P425/1 **PURE MATHEMATICS** PAPER 1 3 HOURS

UGANDA ADVANCED CERTIFICATE OF EDUCATION MOCK EXAMINATION

PURE MATHEMATICS

PAPER P425/1

Time: 3 hours

INSTRUCTIONS TO CANDIDATES:

- Attempt ALL the EIGHT questions in section A and any FIVE from section B.
- All working must be clearly shown.
- Clearly indicate the questions you have attempted and where necessary, begin a question on a fresh sheet of paper.
- Silent, non-programmable calculators should be used.
- State the degree of accuracy at the end of each answer using CAL for calculator and TAB for tables.
- Clearly indicate the questions you have attempted in a grid on your answer scripts. **DONOT**

Qn									
Marks									

SECTION A (40 MARKS)

1. The points A, B and C have coordinates (0, 6), (1, 3) and (4, 6) respectively. Find the coordinates of the point D, the foot of the perpendicular from A to BC. (05 marks)

2. The *nth* term of an A.P is
$$\frac{3n-1}{6}$$
, prove that the sum of *n* terms is $\frac{n}{12}(3n+1)$. (05 marks)

3. The volume of a sphere is increased by 3%. Find the percentage increase in the radius.

(05 Marks)

- 4. In a triangle OAB, OA = a and OB = b. Given that E divides OA in the ratio 6 : 1, D divides AB in the ratio 2 : 1 and point C is on OB produced such that OC : OB = 3 : 2, find the ratio ED : DC. (05 marks)
- 5. Find the area bounded between the curve $y = x^2 8x$ and the x axis. (05 marks)

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

Ecolebooks.com

- EcoleBooks
- 6. Given that α and β are the roots of the equation $x^2 2x + 6 = 0$, find the quadratic equation $\alpha \qquad \beta$

with roots
$$\frac{\alpha}{1-\alpha^2}$$
 and $\frac{\beta}{1-\beta^2}$. (05 marks)

- 7. Prove that $4\cos 3\theta \cos \theta + 1 = \frac{\sin 5\theta}{\sin \theta}$. (05 marks)
- 8. By differentiating and eliminating the constants A and B of $x = e^{-4t}(A + Bt)$, find the final expression of the function (05 marks)

SECTION B (60 MARKS)

- 9a) The third term of an arithmetic progression is 3 and the seventh term exceeds three times the third term by 2. Find the:
- (i) common difference (ii) sum of the first 20 terms. (06 marks)
- b) Using the binomial theorem, expand $\sqrt{\frac{1+x}{1-x}}$ as far as the term in x^2 . Hence, find an approximate value of $\sqrt{1.5}$. (06 marks)
- 10. Sketch the curve $y = \frac{2x^2 9x 18}{x^2 x 2}$ by clearly finding the turning points and the asymptotes. (12 marks)
- 11a) Find the magnitude and argument of the complex number $w = \frac{2}{1-3i} + \frac{i}{(2-i)^2}$. (06 marks)
- b) If k is a variable and z = 4k + 3(1-k)i, find:
- i) the locus of a point P(x, y) representing Z = x + yi. (03 marks)
- ii) the minimum value of |Z|. (03 marks)

12a) Evaluate:
$$\int_0^{\frac{\pi}{2}} \sin 2x \cos x dx$$
 (05 Marks)

b) Determine the values of P, Q and R such that $\frac{x^2 + 2x - 4}{x^2 + 2x - 3} = P + \frac{Q}{x + 3} + \frac{R}{x - 1}$. Hence,

evaluate
$$\int_{2}^{4} \frac{x^{2} + 2x - 4}{x^{2} + 2x - 3} dx$$
. (07 Marks)

DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

EcoleBooks

- 13a) The position vectors of points P and Q are $2\mathbf{i} 3\mathbf{j} + 4\mathbf{k}$ and $3\mathbf{i} 7\mathbf{j} + 12\mathbf{k}$ respectively. Determine;
 - i) the size of PQ. (03 marks)
 - ii) The Cartesian equation of PQ. (03 marks)
- b) Find the equation of the plane containing the points P and Q and the line $\mathbf{r} = \mathbf{i} - 4\mathbf{j} + t(2\mathbf{i} + \mathbf{j} - 3\mathbf{k}).$ (06 marks)
- 14. Prove that the equation of the normal at the point $P(at^2, 2at)$ on the

parabola $y^2 = 4ax$ is $tx + y = 2at + at^3$ and that it meets the parabola again at

$$Q(aT^2, 2aT)$$
 where $T = -t - \frac{2}{t}$. The tangents at P and Q meet at R. Prove that

if P is a variable point on the parabola, the locus of R is $y^2(x+2a)+4a^3=0$. (12 marks)

15a) Solve the equation:
$$\cos^{-1} 2x - \cos^{-1} x = \frac{\pi}{3}$$
. (05 marks)

b) Find the maximum and minimum values of the function $\frac{1}{3 + \sin x - 2\cos x}$ stating clearly the values of x. (06 marks)

16a) Solve the differential equation
$$\frac{dy}{dx} + y = e^{-x} \cos \frac{1}{2}x$$
 given that $y = -1$ when $x = 0$. (05 marks)

b) A kettle of hot water is cooling in a room where the room temperature is $15^{\circ}C$. The rate of cooling is proportional to the difference between the temperature of the water and the room temperature. Given that the water takes 10 minutes to cool from $75^{\circ}C$ to $45^{\circ}C$, find the temperature of the water after 20 minutes. (07 marks)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM