P425/ 1
PURE MATHEMATICS
PAPER 1
JULY 2017
3 HOURS

> ST. JOSEPH OF NAZARETH HIGH SCHOOL UGANDA ADVANCED CERTIFICATE OF EDUCATION INTERNAL MOCK EXAMINATION 2017
> PURE MATHEMATICS
> PAPER 1
> 3 HOURS

INSTRUCTIONS:

- Answer all the questions in Section A and only five questions in Section B.
- Show all necessary working clearly.
- Silent, non-programmable scientific calculators and mathematical tables with a list of formula may be used.

SECTION A (40 MARKS)

Attempt all questions from this section.

1. If $\frac{2+\sqrt{2}}{2-\sqrt{2}}+\frac{1-\sqrt{2}}{1+\sqrt{2}}=\boldsymbol{a}+\boldsymbol{b} \sqrt{2}$ Find the values of a and b.
(5 marks)
2. The ninth term of an arithmetic progression is twice the third term, and the fifteenth term is 27 . Evaluate the sum of the first 25 terms of the series. (5 marks)
3. Differentiate $x^{\cos x}$ with respect to x.
4. Evaluate the definite integral $\int_{0}^{1} x \tan ^{-1} x d x(5$ marks $)$
5. Solve the equation $3 \cos 2 \theta-7 \cos \theta-2=0$ for $0^{\circ} \leq \theta \leq 360^{\circ}$.
(5 marks)
6. Find the equation of the circle which touches the line $3 x-4 y=3$ at the point $(5,3)$ and passes through the point $(-2,4)$. (5 marks)
7. The roots of the equation $x^{2}+p x+7=0$ are α and β. Given that $\alpha^{2}+\beta^{2}=22$, find the possible values of p.
(5 marks)
8. Prove that $\log _{a} x=\frac{1}{\log _{x} a}$. Hence solve the equation $\log _{10} x+\log _{x} 100=3$ (5 marks)

SECTION A (60 MARKS)

Answer any five questions from this section.
9. (a) If $z=x+i y$, determine the Cartesian equation of the locus given by

$$
\begin{equation*}
\left|\frac{(z-1)}{(z+1-i)}\right|=\frac{2}{5} \tag{6marks}
\end{equation*}
$$

(b) Sketch the loci defined by the equations:
(i) $\arg (z+2)=\frac{-2 \pi}{3}$
(ii) $\arg \left(\frac{z-3}{z-1}\right)=\frac{\pi}{4}$
(6 marks)
10. (a) Prove that $\sin 4 \theta=\frac{4 \tan \theta\left(1-\tan ^{2} \theta\right)}{\left(1+\tan ^{2} \theta\right)}(6 \mathrm{marks})$
(b) Solve the equation $\tan ^{-1}(1+x)+\tan ^{-1} 1-x=\frac{\pi}{4}(6$ marks $)$
11. Find the coordinates of any maxima, minima and points of inflexion of the function $y=\frac{3 x-1}{(4 x-1)(x+5)}$ that it may have. Hence sketch the curve $y=\frac{3 x-1}{(4 x-1)(x+5)}$
(12 marks)
12. (a) Find $\int x \sqrt{\left(1-x^{2}\right)} d x$
(b) Express $\int_{0}^{1} \frac{x^{2}+x+1}{(x+1)\left(x^{2}+1\right)} d x=\frac{3}{4} \ln 2+\frac{\pi}{8}(9$ marks $)$
13. (a) Find the particular solution of the differential equation $x y \frac{d y}{d x}=x^{2}+y^{2}$, Given that $y=2$, when $x=1(6$ marks)
(b) A lump of radioactive substance is disintegrating. At time t days after it was first observed to have the mass of 10 grams and $\frac{d m}{d t}=-k m$ where k is a constant.Find the time, in days for the substance to reduce to 1 gram in mass, given that its half -life is 10 days. (The half - life is the time in which half of any mass of the substance will decay.)
(6 marks)
14. (a) Find the values of m for which the line $y=m x$ is a tangent to the circle $x^{2}+y^{2}+f y+c=0$ (3 marks)
(b) Find the points where the line $2 y-x+5=0$ meets the circle $x^{2}+y^{2}-4 x+3 y-5=0$ Obtain the equation of the tangents and normal to the circle at these points(6 marks)
15. (a) Show that the points A, B and C with position vectors $2 \hat{i}+3 \hat{\jmath}, 4 \hat{i}+5 \hat{\jmath}, 6 \hat{i}+9 \hat{\jmath}$ respectively are the vertices of a triangle. Find the area of the triangle. (5 marks)
(b) Find a vector r perpendicular to the vectors $s=5 \hat{i}+3 \hat{\jmath}+k$ and $t=-i ́+3 \hat{j}+2 \mathrm{k}$.
Hence, find the equation of a plane passing through the point $A(5,-1,-2)$ and parallel to s and t. Find the angle between the plane and the line
$\frac{x-2}{1}=\frac{y-2}{2}=\frac{z-2}{3}(7$ marks $)$
16. (a) If $y=\sin ^{-1}\left(\frac{x}{\sqrt{1+x^{2}}}\right)$ show that $\frac{d y}{d x}=\frac{1}{1+x^{2}}$
(6 marks)
(b) Use the Maclaurin's theorem to find the first four terms of the expansion of $e^{x} \sin x$.

