S5 MATHS PAPER 1/2 (ALGEBRA AND CALCULUS)

To be done in two weeks (23/03/2020 To 4/04/2020)

Attempt all the questions. Where possible some **hints** have been given.

- 1. Find the value of x if $\log_x 10.24 = 2$.
- 2. Solve the equations (i) $\log(a^2 + 2a) = 0.9031$ (ii) $3.2^{2x} = 8.45$
- 3. Solve the equations $2^{x} + 4^{y} = 12$, $3(2^{x}) 2(2^{2y}) = 16$. Hence show that $4^{x} + 4(3)^{2y} = 100$.

Hint: Let $a = 2^x$, $b = 2^{2y}$, form two simultaneous equations and solve them.

- 4. Solve the simultaneous equations $2^{x+y} = 6^y$, $3^x = 6(2^y)$.
- 5. Given that $p = \log_a(bc)$, $q = \log_b(ca)$ and $r = \log_c(ab)$, deduce that p+q+r = pqr-2.
- 6. Express $x^2 6x 10$ in the form $(x+a)^2 + b$.
- 7. Given that α and β are the roots of the equation $5x^2 3x + 2 = 0$, find the equation whose roots are $\frac{2}{\alpha 2}$ and $\frac{2}{\beta 2}$.
- 8. Determine the distance between the points of intersection of the curve $5x^2 + 6xy - 8y^2 = 0$ and the line 3x - y = 7.
- 9. Find the value of x for which $\log_2 x \log_x 4 = 1$.
- 10. Solve the simultaneous equations.

$$2a - 3b + c = 10 \qquad 3x + y + z = 0$$

(i) $a + 4b + 2c + 3 = 0$ (ii) $x - 2y + z = 4$
 $5a - 2b - c = 7 \qquad 2x - y - z = 5$

Hint: In (i) and (ii), by eliminating *one of the letters*; taking any two equations at a time, we can solve the equations.

11. Express $\frac{1+\sqrt{3}}{(\sqrt{3}-1)^3}$ in the form $a+b\sqrt{c}$.

- 12. Find the maximum value of $1 5x 2x^2$ and the value of x for which it occurs.
- 13. Solve the equations (i) $2\sqrt{x} \sqrt{x+5} = 1$ (ii) $\sqrt{p+6} \sqrt{p+3} = \sqrt{2p+5}$.
- 14. If $y = a + bx^n$ is satisfied by the values in the table below,

x	1	2	4
у	7	10	15

Show that $n = \log_2 \frac{5}{3}$ and deduce the values of *a* and *b*.(Hint: Form 3 equations and solve them simultaneously)

15. Solve the equations:

(i)
$$\log(x-1) + 2\log y = 2\log 3$$
, $\log x + \log y = \log 6$

(ii)
$$\log_2 x^2 + \log_2 y^3 = 1$$
, $\log_2 x - \log_2 y^2 = 4$

Hint: Apply laws of logs

- 16. Solve the equations
 - (i) $\log_{2x} 4 = \log_4 x$ (ii) $(\log_3 x) \cdot (\log_{3x} 3) = \frac{3}{4}$

(iii) $2\sqrt{x} + \sqrt{2x+1} = 7$ (iv) $t^2 + 2t = 34 + 35/(t^2 + 2t)$

- 17. The points O, R and S have coordinates (0, 0), (4, 3) and (a, b) respectively. Given that OR and RS are perpendicular,
 - (i) show that 4a + 3b = 25, (ii) find the value of a if b = 4.
- 18. Line L_1 is defined by the equation 2x + y = 1. L_2 is a line through point (2, -1) and is perpendicular to line L_1 . Calculate the perpendicular distance of the point (0, -4) from L_2 .
- 19. A triangle ABC has sides with equations 3x y = 3, x y 1 = 0 and 3x 5y = -9 respectively. Find the area of the triangle ABC.
- 20. The points A and B have coordinates (2, 4) and (1, -3) respectively. Determine the coordinates of the point T which divides AB internally in the ratio 2:1.
- 21. Calculate the acute angle between the straight lines 3x-y=5 and x+4y=11. (Use two methods)