Guide

P425/2
APPLIED
MATHEMATICS

PAPER 2

Jul/Aug 2018

3 hours

MUKONO KAYUNGA JOINT MOCK EXAMINATIONS BOARD

Uganda Advanced Certificate of Education
APPLIED MATHEMATICS
Paper 2
3 hours

INSTRUCTIONS TO CANDIDATES:

Answer all the eight questions in section A and five questions from section B.
Any additional question(s) answered will not be marked.
All working must be shown clearly.
Begin each answer on afresh sheet ofpaper.
Graph paper is provided.
Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

Ecolebooks.com

SECTION A

1. Events A and B are such that $P A / B)=3 / 8, P\left(A^{\prime} n B^{\prime}\right)-14$ and $P(A)+P(B)=-2324$ • Find;
(ii) $\mathrm{p}\left(\mathrm{B} / \mathrm{A}^{\prime}\right)$
(05 marks)
2. The table below shows the values of x and their corresponding values offix).

x	1.8	2.3	3.1	3.9
fix)	3.352	5.587	14.571	32.899

Use linear interpolation or extrapolation to obtain the value of;
(i)
f(2.9)
(ii) $\quad 1(35.154)$
(05 marks)
3. A particle is acted upon by two forces $\left.\mathrm{Fl}--3 \mathrm{i}_{-}+4 \mathrm{j}\right) \mathrm{N}$ and $\mathrm{F} 2=75 \mathrm{~N}$ in the direction 24 i - 7 j . Find the magnitude and direction of the resultant force. (05 marks)
4. A continuous random variable X is uniformly distributed in the interval $(30,45)$.

Calculate the;
(i) Mean of X
(ii) >39)
(05 marks)
5. A body of weight W is held in limiting equilibrium on a rough slope inclined at 60° to the horizontal by a force P at angle of 30° to the slope. The coefficient of friction being
, show that P W.
(05 marks)
6. Show graphically that the root of the equation $2 x^{3}-4 x-5=0$ exist in the interval $(1,2)$. (05 marks)
7. A particle moving with simple harmonic motion has a speed of 2 ms - when it is ${ }^{\mathrm{A}} \mathrm{VE} m$ from its mean position. Given that the amplitude of its motion is 1.5 m , calculate its; (i) velocity as it goes through the mean position.
(ii) Time taken when it is of its amplitude from the maximum displacement.
(05 marks)
8. The marks of 6 students in French and Biology were as follows:

French	0	6	0	544		.70
Biolou	8	2	60	78	5	

Calculate the rank correlation coefficient for the scores in the two tests. Comment on your results. (05 marks)

14. The probability density function of a continuous random variable x is represented by the equation below:

$$
f(x)\left\{\begin{array}{l}
\frac{2}{13}(x+1) ; \\
\frac{2}{13}(5-x) ; \\
0 ; \text { eisewhere }
\end{array}\right.
$$

Calculate the;
a) the value of a.
(07 marks)
b) $\mathrm{P}(x<2.5)$
(05 marks)
15. A biased coin is thrice as likely to show heads as tails. If it is tossed 48 times, find the probability of obtaining;
a) between 30 and 40 heads.
b) at least 28 but less than 42 heads.
(12 marks)
16. A car of mass 800 kg tows a trailer of mass 200 kg . The constant resistance acting on the car and the trailer are 450 N and R respectively. If the car has maximum speed of 54 kmhon the level road, with the engine at steady rate of 9.75 kW , find the;
(i) Tension in the tow bar
(ii) The value of R
(iii) Acceleration of the car at a speed of $72 \mathrm{kmlf}^{1}$.

