S5 MATHS PAPER 1/2 (ALGEBRA AND CALCULUS)

To be done in two weeks (23/03/2020 To 4/04/2020)

Attempt all the questions. Where possible some hints have been given.

1. \quad Find the value of x if $\log _{x} 10.24=2$.
2. Solve the equations (i) $\log \left(a^{2}+2 a\right)=0.9031$ (ii) $3.2^{2 x}=8.45$
3. Solve the equations $2^{x}+4^{y}=12,3\left(2^{x}\right)-2\left(2^{2 y}\right)=16$.

Hence show that $4^{x}+4(3)^{2 y}=100$.
Hint: Let $a=2^{x}, b=2^{2 y}$, form two simultaneous equations and solve them.
4. Solve the simultaneous equations $2^{x+y}=6^{y}, 3^{x}=6\left(2^{y}\right)$.
5. Given that $p=\log _{a}(b c), q=\log _{b}(c a)$ and $r=\log _{c}(a b)$, deduce that $p+q+r=p q r-2$.
6. Express $x^{2}-6 x-10$ in the form $(x+a)^{2}+b$.
7. Given that α and β are the roots of the equation $5 x^{2}-3 x+2=0$, find the equation whose roots are $\frac{2}{\alpha-2}$ and $\frac{2}{\beta-2}$.
8. Determine the distance between the points of intersection of the curve $5 x^{2}+6 x y-8 y^{2}=0$ and the line $3 x-y=7$.
9. Find the value of x for which $\log _{2} x-\log _{x} 4=1$.
10. Solve the simultaneous equations.
$2 a-3 b+c=10$

$$
3 x+y+z=0
$$

(i) $a+4 b+2 c+3=0$
$5 \mathrm{a}-2 \mathrm{~b}-\mathrm{c}=7$
(ii) $x-2 y+z=4$
$2 x-y-z=5$

Hint: In (i) and (ii), by eliminating one of the letters; taking any two equations at a time, we can solve the equations.
11. Express $\frac{1+\sqrt{3}}{(\sqrt{3}-1)^{3}}$ in the form $a+b \sqrt{c}$.
12. Find the maximum value of $1-5 x-2 x^{2}$ and the value of x for which it occurs.
13. Solve the equations (i) $2 \sqrt{x}-\sqrt{x+5}=1$ (ii) $\sqrt{p+6}-\sqrt{p+3}=\sqrt{2 p+5}$.
14. If $y=a+b x^{n}$ is satisfied by the values in the table below,

x	1	2	4
y	7	10	15

Show that $n=\log _{2} \frac{5}{3}$ and deduce the values of a and b.(Hint: Form 3 equations and solve them simultaneously)
15. Solve the equations:

$$
\begin{align*}
& \log (x-1)+2 \log y=2 \log 3, \log x+\log y=\log 6 \tag{i}\\
& \log _{2} x^{2}+\log _{2} y^{3}=1, \log _{2} x-\log _{2} y^{2}=4
\end{align*}
$$

Hint: Apply laws of logs
16. Solve the equations
(i) $\log _{2 x} 4=\log _{4} x$
(ii) $\quad\left(\log _{3} x\right) \cdot\left(\log _{3 x} 3\right)=\frac{3}{4}$
(iii) $2 \sqrt{x}+\sqrt{2 x+1}=7$
(iv) $t^{2}+2 t=34+35 /\left(t^{2}+2 t\right)$
17. The points O, R and S have coordinates $(0,0),(4,3)$ and (a, b) respectively. Given that OR and RS are perpendicular,
(i) show that $4 a+3 b=25$, (ii) find the value of a if $b=4$.
18. Line L_{1} is defined by the equation $2 x+y=1 . L_{2}$ is a line through point $(2,-1)$ and is perpendicular to line L_{1}. Calculate the perpendicular distance of the point $(0,-4)$ from L_{2}.
19. A triangle ABC has sides with equations $3 x-y=3, x-y-1=0$ and $3 x-5 y=-9$ respectively. Find the area of the triangle ABC .
20. The points A and B have coordinates $(2,4)$ and $(1,-3)$ respectively. Determine the coordinates of the point T which divides $A B$ internally in the ratio 2:1.
21. Calculate the acute angle between the straight lines $3 x-y=5$ and $x+4 y=11$.(Use two methods)

