P425/2 APPLIED MATHEMATICS Paper 2 August, 2019 3 HOURS

UNNASE MOCK EXAMINATIONS

Uganda Advanced Certificate of Education

APPLIED MATHEMATICS

PAPER 2

3 HOURS

INSTRUCTIONS TO CANDIDATES

Answer all the eight questions in Section A and any Five from Section B.

All necessary working **must** be shown clearly.

Begin each answer on a fresh page.

In numerical work, take g to be $9 \cdot 8ms^{-2}$.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

SECTION A: (40 MARKS)

Answer **all** the questions in this section.

- 1. Given that P(A) = 0.59, P(B) = 0.45 and $P(A \cap B) = 0.15$, find: (i) **P(A U B)** (ii) $P(\overline{A}/\overline{B})$ (05 marks)
- 2. A particle moving with S·H·M has velocity $v^2 = 16(9 x^2)$ when at a distance \mathbf{x} from the centre of its path **O**. Find the (i) amplitude and period of its motion (ii) speed as it passes **O**
- 3. Use the trapezium rule with **4** ordinates to evaluate the integral of *xcosx* between **60**° and **90**° correct to **4** decimal places (05 marks)
- 4. A uniformly distributed $\mathbf{r} \cdot \mathbf{v} \mathbf{X}$ on the interval $[\alpha, \beta]$ is illustrated as follows:

$$f(x)$$

$$\frac{1}{\beta - \alpha}$$

$$y = \frac{1}{\beta - \alpha}$$

$$\alpha \qquad \beta \qquad x$$

Given that **X** has a lower quartile of **5** and an upper quartile of **9**, use a graphical procedure to find the values of α and β (05 marks)

- 5. Forces of magnitude **5N** and **PN** are acting away from each other at an angle of **60°**. Given that their resultant is **7N**, find the:
 - (i) value of **P**
 - (ii) angle **P** makes with the resultant

(05 marks)

6. The table below shows the prices of items for the years **2016** and **2017**

Item	PRI			
	IN	IN	Weights	
	2016	2017		
Α	25	28	5	
В	x	У	3	
С	30	36	2	

(05 marks)

Ecoletooka

Given that the simple aggregate price index and weighted mean price index for **2017** based on **2016** are **120** and **119** respectively, find the values of \boldsymbol{x} and \boldsymbol{y} (05 marks)

7. The iterative formula $x_{n+1} = \frac{1}{x_n^2} - 1$ or $x_{n+1} = \frac{1}{\sqrt{1+x_n}}$ is to

be used as a solution to an equation. Using $x_o = 0.75$, show without iterating that one of the choices is not suitable

- 8. At **10:30 am**, the position vector of ship **P** relative to ship **Q** at time **t** hours is ${}_{p}r_{q} = (14 - 3t)i + (12 - 5t)j km$
 - (i) Write down the velocity of **P** relative to **Q** (01 mark) (04 marks)
 - (ii) Find the time at which the ships are closest together.

SECTION B (60 Marks)

Answer any *five* questions in this section. All questions carry equal marks.

9. The weights in kg of **25** boys were as follows:

0	0					
Weights	20 – 24	25 – 29	30	31 – 34	35 – 49	
Frequency	3	5	2	6	9	
(a) Calculate (the :					_
(i) mean weight						
(ii) number	of boys we	ighing betw	een 26 .	5kg and 32	·5kg	(02 marks

- (b) Display the data on a histogram and use it to estimate the mode (07 marks)
- 10. A car of mass **mkg** has a maximum speed of $ukmh^{-1}$ up a hill inclined at an angle θ to the horizontal. It attains a maximum speed of $vkmh^{-1}$ when descending the same hill with the engine cut off. If the resistance to motion is proportional to the square of the speed,
 - (i) Show that the power output of the engine is $\frac{5umg}{18m^2}(u^2 + v^2)sin\theta$
 - (ii) Find the power output of the engine if **m = 900kg**, $u = 36kmh^{-1}$, $v = 40 km h^{-1}$ and $sin\theta = \frac{1}{21}$ (12 marks)
- 11. (a) The lower limit of a measurement is **4.05** and its upper limit is **6.75.** Find the relative error of the measurement (05 marks) (b) A decimal number **x** was approximated with an error $\Delta \mathbf{x}$. Show

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

(05 marks)

EcoleBooks

(06 marks)

(04 marks)

that the relative error in
$$x^p$$
 is $\frac{|p||\Delta x|}{|x|}$. Hence if **x** = 2.50, find
the percentage error in x^3 (07 marks)

- 12. A ball projected at an angle with a speed of $14\sqrt{10}ms^{-1}$ from the top of a tower **200m** high hits the ground at a point **200m** away from the foot of the tower.
 - (i) Show that the two possible directions of projection are at right angles to each other (06 marks)
 - (ii) Find the two possible times of flight
- 13. A continuous r·v \boldsymbol{X} has the following p·d·f

$$f(x) = \begin{cases} \lambda x(x-2) , & 2 \le x \le 3 \\ 0 , & otherwise \end{cases}$$

- (a) Find the:
- (i) Value of λ (04 marks)(ii) Cumulative distribution function of **X**(04 marks)
- (b) Show that the median of **X** lies between 2.70 and 2.75
- 14. (a) Use Newton Raphson formula to show that the root of the equation

$$x^{3} + 2^{x} = 0$$
 is $x_{n+1} = x_{n} - \frac{x_{n}^{3} + 2^{x_{n}}}{3x_{n}^{2} + 2^{x_{n}} \ln 2}$ (02 marks)

- (b) Draw a flow chart that:
- (i) Reads the initial approximation x_o .

(ii) Computes and prints the root in (a) above correct to **3** decimal places (06 marks)

- (c) Perform a dry run for your flow chart using $x_o = -0.7$ (04 marks)
- 15. A uniform ladder **PQ** of length **2a** and weight **w** is inclined at an angle of $tan^{-1}2$ to the horizontal with its end **Q** resting against a smooth vertical wall and end **P** on a rough horizontal ground with which the coefficient of friction is $\frac{5}{12}$. If a boy of weight **W** can safely ascend a distance **x** up this ladder before it slips,

(i) show that
$$x = \frac{a(2w+5W)}{3W}$$
 (09 marks)

(ii) deduce that the boy can only reach the top of the ladder if $\mathbf{W} = 2\mathbf{w}$

16. (a) A family has 25 children. The probability of having a boy is 0.64. Find the probability of having more girls than boys (05 marks)
(b) A random sample of 50 readings taken from a normal population

gave the following data: $\sum x = 163$ and $\sum x^2 = 548$. Calculate the: (i) unbiased estimate for the population variance (02 marks)

(ii) **99%** confidence interval for the population mean (05 marks)

**** END ****