4

SECTION B

9. The lengths (h) in inches of 40 nails were as follows.

Lengths (h)	Frequency
$3.002<3.5$	8
$3.5 \mathrm{sh}<4 . \mathrm{O}$	5
$4.0 \mathrm{~K} \mathrm{~h}<5.5$	12
$5.5 \leq h<6.0$	9
$6.0 \leq h<6.5$	6

a) Calculate;
(i) The mean
(ii) The standard deviation.
b) Display the data on a histogram and use it to estimate the mode.
(12 marks)
10. a) Use the trapezium rule with 6 ordinates to estimate, to 3 decimal places the value of the integral $\mathrm{f}^{3}-4 \mathrm{dx}$.
b) Obtain the exact value of the integral in a) above. Hence calculate the percentage error in your estimation.
11. A ball is projected from the top of a vertical cliff 36 m high with a speed of $40 \mathrm{~ms}-$ at an angle of elevation 0 . The ball passing the highest point, P which is 12 m above the point of projection after 2 seconds.
a) Find the value of 0 .
b) The horizontal from the foot of the cliff where the ball lands.
c) Find the speed and direction of the ball as it hits the ground.
12. a) The mass M and velocity V of a car were estimated with error AM and AV respectively. Show that the maximum relative error in the kinetic energy

b)

lies.
marks)
4.25

Find the range with in which the exact value of
3.152-2.4
(05 marks)
13. A square $A B C D$ of side $4 m$ has forces of magnitude $8 \mathrm{~N}, 3 \mathrm{~N}, 4 \mathrm{~N}$ and $2 \mathrm{~N} / 5 \mathrm{~N}$ acting along AB , $\mathrm{CB}, \mathrm{DA}, \mathrm{CD}$ and BD respectively. Taking AB and AD as x and y axes respectively,
a) Find the distance from A where the line of action of the resultant crosses AB .
(07 marks) b) When a
force P is introduced, the system reduces to a couple. Find the magnitude of (05 marks)

$$
\begin{aligned}
& P(A \mid B)=G O \mid D E A P P L I E D \text { MAINS } \\
& P\left(A^{\prime} \cap B^{\prime}\right)=\frac{1}{4} \\
& P(A)+P(B)=\frac{23}{24} \\
& \text { from } P\left(A \cap B^{\prime}\right)=P(A \cup B)^{\prime} \\
& P(A \cup B)= \\
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& \frac{3}{4}-\frac{23}{24}=-P(A \cap B) M
\end{aligned}
$$

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

$$
\begin{aligned}
& -\frac{5}{24}=-P(A M B) \\
& P(A \cap B)= \\
& \text { Cli) } \\
& P\left(B \mid A^{\prime}\right)=\frac{P\left(A^{\prime} \cap B\right)}{P\left(A^{\prime}\right)}=\frac{P(B)-P(A \cap B)}{P\left(A^{\prime}\right)} \\
& \frac{\frac{P(A \cap B)}{P\left(\left.A\right|_{B}\right)}-P(A \cap B)}{P\left(A^{\prime}\right)} \\
& 5 / 21 / 3 / 8=5 / 24 \frac{8}{3} \\
& =\frac{5}{9} \\
& \begin{array}{l}
\frac{5 / 9-\frac{2}{24}}{\frac{43}{72}}=\frac{25}{72} \times \frac{72}{43} \mathrm{~B} \\
0 \mathrm{~S}
\end{array} \\
& \frac{23}{24}-5 / 9=\frac{69-40}{72}=\frac{20}{72} \\
& \frac{y_{0}-8.5877^{\circ}}{2.9-2.3} \cdot \frac{=}{14.571-y_{0}} \frac{3.1-2.9}{12} \\
& \text { 当 }=14.571 \text {-yo } \quad \sim \text {, 入キ } \\
& \begin{array}{c}
12 \cdot 325 \\
\text { Al }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { ー, } \frac{S}{x_{0}-3.9}-\text { スースい }
\end{aligned}
$$

$$
\text { い } 0 \text { 日一18.328 } x_{0}-1 い \mathrm{q} 19 \text { ス }
$$

$$
\mathrm{F}_{0}=
$$

$$
\begin{aligned}
& -3 i+4 \underset{\sim}{j} \\
& \frac{75}{1} \frac{(24 i-7 \underset{\sim}{j})}{|24 i-7 j|}=\frac{75}{25}(24 i-7 j)=3(24 i-7 j) \\
& =\underset{\sim}{F}+\underset{\sim}{F}+F_{2}
\end{aligned}
$$

$$
\begin{aligned}
& x=\sim R(30,451 \\
& x=\left\{\begin{array}{l}
\frac{1}{15,}, 30 \leq x \leq 45 B \\
0, \text {, जñerwise }
\end{array}\right.
\end{aligned}
$$

