Name:	Combination:

KITEBI SECONDARY SCHOOL

Uganda Advanced Certificate of Education Beginning of Term I Examinations 2019

PURE MATHEMATICS

Time: 3 hours

INSTRUCTIONS TO CANDIDATES:

- Attempt **all** the eight questions in section **A** and any **five** questions from section **B**.
- Clearly show all the necessary working
- Begin each answer on a fresh sheet of paper
- Silent, simple non-programmable scientific calculators may be used. Attach the question paper on the answer sheets used

SECTION A (40 MARKS)

(05 marks)

- 2. Solve the equation: $Sin \ x \ Cos \ x3 \ \square \ 2 \ \square \ Cos \ x3 \ \square sin2$ for $0x \ ^{\circ} \square \ \square \ x \ 180^{\circ}$ (05 marks)
- 3. Find the equation of the normal to the curve $x^2y + 3y^2 4x 12 = 0$ at (2, 1)

(05 marks)

- 4. Find the coefficient of the term containing x^{-8} in the expansion of $(x^2 + \frac{1}{2x^3})^{11}$.
- 5. Prove that $9^n 1$ is always a multiple of 8. (05 marks)
- 6. The radius of a sphere increases at a rate of $0.01 cm s^{\Box 1}$. Find the rate at which:
 - i) surface area increases ii) volume increases when the radius is 21*cm*

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Ecolebooks.com		() feele books	
			(05 marks)
7.		The that $\tan \alpha_1 \square \square$	
8.	Diffe	erentiate from first principles: $y = \sin x$	(05 marks)
©kite	bi ss ma	aths department 2019	Page 1
		SECTION B (60 MARKS)	
9.		$\frac{(2-i)(5+12i)}{(1+2i)^2}$	
		ind the:	
	(i)		
		epresent Z on a complex plane.	(02 marks)
	c) W	Vrite Z in the polar/modulus – argument form.	(02 marks)
10.	Solve for x in the following equations:		
	a) $9^x - 3^{(x+1)} = 10$,		
	$(b)^{1}$	$\log_4 x^2 - 6\log_x^4 - 1 = 0$	(12 marks)
11.	(a)	Find the values of x and θ in the following equations;	
	(i)	$\Box\Box\Box\cos_12\Box\Box\sin_12\Box\Box\Box_2\Box - \text{ for } O^o \le \theta \le 360^0.32$ (04 marks)	
	(ii)	$tan_{\Box} \square \square \square 1x \square tan_{\Box} \square \square \square \square 13 \square 4$ $marks) \square \square$	(05
(t) G	Given that, $t = tan\theta$, simplify t .	(03 marks)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Ecolebooks.com

- 12. (a) (04 marks)
 - Find the locus of the complex number z if $\operatorname{Re}^{\Box} = \frac{2z}{z} \operatorname{L}^{\Box} 2^{1} i \operatorname{L}^{\Box} = 0$ (c)
- 13. a) Use the binomial theorem to show that; $\left(\sqrt{1+2x} + \sqrt{1-4x}\right)^2 = 2 - x - \frac{5}{2}x^2 + \cdots$ (07 marks)
 - Taking $x = \frac{1}{16}$ use the expansion in (a) above to estimate $\sqrt{6}$ to 2 decimal (b)

places.

The End Sine labore Nulla victoria

©kitebi ss maths department 2019

Page 2

(05 marks)

 $\overline{\sqrt{1_{\square}t^2}}$

(04 marks)

Find the square roots of $\Box \Box 1i^{3}$ (04 marks) (b)

fcolebooks