Candidate's Name						
	Cei	Centre No Personal No)	
Signature:						

UGANDA CERTIFICATE OF EDUCATION BOT 1 EXAMINATIONS

535/1 PHYSICS

PAPER 1

TIME: 2 HOURS 15 MINUTES

Instructions to candidates

- ❖ Write your name, centre/Index number and signature in the space above
- Section A contains 40 objective type questions. You are required to write the correct answer A,B,C or D in the boxes at the right hand side
- ❖ Section **B** contains **10** structured questions. Answers are to be written in the spaces provided on the question paper.
- Acceleration due to gravity = $10ms^{-2}$
- Specific heat capacity of water = $4200Jkg^{-1}K^{-1}$

For Examiners use only

Qn 41	Qn 42	Qn 43	Qn 44	Qn45	Qn46	Qn47	Qn48	Qn49	Qn50	MCQ	Total

SECTION A (40 MARKS)

Answer all questions in this section

	ves 50 complete oscil	lations in 2 min	utes, calculate the perio	d of the
A 0.02	B .2.4	C. 2.5	D. 0.42	
The following types of	of waves travel at the		xcept	
A. radio waves				
B. radar wavesC. water wavesD. infrared waves				
A. the copper plate	rons flow from			
C. dilute sulphuric ac				
Stone	•	→ 8N		
Fig 1 shows the force		Emass 2 5kg ical	culate the acceleration	
_	_	mass 2.5kg. ca	reduce the deceleration	
A. 40 ms ⁻²		C.	5.6 ms ⁻²	
B. 2.5 ms ⁻²				
	swing in seconds. A 0.02 The following types of A. radio waves B. radar waves C. water waves D. infrared waves In a simple cell electric A. the copper plate B. the zinc plate C. dilute sulphuric act D. potassium dichror Stone Fig 1 shows the force produced on the stone A. 40 ms ⁻²	swing in seconds. A 0.02 B .2.4 The following types of waves travel at the A. radio waves B. radar waves C. water waves D. infrared waves In a simple cell electrons flow from A. the copper plate B. the zinc plate C. dilute sulphuric acid D. potassium dichromate Stone Fig 1 Fig 1 shows the forces acting on a stone of produced on the stone. A. 40 ms ⁻²	swing in seconds. A 0.02 B .2.4 C. 2.5 The following types of waves travel at the speed of light e. A. radio waves B. radar waves C. water waves D. infrared waves In a simple cell electrons flow from A. the copper plate B. the zinc plate C. dilute sulphuric acid D. potassium dichromate Stone **Stone** **A. 40 ms ⁻² **C. 2.5 **C. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **C. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **C. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **C. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. A. 2.5 **The following types of waves travel at the speed of light e. 2.5 **The following types of waves travel at the speed of light e. 2.5 **The following types of waves travel at the speed of light e. 2.5 **The following types of waves travel at the speed of light e. 2.5 **The following types of waves travel at the speed of light e. 2.5 **The following typ	A 0.02 B .2.4 C. 2.5 D. 0.42 The following types of waves travel at the speed of light except A. radio waves B. radar waves C. water waves D. infrared waves In a simple cell electrons flow from A. the copper plate B. the zinc plate C. dilute sulphuric acid D. potassium dichromate Stone Fig 1 Fig 1 shows the forces acting on a stone of mass 2.5kg. calculate the acceleration produced on the stone. A. 40 ms ⁻² C. 5.6 ms ⁻²

5. When a body is thrown vertically upwards

(i) its initial velocity is greater than zero

- (ii) its velocity at maximum height is zero
- (iii) its acceleration upwards is positive
- (iv) it moves with uniform velocity
- A. (i) and (ii)
- B. (i) and (iii)
- C. (ii) and (iii)
- D. (iii) and (iv)
- 6. Which of the following statements is correct about soft ferromagnetic materials
 - (i) they don't lose their magnetism easily
 - (ii) they are easily and strongly magnetized
 - (iii) they are used to make permanent magnets
 - A. (i) and (ii) only

B. (ii) and (iii) only

C. (ii) only

- D. (iii) only
- 7. When a substance is boiling, its saturated vapour pressure is
 - A. maximum
- C. above the atmospheric pressure
- B. minimum
- D. equal to the atmospheric pressure
- 8. When an uncharged conductor is brought near the cap of a positively charged electroscope, the gold leaf
 - A. gains a positive charge
 - B. increases the divergence
 - C. decreases in divergence
 - D. remains uncharged

9.