For $\cos \theta=-\frac{1}{2}$

$$
\begin{aligned}
& \left.\theta=10 s^{-1} \lambda^{-\frac{1}{2}}\right]^{\circ} \\
& \theta=120^{\circ}, 240^{\circ}
\end{aligned}
$$

Fror $\cos \theta=\frac{5}{3}$

ohing the tepution of iteciride

$$
\begin{aligned}
& x^{2}+y^{2}+2 g x+2 f y+c=0 \\
& A t \operatorname{pint}(5,3) \\
& \Rightarrow \log +6 f+c=-34-\text {-14) } \\
& A t \operatorname{tint}(-2,4) \\
& -45+8 f+t=-20-(2) \\
& \text { ufins } 0-(2) \\
& 149-2 f=-14 \\
& \Rightarrow 7 g-f=-7
\end{aligned}
$$

or line $3 x-4 y=3$
5HS graditnt $=3 / 4$
for $x^{2}+y^{2}+2 g x+2 f y+c=0$ $2 x+2 y \frac{\partial y}{\partial x}+2 g+2 f \frac{\partial y}{\partial x}=0$

$$
1 y+\delta J \frac{d y}{\partial x}=-x-9
$$

$$
\begin{aligned}
& \frac{d y}{d x}= \\
& \text { print } 15,3 \\
& =-\frac{5-9}{3+f} \\
& 9+3 x=-2
\end{aligned}
$$

$$
\begin{align*}
& \Rightarrow 9+38=-20-49 \tag{4}\\
& \Rightarrow 4 a+35=-29
\end{align*}
$$

$$
\Rightarrow 49+38=-29
$$

ving 3 (3) +4

$$
\begin{aligned}
& 219-3 f=-21 \\
& +49+3 f=-29 \\
& 255=-50 \\
& \text { vbst } 9=-2 \text { in (3) }
\end{aligned} \mathrm{m}
$$

Jribst $9=-2$ in (3)

$$
-14-8=-7
$$

Jubstituting for 5 and 8 in (1)

$$
\begin{gathered}
10(-2)+6(-7)+c=-34 \\
\Rightarrow c=28
\end{gathered}
$$

\therefore The ten of पnt virde

$$
\text { is } x^{2}+y^{2}-4 x-14 y^{2}+28=0
$$

$$
\begin{aligned}
& \text {. } \\
& \text { put } x=1 \Rightarrow 3=2 A+1 B+C \times 2 \\
& 3=2 \times \frac{1}{2}+2\left(B+\frac{1}{2}\right) \\
& 2=2 \beta+1 \\
& 2 B=1 \\
& B \leq \frac{1}{2} \\
& \begin{array}{l}
\therefore \frac{x^{2}+x+1}{(x+1)\left(x^{2}+1\right)}=\frac{1}{2(x+1)}+\frac{x^{2}+1}{2\left(x^{2}+1\right)} \\
\int_{0}^{1} \frac{x^{2}+x+1}{2 x+1)\left(x^{2}+1\right)} d x=\int_{0}^{\left(\frac{1}{2(x+1)}+\frac{x+1}{2\left(x^{2}+1\right)}\right) d x}
\end{array} \\
& =\frac{1}{2}[\ln (x+1)]_{0}^{1}+\frac{1}{2} \int_{0}^{2} \frac{x+1}{x^{2}+1} d x M \\
& =\frac{1}{2} \ln 2+\frac{1}{2} \int_{0}^{1}\left(\frac{x}{x^{2}+1}-\frac{1}{x^{2}+1}\right) d x \\
& \left.=\frac{1}{2} \ln 2+\frac{1}{4}\left[\ln \left(x^{2}+1\right]\right]^{2}+\frac{x^{2}}{2}+\sqrt{2}-2 x\right]_{0}^{1} \\
& =\frac{1^{2}}{2} \ln 2+\frac{1}{4} \ln 2+\frac{1}{2} \tan ^{-1} 11 M_{1} \\
& =\frac{1}{4}(2 \ln 2+\ln 2)+\frac{1}{2} \times \frac{\pi}{4} \\
& =\frac{1}{4}(\ln 4+\ln 2)+\frac{5 \pi}{8} \\
& =\frac{1}{4} \ln 8+\frac{\pi}{8} 2^{3} \\
& =\frac{1}{4} \ln 2^{3}+\frac{2 \pi}{8} \\
& =\frac{3}{4} \ln 2+\frac{\pi}{8} B A
\end{aligned}
$$

