ST. JOSEPH OF NAZARETH HIGH SCHOOL

UGANDA ADVANCED CERTIFICATE OF EDUCATION INTERNAL MOCK EXAMINATION 2017

SUBSIDIARY MATHEMATICS S475/ 1

PAPER 1

TIME: 2HOURS 40 MINUTES

INSTRUCTIONS TO CANDIDATES:

- Answer all the eight questions in section \mathbf{A} and any four questions from section B.
- Any additional question (s) answered will not be marked.
- Each question in Section \mathbf{A} carries 5 marks while each question in Section B carries $\mathbf{1 5}$ marks.
- All working must be shown clearly.
- Begin each answer on a fresh page.
- Graph paper is provided.
- Silent non - programmable scientific calculators and mathematical tables with a list of formulae may be used.
- Take $\mathbf{g}=\mathbf{9 . 8} \mathbf{~ m s}^{-2}$

SECTION A (40 MARKS)
Answer all the questions in this Section.

(05 marks)
2. Find the number of even numbers containing one or more digits that can be formed from digits; $2,3,4,5$ and 6 if no digit is repeated.
(05 marks)
3. If the roots of the equation $2 x^{2}-7 x+1=0$ are \propto and β; find the quadratic equation whose roots are $\frac{\mathbf{1}}{\alpha^{2}}$ and $\frac{\mathbf{1}}{\boldsymbol{\beta}^{2}}$
(05 marks)
4. The table below shows the cost per kg of some items commonly used by a certain family.

Item	Bread	Rice	Beans	Millet	Salt
Cost per kg	2500	2800	2000	3000	500

Using the price of beans as the base price, calculate the cost of living index and comment on your results.
(05 marks)
5. When the polynomial $p(x)=6 x^{3}+a x^{2}+b x+4$ is divided by $x+1$; the remainder is $\mathbf{- 1 5}$ and when divided by $\boldsymbol{x}-\mathbf{3}$;the remainderis $\mathbf{4 9}$. Find the values of \boldsymbol{a} and \mathbf{b}. (05 marks)
6. The yields per hectare of maize and the rains received on various farms in a district are given in the table below.

Farms	A	B	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}	\mathbf{G}	\mathbf{H}
Rain (in mm)(x)	1050	642	1033	1139	570	873	1066	1250
Yield per hectare (in thousand kg's)(y)	7.6	4.5	5.5	4.0	5.2	6.0	7.1	5.9

(i) Calculate the rank correlation coefficient between \boldsymbol{x} and \boldsymbol{y}.
(ii) Comment on the results
7. Given that vectors; $a=-2 \hat{\imath}+4 \hat{\jmath} ; b=-5 i ́+10 \hat{\jmath}$ and $\boldsymbol{c}=-9 \hat{i}-12 \hat{\jmath}$. Find the angle between vector $(\boldsymbol{a}+\boldsymbol{b})$ and vector $\left(\frac{-\mathbf{1}}{\mathbf{3}} \boldsymbol{c}\right)$.
(05 marks)
8. Two particles of masses $\mathbf{3} \mathbf{k g}$ and $\mathbf{5} \boldsymbol{k g}$ are connected by a light inextensible string passing over a smooth pulley. Find the common acceleration and tension in the string. (05 marks)

SECTION B (60 MARKS)

9. (a) The diagram below shows three forces; " $F^{\prime \prime} N ; \mathbf{1 2 N}$ and $\mathbf{1 6 N}$ acting on a particle. If the forces are in equilibrium; find the values of;
(i) Force \boldsymbol{F}
(ii) angle $\boldsymbol{\theta}$