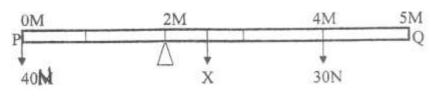


Fig 2

Fig 2 shows a uniform pole \mathbf{PQ} of length 5m pivoted 2m from end \mathbf{P} . A force of 40N suspended at \mathbf{P} . and 30N suspended one metre from end \mathbf{Q} make it balance horizontally. Find the weight \mathbf{x} of the pole.

- A. 90N
- B. 40N
- C. 60N
- D. 70N

10. Two resistors of 7Ω and 3Ω are connected as shown in fig 3.

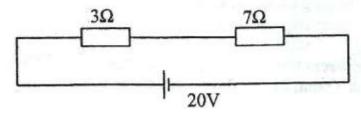


Fig.3

The current through the 7Ω resistor is

- A. 0.5A
- B. 2.0A
- C. 2.8A
- D. 9.5A
- 11. When the amplitude of vibration of the cone of a loud speaker increases, the sound produced becomes
 - A. High pitched
 - B. Low pitched
 - C. Louder
 - D. Softer
- 12. Which one of the following colours is used for the live wire in three core cables?

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

A. Brown	B. Black	C. Yellow	D. Blue					
13. The diagrams show different arrangements of two strong magnets. Which pair of magnets will pull each other								
A. N	S S N	B. N S	N S					
C. S	N N S	D. S	S					
14. Which of the follow	ing is not a vector	quantity						
A. Magnetic flux B. Momentum C. Pressure D. Weight		. 1 70.1						
height of the object	is formed by a co	nverging lens. If the ma	agnification is 0.4, find the					
A. 2.0 cm	B. 4.6 cm	C. 5.4 cm I	D. 12.5 cm					
16. Calculate the amoun	_	_	e of 0.2kg of lead by 60°c					
A. 156J	В. 1140Ј	С. 1560Ј Г	D. 340J					
17. Which of the follow	ing are properties	of cathode rays						
ii. they travel in	trically neutral a straight line ected by magnetic	efields						
A. (i) and (ii) only B. (i)and (iii) only C. (ii) and (iii) only D. (i), (ii) and (iii)								

18. Fig 4 shows two waves representing two musical notes

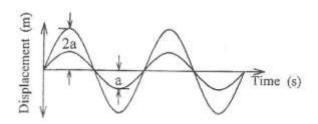


Fig 4

Which of the following statements is true?

- A. The two waves produce sound of different pitch
- B. The two waves produce sound of different wave length
- C. The two waves produce sound of the same loudness
- D. The two waves produce sound of different loudness
- 19. A converging mirror produces a virtual, magnified and erect image when
 - A. The object is between the pole and the principal focus
 - B. The object is between the principal focus and the centre of curvature
 - C. The object is beyond the centre of curvature
 - D. The object is at infinity
- 20. The inner walls of a vacuum flask are highly polished to,
 - A. Reduce heat loss by convection
 - B. Prevent heat loss by radiation
 - C. Reduce heat loss by evaporation
 - D. Reduce heat loss by conduction
- 21. Fig 5 shows levels of water in a measuring cylinder before and after immersing a solid **X** of mass 40g.

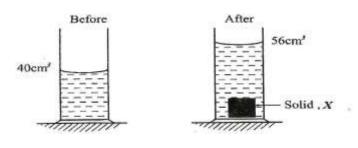
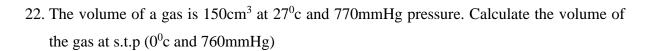



Fig 5

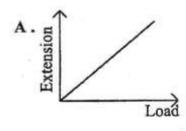
The density of solid X in gcm⁻³ is

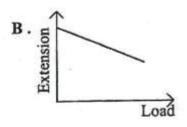
- A. 1.0
- B. 1.4
- C. 2.4
- D. 2.5

A. $\frac{760 \times 770 \times 300}{150 \times 273}$

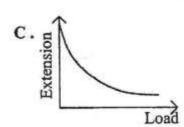
B. $\frac{770\times760\times273}{150\times300}$

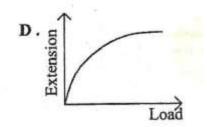
 $C.\frac{150 \times 770 \times 273}{760 \times 300}$


C . $\frac{760 \times 770 \times 150}{300 \times 273}$


23. Electromagnets are used in all the following appliances except

- A. telephone
- B. loud speaker
- C. electric bell
- D. thermostat


24. Which one of the following graphs represents the variation of extension of a spring with load.



- 25. A d.c motor converts
 - A. electrical energy to mechanical energy
 - B. mechanical energy to electrical energy
 - C. Kinetic energy to potential energy
 - D. potential energy to kinetic. Energy
- 26. Find the cost of running six 100W lamps and three 75W lamps for 8 hours if the cost of one unit of electric power is shs 214