因 $=\int_{30}^{45} \frac{1}{25} x \frac{d x}{B}=\left.\frac{x^{2}}{30}\right|_{30} ^{45}=\frac{45^{2}-30^{2}}{30}$ ご 35
Cい）「

$$
P(x>39)=\int_{39}^{45} \frac{1}{15} x 6=\left.\frac{x}{15}\right|_{39} ^{45}=\frac{45-3 气}{15}
$$

$\rightarrow P \cos 30+\mu R=V \sin 60 R$
$\uparrow \quad R=\omega \cos 60+p \sin 30 \cdot R$

$$
\begin{aligned}
& P \cos 30+\frac{1}{2}(\omega \cos 60+P \sin 30)=W \sin 60 \\
& \frac{\sqrt{3}}{2} P+\frac{1}{2}\left(W(1 / 2)+\frac{1}{2} P\right)=\frac{\sqrt{3}}{2} W W
\end{aligned}
$$

Ecolebooks．com

$$
\begin{aligned}
& S=\sqrt{2} m \\
& A=1 \cdot 5 \mathrm{sm} .
\end{aligned}
$$

$$
V=\max .
$$

$$
V_{\text {max }}=\omega A=\frac{2 \pi}{T} A=\left(\frac{2 \pi}{T}\right) 1.5 \mathrm{~B}
$$

$$
\begin{aligned}
V^{2} & ={ }_{7}\left(A^{2}-x^{2}\right) \\
& \text { LoV } \\
& = \\
3 & =\sqrt{\frac{4}{2 \cdot 25-2}}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(い+? ト \quad \frac{\sqrt{3}}{2}(W-P)\right. \\
& \text { 2いキXP = } \\
& (2+4 \sqrt{3}) P=(k つ) W \\
& \text { 二(吽エを-0)い }=(4 \sqrt{3}-2)^{2} W \\
& \left.\cdots 0 こ 2 x^{3}-4 x-5 \neq い\right)=2-4-5= \\
& \text { 1し——s 3 graph } \\
& f(1) \cdot f(2)=- \text { - } 0 .
\end{aligned}
$$

$$
\begin{aligned}
3 & =\sqrt{\frac{4}{0.25}} \\
3 & =\sqrt{\frac{400}{25}} \\
& =\frac{20}{5}=4 B \\
& \text { Assiut } \\
\frac{1}{4}(1.5) & =1.5 \sin u z
\end{aligned}
$$

Singerficant correlation

$$
\frac{4.775 \text { inches .3 }}{-\left(\frac{191}{40}\right)^{2}}
$$

$$
\text { 心 } 0^{\prime} \text { POO, , , }
$$

$$
\int_{i}^{3} \frac{x}{1+x^{2}} d x
$$

$h=\frac{3-1}{6-1}=\frac{2}{5}=0.4 \mathrm{~B}$
n
x_{n} $y_{n}=\frac{x_{n}}{x_{n}^{2}+1}$ 0 1 0.5000 1 1.4 0.4780 2 1.8 0.4245 3 2.2 0.3767 + 2.6 0.3351 5 3.0 0.3000 0.8000

$$
\begin{aligned}
\int_{1}^{3} \frac{x}{1+x^{2}} d x & =\frac{1}{2}(0.4)(0.8000+2(1.6093)] \\
& =0.8030 A_{1} \\
& 0.803(3 \Delta P) A
\end{aligned}
$$

$$
\begin{aligned}
\text { Actual }=\int_{1}^{3} \frac{x}{1+x^{2}} d x=\left.\frac{1}{2} \ln \left(1+x^{2}\right)\right|_{1} ^{3} & =\frac{1}{2}\binom{\ln 10-\ln 2}{\mathrm{Ry}} \\
& =0.8047 \\
& \approx 0.805(3 \Delta P) \\
q_{0}=\frac{10.805-0.8031}{0.805} \times 100 & =0.248 \frac{1}{A}
\end{aligned}
$$