(07 marks)
(b) In a rectangle $\mathbf{P Q R S} ; \mathbf{P Q}=\mathbf{8 m}$ and $\boldsymbol{P R}=\mathbf{1 7 m}$. Forces of magnitudes; $\mathbf{6 N}, 16 N, 5 N, 14 N$ and $10 N$ act in the directions of the letters; PQSR, RQ, PS and $\boldsymbol{Q S}$ respectively. Taking $\boldsymbol{P Q}$ as the horizontal; find the magnitude and direction of the resultant force. (08 marks)
10. (a) Given that $2 \boldsymbol{\operatorname { s i n }}(A-B)=\sin (A+B)$;
(i) Show that $\boldsymbol{\operatorname { t a n }} \boldsymbol{A}=\mathbf{3} \boldsymbol{\operatorname { t a n }} B$
(ii) Determine the possible values of \boldsymbol{A} in (i) above between $\mathbf{- 1 8 0}{ }^{\circ}$ and $\mathbf{1 8 0}$ if $\boldsymbol{B}=\mathbf{3 0}^{\circ}$
(06 marks)
(b) Solve the equation $2 \sin 2 \boldsymbol{x}-\cos \mathbf{2 x}=\mathbf{1}$; for $\mathbf{0}^{\circ} \leq \boldsymbol{x} \leq \mathbf{3 6 0}^{\circ}$. (06 marks)
(c) Without using tables or calculator show that; $\boldsymbol{\operatorname { c o s }} 75^{\circ}=\frac{\sqrt{2}(\sqrt{3}-1)}{4}(03$ marks $)$
11. A continuous random variable x has a probability density function given as;

$$
f(x)= \begin{cases}k x & ; \quad 0 \leq x \leq 1 \\ \frac{k x}{2} & ; 1 \leq x \leq 2 \\ 0 & ; \quad \text { otherwise }\end{cases}
$$

Find the;
(a) Value of \boldsymbol{k}
(05 marks)
(b) Median of \boldsymbol{x} (05 marks)
(c) $p\left(\frac{1}{2} \leq x \leq \frac{3}{2}\right)$
(05 marks)
12. The gradient of a curve at point $\boldsymbol{A}(\boldsymbol{x}, \boldsymbol{y})$ is $\mathbf{4} \boldsymbol{x}+3$. If point $\boldsymbol{B}(\mathbf{3}, 25)$ lies on the curve.
(05 marks)
(a) Find the equation of the curve.
(b) Determine the coordinates and nature of its turning points hence sketch the curve.
(c) Find the area enclosed by the curve and the x-axis.
13. A salt factory sells salt in bags of mean weight $50 \mathbf{k g}$ and variance 6.25 kg . Given that the weights of the bags are normally distributed; find the;
(a) Probability that the weight of any bag selected at random lies between 51.5 kg and 53 kg .
(b) Percentage of bags whose weights;
(i) exceeds $\mathbf{5 4 \boldsymbol { k g }}$
(ii) lies between 46.58 kg and 55.58 kg .
(07 marks)
(c) Calculate the number of bags that will be rejected out of $\mathbf{1 0 0 0} \mathbf{b a g s}$ purchased for weighing below 45 kg .
14. The weights of fish in kg trapped in river Limpopo are given below;

5.1	4.7	6.2	4.4	6.5	4.1	6.4	5.7	11.2	6.5
6.1	4.8	9.2	5.9	8.1	5.1	4.9	7.9	8.4	1.1
7.1	5.1	6.3	7.8	7.2	0.5	8.3	5.1	3.6	8.9
6.6	4.2	12.1	8.1	10.2	9.1	6.5	8.3	9.0	9.2
8.4	7.3	7.5	6.1	4.9	8.0	7.8	5.8	4.3	2.8

(a) Make a grouped frequency distribution table of these weights starting with a class of $\mathbf{0 . 0 - 1 . 9}$
(b) State the;
(i) Class interval
(ii) Modal class
(c) Calculate the mean weight
(d) Draw an " \boldsymbol{O} " give and use it to estimate the;
(i) $\quad \mathbf{7 0}^{\boldsymbol{t h}}$ percentile
(ii) quartile deviation
~END~

SUCCESS IS A STRUGGLE!

ST.JOSEPH OF NAZARETH HIGH SCHOOL KAVULE - MPIGI

EXAMINATIONS ANSWER BOOKLET
student's Name ...IN.T ER R AR MOCK EXAMS, 2017
Class \qquad S: 6.