A. Shs
$$\frac{825 \times 8 \times 214}{1000}$$

B. Shs
$$\frac{600 \times 8 \times 214}{1000}$$

C. Shs
$$\frac{225 \times 8 \times 214}{1000}$$

D. Shs
$$\frac{175 \times 8 \times 9}{1000}$$

27. The equation below represents a radioactive decay in which a particle **P** is emitted

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

288
Th \longrightarrow A X + P

If A= 284 and Z=88. Identify particle **P**

- A. Beta Particle
- B. Alpha Particle
- C. Gamma rays

28	A source r	oroduces way	es which travel a distand	ce of 140cm	in 0.08second	ds If the d	istance			
20.	28. A source produces waves which travel a distance of 140cm in 0.08seconds. If the distance between successive crests is 20m find the frequency of the source.									
	between successive crests is 20m mid the frequency of the source.									
	A. 87.50H	Z								
	B. 0.875H	Z				Γ				
	C. 0.08751	Hz								
	D. 8750Hz	Z				_				
29.	Isotopes of	f an element								
	(i) hav	ve same phys	ical properties							
	(ii) hav	ve equal num	ber of protons							
	(iii) ha	ve different r	number of neutrons			Γ				
	A. (i) only									
	B. (i) and	(ii) only				L				
	C. (ii) and	(iii) only								
	D. (i) and	(iii) only								
30.	A body ac	ccelerates un	iformly from rest and	acquires a	velocity of 60	0ms ⁻¹ after	half a			
	minute. F	ind the distan	ce covered by the body	•		Γ				
	A. 15m	F	3.30m C.	.1800m	D.900m					
21	Which one	of the follow	ving parts of the ave eat	e lika tha fi	lm in a lanc ac	L				
31.	WINCH OHE	e of the follow	ving parts of the eye act	s like the H	iii iii a iens ca	Пега				
	A. pupil	F	B. iris C.	. cornea	D. retina					
22	Which of t	ha fallayyina	talvas mla aa as vyatan vya	rvaa tuorval fu	om shallow or	L ad to the de	an and			
32.		_	takes place as water wa	ves traver ir	om snanow ei	ia to the de	ер епа			
	of a ripple	talik?								
		Speed	Frequency	Wavelen	gth					
	A	Increases	Remains the same	Remains	the same					
	В	Decreases	Remains the same	Decrease	S					
	C	Increases	Remains the same	Increases						

D	Increases	Increases	Increase

33.

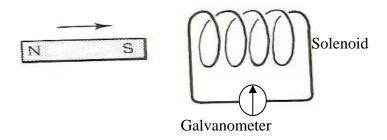


Fig 6

Figure 6 shows an arrangement where is plugged into a solenoid then withdrawn. Which of the following is the correct observation?

- A. The galvanometer doesn't deflect
- B. The galvanometer deflects in one direction
- C. The galvanometer deflects in one direction then in the opposite direction
- D. The galvanometer continuously oscillates in either direction
- 34. The lead-acid cell is called a secondary cell because
 - A. Its output voltage is 2volts
 - B. It can be recharged
 - C. It has two lead electrodes
 - D. It can't be recharged
- 35. A Material which undergoes a large amount of extension before it breaks is called
 - A. ductile
 - B. brittle
 - C. plastic
 - D. elastic
- 36. The amount of heat absorbed by a body of mass 2kg at a constant temperature is called
 - A. latent heat
 - B. heat capacity
 - C. specific heat capacity

D. specific	latent heat
-------------	-------------

37	. Four	cells	each	of em	ıf 1.5V	and	internal	resistance	1.0 🖸	2 are	connected	l in	series	with	a
	resist	or of	8.0 Ω	. Calc	culate t	he va	lue of th	ne current t	hat flo	ows.					

A. 2.0 A

B. 1.5 A

C. 1.0 A

D. 0.5 A

38. What is the appearance of a blue curtain with red flowers in green light?

	Appearance of curtain	Appearance of flower
A	Blue	Red
В	Black	Green
С	Black	Black
D	Red	Black

- 39. The advantage of mercury over alcohol as a thermometric liquid are;
 - (i) mercury is opaque
 - (ii) mercury doesn't wet glass
 - (iii) mercury is a good conductor of heat

A. (i) and (iii) only

B. (i),(ii) and (iii)

C. (i) and (ii) only

D. (i) only

40. The power of a lens is 25 Dioptre find the focal length of this lens in cm.

A. 0.25

B. 0.04

C. 2.5

D. 4.0

42. (a)

(01mark)

Answer all the questions in this section Define the term potential difference and state its SI unit. 41. (a) (01mark) (b) 5Ω 2Ω Fig.7 Figure 7 shows a battery of e.m.f 12V and total internal resistance of 3Ω . It is placed in series with two resistors and an ammeter of 1Ω resistance. Determine the reading of the ammeter. (03marks)

State **one** factor which affects the speed of sound in air.

