# **RESOURCEFUL MOCK 2017**

### Uganda Advanced Certificate of Education APPLIED MATHEMATICS TIME: 3 HOURS

#### **INSTRUCTIONS TO CANDIDATES**

- Attempt **all** the questions in section **A** and only **five** questions from section **B**
- Any additional question(s) answered will not be marked
- In numerical work, take g to be 9.8ms<sup>-2</sup>

## **SECTION A**

- 1. Two events A and B are such that P (A' $\cap$ B') = x, and P (B) =  $\frac{4}{7}$ . Using a Venn diagram, find the values of;
  - i) x
  - ii) P (A∩B)
- 2. Particle A of mass 2kg moves under the action of three forces,  $F_1$ ,  $F_2$  and  $F_3$  at a time t,

$$F_1 = (\frac{1}{4}t - 1)i + (t - 3)j N$$
  

$$F_2 = (\frac{1}{2} + 2)i + (\frac{1}{2}t - 4)j N$$
  

$$F_3 = (\frac{1}{4}t - 4)i + (\frac{3}{2}t + 1)j N$$

 $F_3 = (\frac{1}{4}t - 4)i + (\frac{3}{2}t + 1)jN$ , find the acceleration of the particle when t = 2 seconds.

- 3. A body of mass 8kg rests on a rough plane inclined at  $\Theta$  to the horizontal. If the coefficient of friction is  $\mu$ , find the least horizontal force in terms of  $\mu$ ,  $\Theta$  and g which will hold the body in equilibrium.
- 4. The random variable X has a probability function

$$f(x) = \begin{cases} K2^{x} ; & x = 0, 1, 2, 3 \\ 0 & \text{elsewhere} \end{cases}$$

Find;

- a. The value of the constant K
- b. E (x)
- 5. a) Show that the final velocity V of a body which starts with an initial velocity U and moves with uniform acceleration a consequently covering a distance x, is given by

$$W = (u^2 + 2ax)^{\frac{1}{2}}$$

b) Find the value of X in each if V =  $30 \text{ms}^{-1}$ , U =  $10 \text{ms}^{-1}$  and a =  $5 \text{ms}^{-2}$ 

#### Ecolebooks.com

6. Find the approximate value, to one decimal place of  $\int_0^1 \frac{dx}{1+x}$ , using the trapezium rule with five strips. [5mks]

| t     | 0    | 0.3  | 0.6  | 1.2  | 1.8  |
|-------|------|------|------|------|------|
| f (t) | 2.72 | 3.00 | 3.32 | 4.06 | 4.98 |

7. The table below shows the values of a continuous function f with respect to t

Using linear interpolation find;

| a. | f (t) when t = 0.9 | [3mks] |
|----|--------------------|--------|
| b. | t when f(t) = 4.48 | [2mks] |

8. Show that the equation  $f(x) = x^3 + 3x - 9$  has a root between x = 1 and x = 2. Using the Newton Raphson formula once, estimate the root of the equation rounded off to two significant figures. [5mks]

#### **SECTION B**

9. a) A block of wood of mass 0.52kg, is at rest on a smooth horizontal table. A bullet of mass 0.08kg is moving with horizontal speed of 30ms<sup>-1</sup>. The bullet strikes the block and becomes embedded in it. Find the speed of the block after impact.

b) Two bodies A and B have masses of 3kg and 4kg respectively. When A is moving with a velocity of  $(5i - 6j) ms^{-1}$ , it collides with B whose velocity is  $(2i+3j)ms^{-1}$ . Immediately after collision the velocity of B is  $5i ms^{-1}$ . Find the;

i) Velocity of A after the collision

ii) Loss in kinetic energy due to collision

- 10. a) A body of mass mkg lies on a rough plane inclined at  $\theta^0$  to the horizontal, when a force of  $\frac{mg}{2}$ N parallel to and up the plane is applied to the body, it is just about to move up the plane. When a force of  $\frac{mg}{4}$ N parallel to and down the plane is applied to the body, it is just about to move down the plane. Calculate correct to two decimal places the value of;
  - i) θ
  - ii) The coefficient of friction between the body and the plane.
- 11. a) A random variable X has the probability density function.

 $f(x) = \begin{cases} \frac{2}{3a}(X+a); & -a \le x \le 0\\ \frac{1}{3a}(2a-x); & 0 \le x \le 2a\\ 0 & \text{elsewhere} \end{cases}$ 

# Where a is a constant

#### Determine

- i) The value of a
- ii) The median of X
- iii) P(x < 1.5)/(x > 0)
- iv) The cumulative distribution function F (x), sketch the graph of F (x).
- 12. a) Two particles are moving towards each other, along a straight line. The first particle has a mass of 0.2kg and moving with a velocity of 4ms<sup>-1</sup>, and the second has a mass of a 0.4kg moving with a velocity of 3ms<sup>-1</sup>. On collision, the first particle reverses its direction and moves with a velocity of 2.5ms<sup>-1</sup>. Find the;
  - i. Velocity of the second particle after collision
  - ii. Percentage less in kinetic energy

b) The diagram shows particle A of mass 0.5kg attached to one end of a light inextensible string passing over a fixed pulley and under a movable light pulleyB. The end of the string is fixed as shown below;



- i. What mass should be attached at B for the system to be in equilibrium?
- ii. If B is 0.8kg, what are the accelerations of particle A and pulley B?
- 13. Forces of magnitude 3N, 4N, 4N, 3N and 5N act along the lines AB, BC, CD, DA and AC respectively, of the square ABCD whose side has a length of a units. The direction of the forces are indicated by the order of the letters.
  - a. Find the magnitude and direction of the resultant force
  - b. If the line of action of the resultant force cuts AB produced at E, find the length AE.
- 14. a) The numbers X and Y were estimated within maximum possible errors of  $\Delta X$  and  $\Delta Y$  respectively. Show that the percentage relative error in XY is

$$\left(\frac{\Delta X}{X} + \frac{\Delta Y}{Y}\right) x \ 100$$
 [5mks]

b) Obtain the range of values within the exact value of 3.551 x 2.71635 lies. [04]

c) Locate each of the three roots of the equation  $x^3 - 5x^2 + 5 = 0$  [3mks]

15. a) Use a graphical method to find a first approximation to the real root of  $x^3 - 3x + 4 = 0$ 

b) Use the Newton –Raphson method to find the root of the equation correct to 2 decimal places. [12mks]

16. a) Bag A contains 2 green and 2 blue balls, while bag B contains 2 green and 3 blue balls. A bag is selected at random and two balls drawn from it without replacement. Find the probability that the balls drawn are of different colours.

[6mks]

b) A fair die is rolled 6 times. Calculate the probability that;

- i. a 2 or 4 appears on the first throw,
- ii. four 5s will appear in the six throws [6mks]

END