Index No. \qquad
Signature: \qquad Subject \qquad SUB -MATHS

FOR OFFICIAL USE ONLY

ST.JOSEPH OF NAZARETH HIGH SCHOOL KAVULE - MPIGI

Student's Name \qquad
Class \qquad Index No.
Signature: \qquad Subject \qquad
NO

$$
\begin{aligned}
& 2 x^{2}-7 x+1=0 \\
& x^{2}-7 / x+1 / 2=0 \\
& x+k=7 / 2 \quad \text { ak }=1 / 2
\end{aligned}
$$

ST.JOSEPH OF NAZARETH HIGH SCHOOL KAVULE - MPIGI

Student's Name \qquad
Class \qquad Index No. \qquad
Signature: \qquad Subject \qquad
NO 4
\qquad $=\frac{\left(\frac{2500}{2000}+\frac{2500}{2000}+\frac{2000}{2000}+\frac{3000}{2000}+\frac{500}{2000}\right) \times 100}{5}$
\qquad

ST.JOSEPH OF NAZARETH HIGH SCHOOL KAVULE - MPIGI

Student's Name \qquad
Class \qquad Index No.
Bignature: \qquad Subject \qquad

$$
P(x)=\begin{array}{ll}
& \text { NOS } \\
& 6 x^{3}+a x^{2}+b x+4 \\
x+1 . \quad R=-15
\end{array}
$$

$$
x+1=0
$$

$$
\pi=-1
$$

$$
P(-1)=6(-1)^{3}+9(-1)^{2}+b(-1)+4=-15
$$

$$
=-6+a-b+4=-15
$$

$$
9-6=-15-4+6
$$

$$
a-5=-13
$$

(1) $?$

$$
x-3=0
$$

$$
x=3 \quad R=49
$$

$$
P(3)=6(3)^{3}+4(3)^{2}+6(3)+4=49
$$

$$
\begin{gathered}
162+9 a+3 b 14=49 \mathrm{~m} \\
99+3 b=49-4-162
\end{gathered}
$$

$$
99+3 b=49-4-162
$$

$$
99+3 b=-117
$$

-5月ving

$$
\begin{aligned}
9(9-b & =-13 \\
99+7 b & =-117 \\
99-9 b & =-117 \\
99+3 b & =-117 \\
-12 b & =0 \\
b & =047 \\
9-b & =-13 \\
9-0 & =-13 \\
9 & =-1307
\end{aligned}
$$

P.g.6)

ST.JOSEPH OF NAZARETH HIGH SCHOOL KAVULE - MPIGI

Student's Name \qquad
Class \qquad Index No.
Slgnatuxe: \qquad Subject \qquad

$$
\begin{aligned}
f & =1-\frac{6 \sum d^{2}}{n\left(n^{2}-1\right)} \\
& =1-\frac{6 \times 68}{8\left(8^{3}-1\right)} m^{m} \\
& =1-\frac{408}{504} \\
& =0.1905 \mathrm{~d}
\end{aligned}
$$

There is - veng fou forinu lineor cerreletion between pain and foec for heetare Ay

ST.JOSEPH OF NAZARETH HIGH SCHOOL KAVULE - MPIGI
\qquad
Class \qquad Index No. \qquad
Signature: \qquad Subject \qquad
signature: NO 7

$$
a=-2 i+6 j \quad b=-5 i+10 j \quad c=-9 i-12 i
$$

$$
(9+3)=(-2 i+4 j)+(-5 i+10 i)
$$

$$
=-7 i+14 j 8
$$

$$
\left(-\frac{1}{3} c\right)=-1 / 3(-9 i-12 j)
$$

$$
=3 i+4 j
$$

$$
\begin{aligned}
|-7 i+14 j| & =\sqrt{(-7)^{2}+14^{2}} \\
& =\sqrt{245}
\end{aligned}
$$

$$
|3 i+4 j|=\sqrt{3^{2}+y^{2}}
$$

$$
=\sqrt{9+16}
$$

$$
=\sqrt{25}=5 R
$$

$$
\begin{aligned}
(-7 i+14) \cdot(3 i+4) & =|9||h| \cos \theta \\
(-7 \times 3)+(4 \times 14) & =5 \sqrt{245} \cos \theta \\
-21+56 & =5 \sqrt{245} \cos \theta
\end{aligned}
$$

$$
\begin{aligned}
-21+56 & =5 \sqrt{245} \mathrm{cr} \\
35 & =\sqrt{245} \cos 0
\end{aligned}
$$

$$
\cos \theta=35
$$

$$
\begin{aligned}
& \theta=\cos ^{-1}\left(\frac{25}{5 \sqrt{2}}\right. \\
& \theta=63.4
\end{aligned}
$$

