P425/2 APPLIED MATHEMATICS Paper 2 AUGUST 2019 3 HOURS

JINJA JOINT EXAMINATIONS BOARD Uganda Advanced Certificate of Education APPLIED MATHEMATICS AUGUST 2019 Paper 2

r aper 2

3 hours

INSTRUCTIONS TO CANDIDATES:

- Answer all the eight questions in section A and any five from section B.
- Any additional question (s) answered will not be marked
- All necessary working must be shown clearly
- Begin each answer on a fresh sheet of paper
- Graph paper is provided
- Silent non-programmable scientific calculators and mathematical tables with a list of formulae may be used.
- In numerical work, take g to be 9.8 ms^{-2} .

SECTION A (40)

- A bag contains 6 red, 3 green and 1 blue discs. If three discs are picked at random from the bag without replacement, find the probability that 2 red discs and 1 green disc are picked. (05 marks)
- 2. A car of mass 1000kg accelerates uniformly from rest to a maximum speed of 90kmh⁻¹ up a smooth inclined plane. If the plane is inclined at 30⁰ to the horizontal, calculate the maximum power of the car. (05 marks)
- 3. The table below shows the values of x and their corresponding natural logarithm

X	5.0	5.2	5.4	5.7	6.0
In x	1.609	1.647	1.686	1.740	1.792

Use linear interpolation / extrapolation to find

(a) In (5.56)	(03 marks)
(b) <i>e</i> ^{1.575}	(02 marks)

- 4. The probability that a student chosen at random from a certain school is left handed is 0.25. If 80 students are chosen at random from the school. Calculate the probability that between 14 to 18 students are left-handed. (05 marks)
- 5. Town A is 763 km from town B on a bearing of 080⁰. A plane whose speed in still air is 400kmh⁻¹ flies directly from A to B. Given that there is a constant wind blowing from North at 70.5kmh⁻¹, find the direction in which the pilot should steer the plane. (05 marks)
- 6. Evaluate $\overline{0.38} \overline{0.30}$, given that all the numbers have been rounded to the given 4.28 2.14 number of decimal places. (05 marks)
- 7. The table below shows awarded to nine candidates in English (x) and History (y)

x	13	15	15	29	20	20	21	21	24
у	65	60	76	62	70	75	76	80	70

- (i) Calculate the rank correlation coefficient for the data. (04 marks)
- (ii) Comment on your results (01 mk)
- 8. A particle of mass 10kg rests on a rough horizontal plane and is pulled by a force of magnitude $98/\sqrt{3}$ N inclined at an angle 60° to the horizontal. If the particle does not move, determine the minimum value of the coefficient of friction between the particle and the plane. (05 marks)

SECTION B (60)

- 9. The obtained by 1000 students in a district mock examination were normally distributed with a mean of 55 and standard deviation 8.
 - (a) If a mark of 71 or more is required for an A pass, estimate the number of A- passes awarded. (05 marks)
 - (b) (i) If 15% of the candidates failed the examination, estimate the minimum mark required for a pass. (04 marks)
 - (ii) Calculate the probability that 2 candidates chosen at random both passed the examination. (03 marks)
- 10. (a) Two particles of masses 4kg and 3 kg respectively are attached one to each end of alight inextensible string which passes over a small smooth pulley. If the particle move in a vertical plane with both hanging parts of the string vertical, determine the
 - (i) acceleration of the system
 - (ii) tension in the string
 - (b)When the particle of mass 3 kg is moving upwards with a speed of $9ms^{-1}$ it picks up from at a point A an additional mass of 2kg so as to form a composite particle Q of mass 5kg.

Calculate the

- (i) initial speed of the system
- (ii) height above A to which Q rises.

11. (a) (i) On the same axes, draw graphs of $y = x^2$ and $y = \sin 2x$ for $0 \le x \le \frac{1}{2^{\pi}}$ (ii) From your graphs, obtain to one decimal place, an appropriate root of

the equation $x^2 - \sin 2x = 0$

(06 marks)

(06 marks)

(06 marks)

Ecoletooks

(b) Using the Newton – Raphson method, find the root of the equation $x^2 - \sin 2x = 0$ taking the appropriate root in (a) as an initial approximation. Give your answer correct to two decimal places. (06 marks)

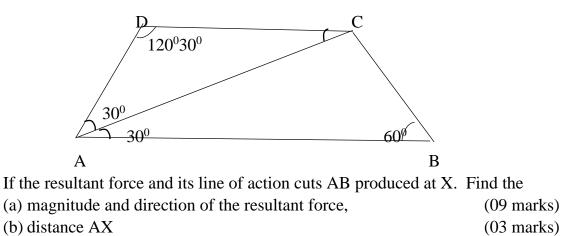
12. A continuous random variable x takes values between 2 and 5, and for $2 \le x \le 5$, b the probability that $X \le x$ is ax - x

 $__2$ where *a* and *b* are constants. Find the

(i)	constants <i>a</i> and b	(05 marks)
(ii)	P(3 < x < 4)	(02 marks)
(iii)	Pdf of X	(02 marks)
(iv)	Mean of x	(03 marks)

13. (a) Show that the iterative formula based on Newton Raphson's method for solving the equation $e^{2x} + 4x - 5 = 0$ is given by

$$e^{2x_n(2x_n-1)+5} = \underline{2e^{2x_n+4}, n = 0, 2, 3...}$$
(03 marks)


(b) (i) construct a flow chart that;

- reads the initial approximation x_0

- computes, using the iterative formula in (a) and prints the root of the	equation
$e^{2x} + 4x - 5 = 0$, and the number of iterations when the error is	
less than $1.0 \ge 10^{-4}$.	(05 marks)
(ii) perform a dry run of the flow chart when $x_0 = 0.5$	(04 marks)

14. The diagram below shows an isosceles trapezium ABCD where AD = DC = CB = 1m and AB = 2m. Five forces of magnitudes 1,3,5,6 and $2\sqrt{3}$ N act along AD, DC, CB, BA and AC respectively, the direction of each force being shown by the order of the letters

Ecoletooks

15. The table below is the distribution of the distance run during training by members of an athletics club in a particular week.

Distance (km)	Frequency
31-40	10
41 - 45	15
46 - 50	20
51 - 55	70
56 - 57	64
58 - 60	24
61 - 70	20
71 - 90	10

(a) Estimate the standard deviation of the athletics

(06 marks)

- (b) Plot an Ogive and use it to estimate the
 - (i) semi-interquartile range
 - (ii) number of athletics who ran between 50.0 and 66.0km. (06 marks)
- 16. A ball is hit at a point 0, which is at a height of 2m above the ground and at a horizontal distance 4m from the wall, the initial speed being in a direction of 45⁰ above the horizontal. If the ball just clears the wall which is 1m high,
 (a) show that the equation of path of the ball is 16y = 16x 5x². (04 marks) (b) calculate the;

- (i) distance from the net at which the ball strikes the ground. (04 marks)
- (ii) magnitude and direction of the velocity with which the ball strikes the ground. (04 marks)