$$
\begin{aligned}
& H=\frac{U^{2} \sin ^{2} \theta}{29} \\
& 12=\frac{40^{2} \sin ^{2} \theta}{29} \\
& \sin ^{2} \theta=\frac{12 \times 29}{40^{2}} \\
& \sin ^{2} \theta=0.147 \\
& \theta=22.5^{\circ} \mathrm{A}
\end{aligned}
$$

$$
12=(40 \sin \theta)(2)-\frac{1}{2} \times 9.8 \times 4
$$

$$
\sin \theta=0.395
$$

$$
\begin{aligned}
& -36=(u \sin \theta) t=1 / 2 g t^{2} \\
& 4 \cdot 9 t^{2}-15.3 t-36=0 . B
\end{aligned}
$$

Ecolebooks．com

$$
\begin{aligned}
& \text { - } \text { h }^{\circ} \mathrm{C} \text { ら, ゞメн, も } 9=173.3 \mathrm{~m} \cdot \mathrm{BA} \\
& V_{x}=40_{\text {て心应よ, }}=36.915 \mathrm{~m} / \mathrm{sin} 40 \operatorname{sin22.5} \text {-午 } 8 \text { (} \\
& 64 \text {) } \\
& -30.655^{\circ} \mathrm{m} / \mathrm{s} \\
& \sqrt{36.955^{2}+(-30.631)^{2}} m \\
& 48 \cdot 01 \mathrm{mls} \cdot A \\
& \theta=39.7 \mathrm{~B} \text { below the holizontal. } \\
& k \cdot E=\frac{1}{2} m v^{2} B \\
& E+\Delta E=\frac{1}{2}(m+\Delta M)(V+\Delta V)^{2} B \\
& \Delta E=\frac{1}{2}(m+\Delta m)\left(v^{2}+2 x \Delta v+(\Delta v)^{2}\right)-\frac{1}{2} m r^{2} \\
& \begin{array}{c}
\Delta E=\frac{1}{2}\left(m v^{2}+2 m v \Delta r+m(\Delta v)^{2}+r^{2} \Delta m+2 v \Delta m \Delta v+\Delta m(\Delta v)^{2}-1 / 1\right. \\
(\Delta v)^{2}=0, \quad \Delta m \Delta v=0 B
\end{array} \\
& \Delta E=\frac{1}{2}\left(2 m v \Delta x+v^{2} \Delta M\right)_{B} \\
& \frac{\Delta E}{E}=\frac{m v \Delta v}{\frac{1}{2} m v^{2}}+\frac{1}{2} \frac{v^{2} \Delta m}{\frac{1}{2} m v^{2}} m
\end{aligned}
$$

$$
\begin{aligned}
& =\left|2 \frac{\Delta v}{v}+\frac{\Delta m}{m}\right|_{\nabla} \leq\left|2 \frac{\Delta v}{v}\right|+\left|\frac{\Delta m}{m}\right| \\
& \frac{4.25}{3.152-2.4} \\
& \begin{array}{l}
=\frac{\cdots \cdots}{3.1515-2.45} B \max (A)=H_{0} \\
=6.06557 \mathrm{~A}
\end{array} \\
& \operatorname{Min}(A)=\frac{4.245}{3.1525-2.35} \mathrm{~m} \\
& =5.28971 \\
& \left(\frac{12}{12}\right) \\
& \text { [5.28771 006賞9」。 } \\
& \text { 卜 平 } \mathrm{c}
\end{aligned}
$$

Force missing

$$
04+\quad+\binom{0}{-4}+\binom{-2 \sqrt{2 \operatorname{sos} 45}}{2 \sqrt{2} \sin 45}
$$

ーう

$$
\begin{aligned}
& 4 \mathrm{NJ} \text { トび下 }=-(25 \sin 45) 4 \\
& y_{\text {ト } 5}=\text { 一分 }
\end{aligned}
$$