ST.JOSEPH OF NAZARETH HIGH SCHOOL KAVULE - MPIGI

Student's Name \qquad
Class. \qquad Index No.
Signature: \qquad Subject \qquad $\mathrm{Pg}(8)$

$$
\begin{equation*}
5 g-T=5 a \tag{I}
\end{equation*}
$$

\qquad

$$
T-3 J=3 a
$$

Tn (i) of (ii)

$$
\begin{gathered}
s g-A+A-3 g=5 q+3 a \\
s g-3 g=5 a \\
\frac{2 g}{8}=\frac{5 a}{a} \\
a=0.25 g \mathrm{~ms}^{-2} \text { or } 2.45 \mathrm{~ms}^{2} \\
T=39+3 g \\
T=3 \times 0.25 g+3 g \\
T=3.75 \mathrm{~m} N
\end{gathered}
$$

ST.JOSEPH OF NAZARETH HIGH SCHOOL
KAVULE - MPIGI
Student's Name \qquad
Class \qquad Index No.
Signature: \qquad Subject \qquad B(9).

Ervaring vertzed forces

$$
F \cos \theta+12 \cos 20=16-10 B
$$

Farr $=16-12 \cos 20$
Eqraning honzonru fores

$$
\begin{equation*}
12 \sin 2 \theta=F \sin \theta \tag{10}
\end{equation*}
$$

$$
\frac{\frac{F \sin \theta}{F \cos \theta}}{\tan \theta}=\frac{12 \sin 20}{16-12 \cos 20}
$$

$$
\theta=\tan ^{-1}(0.868 e 6)
$$

$$
\theta=41^{\circ}
$$

$$
\begin{aligned}
& F \sin \theta=12 \sin 20 \\
& \frac{F \sin 41}{\sin 41}=\frac{12 \sin 20}{\sin 41}
\end{aligned}
$$

$$
F=6.2559 \mathrm{~N}
$$

ST.JOSEPH OF NAZARETH HIGH SCHOOL
KAVULE - MPIGI
Student's Name \qquad
Class. \qquad Index No.
Signature: \qquad Subject \qquad

Certzal forces
$10 \sin 45+14-5 \mathrm{my}$
16.0711 N

Honiara forces

ST.JOSEPH OF NAZARETH HIGH SCHOOL
KAVULE - MPIGI
Student's Name \qquad
Class \qquad Index No.
Signature: \qquad Subject \qquad

- NO 10
a) $\quad 2 \sin (A-B)=\sin (A+B)$
\qquad
$2 \sin A \cos B-2 \cos A \sin B=\sin \cos B+\cos A \sin B$
$2 \sin A \cos B-\sin A \cos B=\cos A \sin A+2 \cos A \sin A$
$\frac{\sin A \cos \pi}{\cos A}=\frac{3 \cos A \sin B m}{\cos A}$
$\frac{\tan A \cos B}{\cos B}=\frac{3 \sin B}{\cos B} m$
$\tan A=3 \tan B A \quad B=30$
$\tan A=3 \tan 3 D$
$\tan A=61.73205 \mathrm{my}$
$A=16 \operatorname{cin}^{\circ}(1.73205)$
$A=60^{\circ} A$
$360-60^{2}$
$A=-60^{\circ}, 60^{\circ}$

ST.JOSEPH OF NAZARETH HIGH SCHOOL
KAVULE - MPIGI
Student's Name \qquad
Class \qquad Index No.
Signature: \qquad Subject \qquad

$$
\text { Q. } 10
$$

(c)

$$
\begin{aligned}
& \cos 75= \cos (45+30) \\
&= \cos 45 \cos 10-\sin 45 \sin 30 \mathrm{my} \\
& \frac{1}{\sqrt{2} \cdot \sqrt{3}-\frac{1}{\sqrt{2}} \cdot 1} \\
& \frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}
\end{aligned}
$$

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

ST.JOSEPH OF NAZARETH HIGH SCHOOL
KAVULE - MPIGI
Student's Name \qquad
Class \qquad Index No.
Signature: \qquad Subject \qquad
NO 11
$f(x)= \begin{cases}k x & 0 \leq x \leq 1 \\ \frac{k x}{2} & 1 \leq x \leq 2 \\ 0 & \end{cases}$