- (b) A loud speaker placed between two walls but nearer to wall A than wall **B** is sending out constant sound waves. Determine how far the loud speaker is from wall **B** if it's 100m from wall A and the time between the two echoes received is 0.2 seconds .(Speed of sound in air = 340ms⁻¹) (03marks)

 43. (a) Define the term cathode rays. (01marks)
 - (b) The wave form shown in figure 8 was produced on C.R.O when a certain oscillating source was connected to the Y-plated of the C.R.O

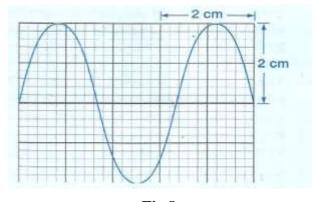


Fig.8

The Y-gain reads 0.5Vcm⁻¹ while the time based reads 10mscm⁻¹. Determine:

(i) the peak voltage of the wave form.

(01mark)

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

	(ii) The frequency of the wave.	(02marks)
44. (a)	State Hooke's law.	(01mark)
(b)	An unstretched spring has a length of 5.0 cm. A force of 1.0 N cau	sed its length to
	increase to 7.8 cm. Find the length of the spring when its subjected	to the force of
	4.0N.	(03marks)
45. (a)	State Faraday's law of electromagnetic induction.	(01mark)

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
(b)	A 12V, 48W lamp operates normally when it is connected to a tra	nsformer with
	300 turns in the secondary and 150 turns in the primary circuit. C	alculate the
	primary voltage.	(03marks)
46. (a)	Define the term focal length of a lens.	(01mark)
		• • • • • • • • • • • • • • • • • • • •
(b)	The critical angle of a contain class material is 42.70 Determine the	a mafma ativya
(b)	The critical angle of a certain glass material is 42.7°. Determine the index of the material.	(03marks)
	index of the material.	(OSMarks)
		• • • • • • • • • • • • • • • • • • • •
47. (a)	Define the term half life.	(01mark)
	DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.CO	M

ÉcoleBooks

Ecolebooks.com

Ecolebooks	s.com	(feals books
(b)	A radioactive nuclide has a half life period of 4 hours. Calculate	the mass that
	would remain after 24 hours if the original mass is 9.6g.	(02marks)
(c)	A radioactive nuclide $^{60}_{27}\text{Co}$ decays by the following equation	
	$_{27}^{60}$ Co \longrightarrow $_{28}^{60}$ Ni $+$ $_{-1}^{0}$ e $+$ P	
	Identify the radiation P .	(01mark)

(01mark)

Define the term **velocity ratio** of a machine.

48. (a)

(b)	A pulley system having three pulleys in the fixed block and tw	vo in the movable	
	block is used to raise a load of 600N. If the system has an efficiency of 80%, what		
	effort is required to raise the load.	(03marks)	
		•••••	
		•••••	
		•••••	
		•••••	
49.	Galvanometer R		
	Fig 9		
	Figure 9 shows a galvanometer adapted for use as voltmeter. It	f the galvanometer	
	has a resistance of $100~\Omega$ and gives a full scale deflection of 11	mA	
(a)	Name resistor \mathbf{R} connected to the galvanometer.	(1mark)	
(b)	What is the value of the resistor \mathbf{R} that must be connected in s	eries with the meter	
	so that it can be used as a voltmeter and read s up to 1V.	(03mark)	

50. (a)	Define heat capacity.	(1mark)

(b)

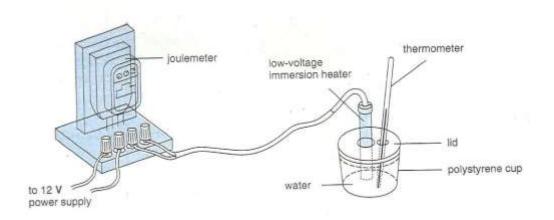


Fig 10

Fig 10 shows an electrical apparatus set up to measure specific heat capacity of a liquid .Given that:

Energy transferred = 12209J

Mass of liquid = 0.8kg

Original temperature = 26.8° C

Final temperature $= 33.0^{\circ}$ C

Find the specific heat capacity of the liquid.

<u>Ecolebooks.com</u>		

END