ーし\＆料口上0， tm L之，，改4。 a couple：

$$
?+=0 \text {, }
$$

$$
\begin{gathered}
\sqrt{4^{2}+5^{2}}=\sqrt{16+25} \\
f(x)=\left\{\begin{array}{l}
\frac{2}{13}(x+4), 0 \text { 云 } \quad \text { 可 } 7, \\
2 / 13(5-x) ; 9, \text { 蜃 } \\
0, \text { \&lse where. }
\end{array}\right.
\end{gathered}
$$

$$
f(a)=\quad a \frac{2}{3}(5-a) .
$$

$$
=5
$$

$$
\begin{aligned}
& \operatorname{Max}(A) 4, \frac{15}{3.1515-2.45}, B S \\
& 6.06557 \mathrm{~A} \\
& a=\frac{4}{2}=2 \\
& \int_{0}^{a} \frac{2}{13}(x h) d x+\int_{a}^{0} \frac{2}{13}(5-x) d x= \\
& 3\left[\frac{x^{2}}{2}+\left.x\right|_{0} ^{9}+5 x-\left.\frac{x^{2}}{2}\right|_{a} ^{3}\right]=\frac{\text { LIKE THIS ON }}{\square}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Min}(A)=\frac{4.245}{3.1525-2.35} \mathrm{~m} \\
& =5.289718 \quad\left(\frac{12}{12}\right) \\
& {[5.28971 \text {. 6.06557]. }}
\end{aligned}
$$

$$
\begin{aligned}
& 4\binom{0}{-3}+\binom{-2}{0}+\binom{0}{-4}+\left(\begin{array}{c}
-2 \sqrt{2} \operatorname{son} 45 \\
2 \sqrt{2} \sin 45
\end{array}\right. \\
& \binom{4}{-5} \\
& 4 y+57 \mathrm{Q}=-(2 \sqrt{2} \sin 45) 4+3(4)-2(4)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2}{13}\left[\frac{a^{2}}{2}+a+(i 5-9 / 2)-\left(+5 a-a^{2} / 2\right)\right]=1 \\
& \begin{array}{l}
a^{2}-p 4 a+\frac{21}{2}=\frac{13}{2} w \\
a^{2}-14 a=-\frac{8}{2}
\end{array} \\
& a^{2}-4 a+4=0 \text {. } \\
& \bar{a}=2 . \quad 0 \\
& P(x<2.5)=\int_{0}^{2} 2 / 13(x+1) d x+\int_{2.0}^{2.5} \frac{2}{13}(5-x) d x \\
& =\frac{2}{13}\left[\frac{\left.x^{2} / 2+\left.x\right|_{0} ^{2}+5 x-\left.\frac{x^{2}}{2}\right|_{2} ^{2.5}\right], ~}{B}\right. \\
& =\frac{2}{13}\left[4+\left(12.5-\frac{6.25}{B^{2}}\right)-(10-2)\right] \\
& =\frac{2}{13}[-8+12.5-3.125]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{11}{52}=\frac{43}{52}=0.5269 .5 \\
& P(H)=\frac{3}{4} \\
& P(T)=1 / 4 \mathrm{~B} \\
& P=\frac{3}{4} \\
& 2=1 / 4 \\
& n=48
\end{aligned}
$$

Ecolebooks．com

$$
\begin{aligned}
& P(30<x<40)=P\left(30 \cdot 5 ; 28 \leqslant x_{4} \text { 食 }\right)= \\
& P\left(\frac{30.5-36}{3}<z<\frac{39.5-36}{3}\right)=0_{0}=0.6955
\end{aligned}
$$

Q
？（ $\mathbf{~ (~} 4$ メ元 Hい，）

二？（ 式一乙
いぐー 3 ，
－p Q－よ夗 3 も 1，3 ろ）
$=$

こ0，ヨ6トも十戍气 1

$\times 60 \times 60$
$\mathrm{C} 5 \overline{\bar{O}}_{\mathrm{H}}$
$\stackrel{C}{C}$

$$
o a \cdot \Omega
$$

$$
=800 a
$$