ST.JOSEPH OF NAZARETH HIGH SCHOOL KAVULE - MPIGI

Student's Name \qquad
Class \qquad Index No. \qquad
Signature: Subject \qquad
$\operatorname{Pg} \cdot 15$

\qquad

ST.JOSEPH OF NAZARETH HIGH SCHOOL KAVULE - MPIGI

Student's Name \qquad
Class \qquad Index No. \qquad
Signature: \qquad Subject \qquad P(16)

$$
\frac{d y}{d x}=4 x+3 \quad(3,25)
$$

$$
\int d y=\int(2 y x+3) d x
$$

$$
\begin{aligned}
& y=\int \frac{(4 x+3) d x 8}{\frac{4 x^{2}}{2}+3 x+c} \\
& y=
\end{aligned}
$$

$$
y=2 x^{2}+3 x+c \quad(3,25)
$$

$$
25=2 \times 3^{2}+3 \times 3+c m
$$

$$
\partial 5=18+9+c
$$

$$
c=25-27
$$

$$
c=-2
$$

$$
y=\quad 2 x^{2}+3 x-2
$$

At tuning folut $\frac{d y}{d x}=0$

$$
\begin{aligned}
& y=\frac{2 x^{2}+3 x-2}{d y}=\frac{4 x+3=0}{d x} \frac{4 x}{4}=-\frac{3}{4} \\
& x=-3 /+B \\
& y=2(-3 / 4)^{2}+3(-7 / 4)-2
\end{aligned}
$$

$$
\left.y=-25 / 8 \quad(-3 / 4)^{-25} / 8\right)_{0}
$$

Nature 1 fin fo

$$
\frac{d y}{d x}=4 x+3
$$

ST.JOSEPH OF NAZARETH HIGH SCHOOL
KAVULE - MPIGI
Student's Name \qquad
Clase \qquad Index No.
Signature: \qquad subject \qquad
intercefs

$$
\begin{aligned}
& x \text { anterept } y=0 \\
& y=2 x^{2}+3 x-2 \\
& 0=2 x^{2}+3 x-2 \\
& 2 x^{2}+3 x-2=0 \\
& (x+2)\left(x-\frac{1}{2}\right)=0
\end{aligned}
$$

Error $x+2=0$ or $x-\frac{1}{2}=0$

$$
\begin{array}{ll}
x+2=0 & \text { or } x-\frac{1}{2}=0 \\
x=-2 & \text { or } x=\frac{1}{2}
\end{array}
$$

$$
\begin{aligned}
& y=2 x^{2}+3 x-2 \\
& y=2 \times 0+3 x 0-2 \\
& y=-2 \quad(0,2) \&
\end{aligned}
$$

Q. 12
pg(14)
intercept
x anterept $\quad y=0$
$y=2 x^{2}+3 x-2$
$0=2 x^{2}+3 x-2$
$2 x^{2}+3 x-2=0$
$(x+2)\left(x-\frac{1}{2}\right)=0$

$$
\begin{aligned}
x=-2 & \text { or } x=\frac{1}{2} \\
(-2,0)+7 & \left(\frac{1}{2}, 0\right) \\
y-\text { intercett } & x=0
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\frac{\frac{2 x}{2}}{2}+\frac{3 x^{2}}{2}-2\right]_{-2}^{+m} \\
& =-7 / 3-1 / 6=-3 / 2
\end{aligned}
$$

Arca $=1.5 \mathrm{~A}$

ST.JOSEPH OF NAZARETH HIGH SCHOOL
KAVULE - MPIGI
Student's Name
Class \qquad Index No. \qquad
Signature: \qquad Subject \qquad

bi) $P(x>54)$

ST.JOSEPH OF NAZARETH HIGH SCHOOL
KAVULE - MPIGI
Student's Name \qquad
Class \qquad Index No. \qquad
Signature: \qquad Subject \qquad Pg -(19)
i)

$$
\begin{aligned}
& =\frac{P(46.5 F<\pi<55.58)}{\delta} \\
= & \frac{46.58-50}{2.5}<2<2<\frac{55.58-50}{2.58} \\
& =\frac{-1.368}{}=(-1.368<2<2.232)
\end{aligned}
$$

c) $P(x<45)$

