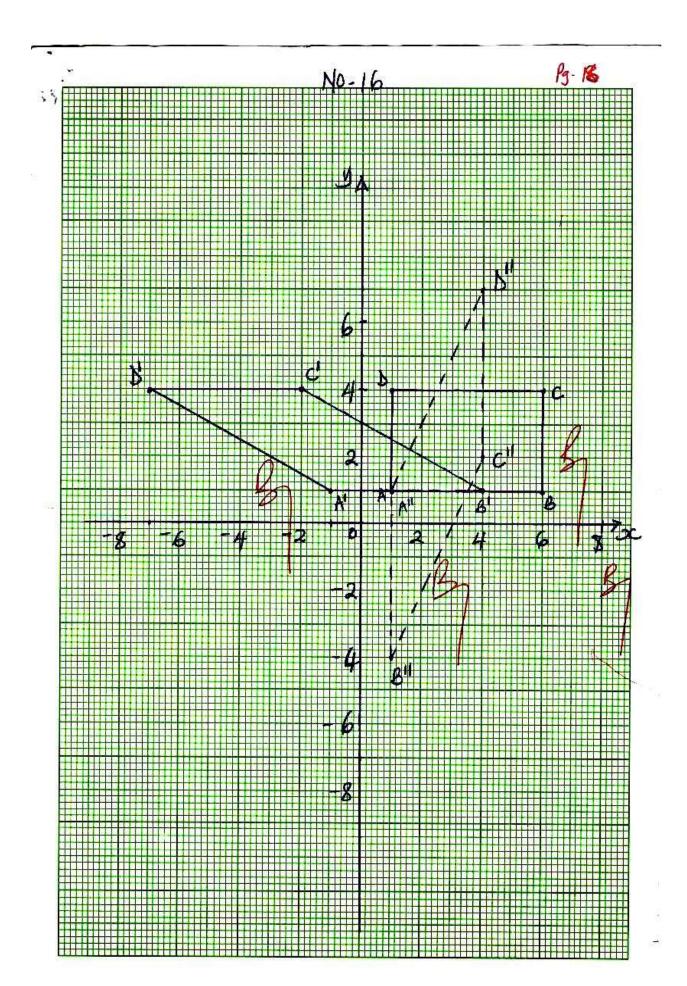
fcolstooks


fcolstooks

N0.15		B. (H)
NO. SOLUTION	MKS	COMMENT
$\frac{15}{(a)} \cdot \frac{p^2 - q^2}{2} = (p + q)(p - q)$	в	- 1464
$2557^2 - 2547^2 = (2557 + 2547)(2557 - 2547)$	m	
=(5104)(10)	m	
= 51040	η	
$\frac{(b)}{Z} \frac{X - y}{Z} = \frac{8 \cdot 52 \times 10^{1} - 2 \cdot 4 \times 10^{2}}{4 \cdot 0 \times 10^{-3}}$	my	Sulat-
$= \frac{85 \cdot 2 \times 10^2 - 2 \cdot 4 \times 10^2}{0.4 \times 10^{-2}}$	mi	
$= \frac{(85 \cdot 2 - 2 \cdot 4) \times 10^{2}}{0 \cdot 4 \times 10^{-2}}$	a is	
$= \frac{\$2.\$x10}{0.4x10} \frac{\$2\$}{4}$	M	
= 207	-	
$\frac{x-y}{z} = 2.07 \times 10^2$	A	а Э
Z in standard form		
		2 2
	1	1

fcolstooks

NO. MKS SOLUTION COMMEN 15-(9 het Kamoqa's net sarlary = y School fees = 1y $Tromsport = \frac{1}{8}(y - \frac{1}{8}y) = \frac{5}{48}y$ B Balance left = y-[y + y + 54 m $= y - \frac{29y}{48}$ = $\frac{19y}{48}$ = 4200 y = 201600 m y = 10610.53 η - Kannoga's Nets along is sh10610-53 ~ sh. 10,611.


fcolstooks

fcolstooks

2	5 C-2 S		Pg-17
•	SOLUTION	MKS	COMMENT
6- (b) let T=T= T	59 		a.
	$\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} 1 & -2 \\ 0 & 1 \end{pmatrix}$	M	
=(0+0 0+1 -1t0 2+0)	1	
T =($\begin{pmatrix} 0 & 1 \\ -1 & 2 \end{pmatrix}$	G	
	= 0 - (-1) = 1	7	
120	$= + \begin{pmatrix} 2 - 1 \\ 1 & 0 \end{pmatrix}$	M	
Т	$^{-1} = \begin{pmatrix} 2 & -1 \\ 1 & 0 \end{pmatrix}$	87.94 A	
- (2-	-1) is a sing	le AI	
Mati	o) is a sing x which would	l map	а
AllBII	c"b" onto AB	CA. 03	, 2 [°]
3			

fcolstooks

fcolstooks

Ecolebooks

19.0 No.17 Z (9) X is the number of shoes of type A and y 6 the number 9 shoes of Mpe B. 3x+4y 6120 3 HODX + 150 y ≤ 9000 8×+39 ≤ 180 B X> 8 y > 12 3x+44 = 120 x 0 40 Y 30 0 8x+ 3y = 180 × 10 122.5 y 60 0 by Maximum profit when x = 8 and y = 24

fcolstooks