S6 ERRORS PART ONE 2020

Whenever an estimate of a value is made, an error may be made. The measure of the difference between the exact value and the approximated value constitutes the error. So an error can either be positive or negative.

Definition

Error \square Exactvalue \square Approximated value

Suppose that the number X is estimated to x with an error $\square x$, then
Error $\square \square x \square X \square x \square X \square x \square \square$.
Note: In mathematics, errors are always made due to rounding off or when a finite value is truncated.

Example
Round off the following to three significant figures.
(i) 0.48246
(ii) 0.048258 (iii) $0.0100985($ iv $) 89.7846$
(v) 9.9999
(vi) 48564

Answers
(i) 0.482
(ii) 0.0483
(iii) 0.0101
(iv) 89.8
(v) 10.0
(vi) 48600

Note : You should note that in each of the previous examples, there is a difference between the actual value and the estimated value.

Truncation - This refers to termination of a given value or observation at a certain stage.

Example

Truncate the following to three significant figures.
(a) 0.48346
(b) 0.0049468 (c) 4.28946
(d) 9.8989
(e) 0.900946 (f) 848456
(g) 1999857

Answers
(a) 0.483
(b) 0.00494
(c) 4.28
(d) 9.89
(e) 0.900
(f) 848000
(g) 1990000

Note that in part (f) and (g), the zeros stand for place values of thousands.

Ecolebooks.com

Exercise

1. Round off the following to three significant figures.
(a) 0.4949 (b)
(b) 8.99425 (c) 0.04899
(d) 0.001058
(e) 10.9090 (f) 845.48 (g) 9.9909 (h) 14.987
2. Truncate the following to two significant figures.
(a) 0.004949
(b) 9.09425 (c) 7.77899
(d) 40984
(e) 122222 (f) 845.48 (g) 9.9909 (h) 989884

TWRMS USED IN ERRORS

(1) Error \square Exactvalue \square Approximated value
(2) Absolute error $=\mid$ Error \mid i.e. take only the positive value $/$ size of the error.
(3) Relative error $=$ the positive value of the ratio of the error to the exact value i.e.

Percentage error $=$ Relative error $\square 100 \quad\left|\begin{array}{|c|}\hline 100 \text {. }\end{array}\right|$
Exact value (4)

Note: It should generally be noted that when a number (value) is rounded off to n decimal places, the possible error made is given by $\square 0.5 \square 10^{\square n}$.

For example, for the respective numbers below, the possible errors are given as;
(i) $\mathrm{A}=0.4, e_{A}$ पान प्र0.05
(ii) $\mathrm{B}=0.48, e_{B}$ प्र०.005
(iii) $\mathrm{C}=9, e_{C}$ प्र0.5
(iv) $\mathrm{D}=-4.845, e_{D}$ पС0.0005

From the above observations, we can deduce the maximum and minimum values of each observation. That is to say,

Ecolebooks.com

$$
\begin{aligned}
& \text { Maximum value }=\text { Value }+ \text { Error } \\
& \text { Minimum value }=\text { Value }- \text { Error }
\end{aligned}
$$

Maximum and Minimum values of expressions

Suppose that the numbers A and B have been estimated with errors $\square A$ and $\square B$ respectively, then for;
(a) Sum/ Addition
$\square A \square B \square_{\max } \square A_{\max } \square B_{\max } \square \square A \square \square A \square \square \square B \square \square B \square$
$\square A \square B \square_{\min } \square A_{\min } \square B_{\min } \square \square A \square \square A \square \square \square B \square \square \square$
(b) Difference / Subtraction
$\square A \square B \square_{\max } \square A_{\max } \square B_{\min } \square \square A \square \square A \square \square \square B \square \square B \square$ i.e subtract off the minimum of the second term.
$\square A \square B \square_{\min } \square A_{\min } \square B_{\max } \square \square A \square \square A \square \square \square B \square \square B \square$ i.e subtract off the maximum of the second term.
(c) Product
$\square A B \square_{\max } \square A_{\text {max }} \square B_{\max } \square \square A \square \square A \square \square B \square \square B \square$

(d) Quotient/ Division
$\square_{\square} \quad A \square_{\square]^{A_{\text {max }}}} \square^{A \square \square A}$ i.e divide by smallest value of B.
$\square B \square_{\max } B_{\text {min }} \quad B \square \square B$

