P425/ 1
PURE
MATHEMATICS
Paper 1
August, 2019
3hrs

UNNA8 Lommunity

UNNASE MOCL EXAMINATIONS
 Uganda Advanced Certificate of Education PURE MATHEMATICS

Paper 1

3 hours

INSTRUCTIONS TO CANDIDATES:

- Attempt all the eight questions in Section \boldsymbol{A} and Not more than five from
- Section B.
- Any additional question(s) will not be marked.
- All working must be shown clearly.
- Silent non-programmabe calculators and mathematical tables with a list of formulae may be used.
- Graph papers are provided.

SECTION A: (40MARKS)
Answer all the questions in this Section.

1. Find the sum of the numbers between 5 and 250 which are exactly divisible by 4 .
(5marks)
2. Given that the line; $\frac{x-3}{4}=\frac{y-4}{-3}=\frac{z+3}{4}$ meets the plane $4 x-3 y-4 z=3$ at M. Find the coordinates of M .
3. Use the substitution $x=\sin \theta$ to find the integral; $\int \frac{2 x^{3}}{\sqrt{1-x^{2}}} d x$. (5marks)
4. Express $\tan \left(45^{\circ}+x\right)$ in terms of $\tan x$. Hence prove that; $\tan 75^{\circ}=2+\sqrt{3}$. (5marks)
5. Given $A(3,4)$ and $B(-2,3)$, find the equation of the locus of points $P(x, y)$ which divide $A B$ in the ratio 2:1.
(5marks)
6. A women football team manager intends to take 18 players for a tournament. The manager has 2 goal keepers, 8 defenders, 4 mid fielders and 8 strikers. In how many ways can the team be chosen if it must contain both goal keepers, atleast 3 midfielders and 7 strikers. (5marks)
7. Solve the differential equation; $\operatorname{cosec} x \frac{d y}{d x}=e^{x} \operatorname{cosec} x+3 x$.
(5marks)
8. Solve for x in the equation; $\log _{(x+3)}(2 x+3)+\log _{(x+3)}(x+5)=2$. (5marks)

> SECTION B (60MARKS)
> Attempt any five questions from this Section.
9. Given that $f(x)=\frac{x^{3}+2 x^{2}+61}{(x+3)^{2}\left(x^{2}+4\right)}$, express $f(x)$ in partial fraction. Hence evaluate; $\int_{0}^{1} f(x) d x$.
10. $P\left(a p^{2}, 2 a p\right)$ and $Q\left(a q^{2}, 2 a q\right)$ are two variable points on the parabola $y^{2}=$ $4 a x$. If $P Q$ subtends a right angle at the origin, prove that $p q=-4$.
a) Prove that $P Q$ passes through a fixed point on the axis of the parabola.
b) The tangents at P and Q meet at R, find the equation of the locus of R.
(6marks)
11. a) Differentiate $\tan ^{-1}\left(\frac{\sqrt{\operatorname{InX}}}{e^{2 x}}\right)$.
(6marks)
b) Evaluate the integral; $\int_{0}^{\frac{\pi}{6}} \frac{2 \cos \theta+\sin \theta}{\cos \theta-\sin \theta} d \theta$.
(6marks)
12. a) P is the foot of the perpendicular from the point $A(1,1,1)$ to the line $\frac{X-1}{2}=\frac{y-1}{1}=\frac{z-2}{1}$. Determine the perpendicular distance of A from the line to $4 d p^{\prime} s$.
(5marks)
b) Given the points $A(-1,2,3)$ and $P(2,3,4)$. If the point $B(a, 2 a, 3)$ lies on the plane $2 x-3 y+4 z+8=0$. Find the value of a and the angle between $A P$ and $A B$.
(7marks)
13. a) Solve the equation $\tan \theta-\cot \theta=-1$ for $0^{0} \leq \theta \leq 360^{\circ}$.
(5marks)
b) Prove that $\frac{\operatorname{Sin} 3 \theta}{1+2 \cos 2 \theta}=\operatorname{Sin} \theta$. Hence show that $\operatorname{Sin} 15^{0}=\frac{\sqrt{3}-1}{2 \sqrt{2}} . \quad$ (7 marks)
14. a) Prove that $\log _{a}^{b}=\frac{1}{\log _{b} a}$. hence solve the equation $\log _{2} x+\log _{x} 2=2.5$.
(5marks)
b) A polynomial is given by $P(x)=x^{3}+A x^{2}+x-6$. The ratio of the remainder when $P(x)$ is divided by $(X+1)$ to the remainder when divided by $(x-2)$ is -1 : 5 . find the value of A.
(7marks)
15. a) If $Z=\frac{1+i \sqrt{3}}{1-i \sqrt{3}}$, express Z in modulus argument form.
(5marks)
b) Use demoiver's theorem to prove that $2 \cos \theta=Z+\frac{1}{Z}$ then $2 \operatorname{cosn} \theta=Z^{n}+\frac{1}{Z^{n}}$. Hence solve the equation $5 Z^{4}-11 Z^{3}+6 Z^{2}-11 Z+5=0$.
16. a) Determine the nature of the turning points of the curve $y=x(1-x)^{2}$. (5marks)
b) The acceleration of a particle is proportional to $2 t-3$. If the velocity increases from $4 \mathrm{~ms}^{-1}$ to $8 \mathrm{~ms}^{-1}$ in the first 2 seconds of motion, find;
i) its initial acceleration
ii) the velocity after 5 seconds.
**** END ****