$$
\begin{aligned}
& \text { SOLUTION } \\
& k \frac{d m}{\partial t} \Rightarrow-k m \\
& \int \frac{\partial m}{m}==-k m d t \\
& \Rightarrow=-k d t
\end{aligned}
$$

$$
\Rightarrow \operatorname{lnm}_{m} \leq-k t+c \Omega \quad m_{1}
$$

$$
w h \tan t=0, m=10, \Rightarrow c=\ln 10
$$

$$
\therefore \ln m=-k t+\ln 10-\text {-(1) }
$$

taif life is io days
\Rightarrow when $t=10, m=\frac{1}{2} \times 10=5$ graws.

$$
\text { Wht } t=10, m^{2}=59
$$

-ten ; bt comes

$$
\begin{gathered}
\ln 5=-10 k+\ln 10 \\
\operatorname{lok}=\ln 10-\ln 5 \\
10 k=102 \\
k=92102
\end{gathered}
$$

$$
F=9 n \text { is butconcs }
$$

$$
\ln m=-\frac{t}{10} \ln 2 f+\ln 10
$$

$$
\text { whtn } m=1, t=\text { ? }
$$

ten (2) be comes

$$
\left.\begin{aligned}
& \text { tqn }(2) \text { betones } \\
& \ln 1=-\frac{t}{10} \ln 2+\ln 10 \\
& \frac{t n}{10} \ln 10-\ln 1 \\
& \frac{t}{10} \ln 2=\ln 10 \\
& t=\frac{\ln 10}{\ln 2} \\
& t=\frac{2.302}{0.693} \\
& t=33.2 d a y s
\end{aligned} \right\rvert\, \text { Abshinting } m=1
$$

fin of tie normal

$$
\begin{aligned}
& y-0=(x-5) \frac{1}{2} \\
& 2 y=x-5
\end{aligned}
$$

At the pint $(-1,-3), \frac{d y}{d x}=\frac{4+2}{2 x^{-3}+3}=-2$ Eq of U ti tangent

$$
\begin{gathered}
y+3=(x+1)-2 \\
y+3=-2 x-2 \\
y+2 x+5=0
\end{gathered}
$$

En of lite normal

$$
\begin{gathered}
y+3=(x+1) \cdot \frac{1}{2} \\
2 y+6=x+1 \\
2 y-x+5=0
\end{gathered}
$$

He ∂ be dirtechonal vector or vie Une

$$
\begin{aligned}
& \binom{-11}{18} \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\sqrt{3^{2}+-11^{2}+18^{2}} \cdot \sqrt{1^{2}+2^{2}+3^{2}} \sin \theta \theta-M! \\
& 2-22+54=\sqrt{254} \cdot \sqrt{118} 6, \theta
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow d=\underline{i}+2 j+3 k \\
& r_{n} \cdot \partial_{n}=\left|r_{1}\right|\left|d_{-1}\right| \sin \theta \\
& \left(\begin{array}{c}
3 \\
-11 \\
18
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)=\sqrt{3^{2}+-11^{2}+18^{2}} \cdot \sqrt{1^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 35=\sqrt{6,356} \operatorname{tin} \theta \\
& \sin \theta=\frac{35}{\sqrt{6356}} \\
& \theta=\operatorname{hin}^{-1} \frac{35}{\sqrt{6356}} \\
& \theta=\operatorname{kn}^{-1}(0.439012) \\
& \theta=26.04^{\circ} \text {. }
\end{aligned}
$$

