

P425/1

PURE MATHEMATICS

Paper 1

June 2016

 $2\frac{1}{2}$ hours

RESOURCE MOCK EXAMINATIONS, 2017

Uganda Advanced Certificate of Education

S.6

PURE MATHEMATICS

Paper 1

2 hours 30 minutes

INSTRUCTIONS TO CANDIDATES

Answer all questions in section A and any five in section B.

Write in blue or black ink only. You may use pencil for diagrams or graphs only.

All the necessary working must be clearly shown.

Silent non-programmable scientific calculators may be used.

SECTION A (40 marks)

Attempt all questions in this section.

1. If
$$x = \frac{3t}{3+t}$$
, $y = \frac{4t+1}{t-2}$ find $\frac{d^2y}{dx^2}$

- 2. Solve the simultaneous equations $2 \log_{10} y = \log_{10} 2 + \log_{10} x$ and $2^y = 4^x$.
- 3. Find the area enclosed between the curves $y = 2x^2 + 3$ and $y = 10x x^2$
- 4. Solve the equation $2\sin^{-1}(x/2) + \sin^{-1}(x\sqrt{2}) = \frac{\pi}{2}$.
- 5. Find the angle between the line $\frac{2-x}{-2} = \frac{y+1}{6} = \frac{3+z}{3}$ and plane 2x y 2z = 4
- 6. Given that the ratio of the roots of the equation ax + bx = c = 0 are p:q, show the $ac(p+q)^2 = b^2pq$.
- 7. Find value of the integral of $f(x) = \sin 2x \cos 3x$ from 0 to $\pi/2$.
- 8. Show that the circles $x^2 + y^2 16x 12y + 75 = 0$ and $5x^2 + 5y^2 32x 24y + 75 = 0$ touch each other find the equation of common tangent.

SECTION B

 a) In how many ways can the letters of the word PHOTOGRAPH be arranged in arrow? How many of these begin with and end with H
b) Find the number of ways in which a committee of 4 can be chosen from 6 boys and 6 girls.

Ecolebooks.com

- (i) IF it contains 2 boys and 2 girls
- (ii) Contain at least 1 boy and 1girl
- (iii) If at least 2 boys must be on the team
- 10. a) Find the region where the curve $y = \frac{x+1}{2x^2-x-1}$ does not pass. Hence determine the turning points.
 - b) State all the sysmptotes and sketch the curve.
- 11. a) By row reduction method solve the equations below

$$x + 3y - z = 4$$

$$2x + 4y + z = 8$$

$$3x + 6y + 2z = 10$$

- b) Solve the equation $3^{2x} + 3^{2x+1} + 8 = 0$
- 12. a) using binomial expansion of $(1+x)^{\frac{1}{2}}$ up to x^3 , find the value of $\sqrt{1.08}$ to 4 decimal places
 - b) The expression $x^7 4x^3 + 8$ is divided by x + 2 using synthetic approach. Find the remainder.

13. a)
$$\int_1^2 \frac{13x-52}{(3x-1)(x^2-3x-4)} dx$$

b)
$$\int_0^{\frac{2\pi}{3}} \frac{3dx}{5+4\cos x}$$

- 14. a) Prove that $\frac{a+b-c}{a+b+c} = \tan \frac{1}{2} A \tan \frac{1}{2} B$ given that ABC is a triangle of sides a, b and c.
 - b) Use De'Moivre's thm to prove that $tan5\theta = \frac{5tan\theta 10tan^3\theta + tan^5\theta}{1 10tan^2\theta + 5tan^4\theta}$
- 15. The parametric equations of two planes

$$r = \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ -2 \\ 1 \end{pmatrix} + s \begin{pmatrix} 0 \\ 3 \\ 2 \end{pmatrix}$$
and
$$r = \begin{pmatrix} 2 \\ 1 \\ -1 \end{pmatrix} + u \begin{pmatrix} 0 \\ 0 \\ 5 \end{pmatrix} + v \begin{pmatrix} -2 \\ 4 \\ 3 \end{pmatrix}$$

- a) Find the angle between the two plane
- b) Find the line of intersection in vector form between the planes

Ecolebooks.com

- c) Find the perpendicular distance from the point (1, 5, 1) and the line above.
- 16. a) The equation of the curve $x = \frac{t^2}{1+t^3}$ and $y = \frac{t^3}{1+t^3}$. Show that $\frac{dy}{dx} = \frac{3t}{2-t^3}$ and that $\frac{d^2y}{dx^2} = 48$ at $(\frac{1}{2}, \frac{1}{2})$.
 - b) Differentiate y = cosec(ax) from first principle

END