Name:
Combination: \qquad

KITEBI SECONDARY SCHOOL

Uganda Advanced Certificate of Education Beginning of Term I Examinations 2019

PURE MATHEMATICS

Time: 3 hours

INSTRUCTIONS TO CANDIDATES:

- Attempt all the eight questions in section \mathbf{A} and any five questions from section \mathbf{B}.
- Clearly show all the necessary working
- Begin each answer on a fresh sheet of paper
- Silent, simple non-programmable scientific calculators may be used. - Attach the question paper on the answer sheets used

SECTION A (40 MARKS)

1. Solve the simultaneous equations: $2 x \square y \square 2 z \square 6$ and $x_{\square \square 2} y \boxminus 2 \square^{z} \square 2$. $3 \quad 4 \quad 5$
(05 marks)
2. Solve the equation: $\operatorname{Sin} x \operatorname{Cos} x 3 \square 2 \square \operatorname{Cos} x 3 \square \sin 2$ for $0 x \quad{ }^{0} \square \square x 180^{0} \quad$ (05 marks)
3. Find the equation of the normal to the curve $x^{2} y+3 y^{2}-4 x-12=0$ at $(2,1)$ (05 marks)
4. Find the coefficient of the term containing x^{-8} in the expansion of $\left(x^{2}+\frac{1}{2 x^{3}}\right)^{11}$.
5. Prove that $9^{n}-1$ is always a multiple of 8 .
6. The radius of a sphere increases at a rate of $0.01 \mathrm{~cm} \mathrm{~s}{ }^{\square 1}$. Find the rate at which:
i) surface area increases
ii) volume increases when the radius is 21 cm
 (05 marks)
7. Differentiate from first principles: $\mathrm{y}=\sin x$
(05 marks)

SECTION B (60 MARKS)

9. If $z \square^{\frac{(2-i)(5+12 i)}{(1+2 i)^{2}}}$
a) Find the:
(i) Modulus of Z ;
(ii) argument of Z
(08 marks)
b) Represent Z on a complex plane.
c) Write Z in the polar/modulus - argument form.
10. Solve for x in the following equations:
a) $9^{x}-3^{(x+1)}=10$,
b) $\log _{4} x^{2}-6 \log _{x}^{4}-1=0$
11. (a) Find the values of x and θ in the following equations;

(04 marks)

marks)
(b) Given that, $t=\tan \theta$, simplify t.

Ecolebooks.com

$$
\overline{\sqrt{1_{\square} t^{2}}}
$$

 (04 marks)
(b) Find the square roots of $\mathrm{a} \mathrm{a}_{1}{ }_{3}$ (04 marks)
 (04 marks)
13. a) Use the binomial theorem to show that;

$$
\begin{equation*}
(\sqrt{1+2 x}+\sqrt{1-4 x})^{2}=2-x-5 / 2 x^{2}+\cdots \tag{07marks}
\end{equation*}
$$

(b) Taking $x=1 / 16$ use the expansion in (a) above to estimate $\sqrt{6}$ to 2 decimal places.

The End

Sine labore Nulla victoria