$\square B \square_{\text {min }} B_{\text {max }} \quad B \square \square B$
NOTE: We can use the maximum and minimum values of an expression to obtain the maximum error that can be made in an expression. That is to say

Error \qquad Max.value \square Min.value

2

Example 1
The numbers $P \square 4.8, Q \square 5.25$ and $R \square 13$ are rounded off to the given number of decimal places. Find the error made in each of the following expressions.
(a) $P \square Q$
(b) $\quad Q \square P$
(c) $P Q$

Solution

(a) $P \square Q$
$\square P \square Q \square_{\max } \square P_{\max } \square Q_{\text {max }} \square 4.85 \square 5.255 \square 10.105$
$\square P \square Q \square_{\min } \square P_{\text {min }} \square Q_{\text {min }} \square 4.75 \square 5.245 \square 9.995$
Error $\square^{\frac{10.105-9.995}{2}} \square 0.055$
(b) $\quad Q \square P$
$\square Q \square P \square_{\max } \square Q_{\max } \square P_{\min } \square 5.255 \square 4.75 \square 0.505$
$\square Q \square P \square_{\min } \square Q_{\text {min }} \square P_{\text {max }} \square 5.245 \square 4.85 \square 0.395$
$\begin{array}{lll} & \frac{505-0.395}{} & 0 . \\ \text { Error } & 2 & \text { वा } 0.055\end{array}$
(c) $\quad P Q$
$\square P Q \square_{\text {max }} \square P_{\text {max }} \square Q_{\text {max }} \square 4.85 \square 5.255 \square 25.4668$
$\square P Q \square_{\min } \square P_{\text {min }} \square Q_{\text {min }} \square 4.75 \square 5.245 \square 24.9138$
Error $\square \frac{25.4668-24.9138}{2} \square 0.2765$
(d) $\quad-Q$
$\square _P \square P_{\text {max }} \frac{4.85}{5.245} \quad 0.9247$
$\square Q Q \square \square_{\text {max }} \square Q_{\text {min }} \square \square$
■
$\square _P \square P_{\min } \frac{4.75}{5.255} \quad 0.9039$

\square

(e) $\frac{P Q}{R}$

(h) $\quad P \square-$

Error | $\frac{4713-2.1761}{2}$ | 2. |
| :--- | :--- |
| पㅁ 0.1476 | |

(i) $\square P Q$

$\square 1.9382$

| | \square | | |
| :---: | :---: | :---: | :---: | :---: |
| \square | $\max \square Q \square \square$ min | 4.75 | 5.255 |

 1.6526
$\begin{array}{lll} & \frac{9382-1.6526}{} & 1 . \\ \text { Error } & 2 & \text { वा } 0.1428\end{array}$

Example 2
The numbers $a=4.5$ and $b=1.24$ are estimated with relative errors of 0.01 and $0.05 a$ respectively. Find the error made in estimating \qquad

Ecolebooks.com

Solution
In this case we use the definition of relative error to obtain the error made in each of the terms.

```
\square a
```



```
\naturalb}\mp@subsup{|}{\square0.05 \squareゆb巾 0.05\square1.24\square0.062}{\square
```

Now, $a_{\max } \square 4.545 ; a_{\min } \square 4.455 ; b_{\max } \square 1.302 ; b_{\min } \square 1.178$

$\square_{\square} \square a \square b \square_{2} \square \square \quad \square a \square b \square_{2 \text { min }} \quad \square 4.455$
$\square 1.302 \square_{2 \max }$

Example 3
The numbers $m=4$ and $n=5.8$ are estimated with percentage errors of 0.1% and 0.05%

```
n respectively. Calculate the percentage error made in the
expression___.
```

\qquad

```
\({ }^{n}\) respectively. Calculate the percentage error made in the expression
m
```

Solution

Ecolebooks.com

In this question, use the definition for percentage error to obtain the error made in each of m and n.

$\bar{\square}$		0.05	
	-100 ¢ 0.05 - पn	100	므․ 8 ¢ 0.0029
n			

Now, $m_{\max } \square 4.004 ; m_{\min } \square 3.996 ; n_{\max } \square 5.8029 ; n_{\min } \square 5.7971$
$\square m \square n \square \quad \square m \square n \square_{\max } \frac{4.004+5.8029}{5.7971-4.004}$

5.4198
$\begin{array}{lll} & \begin{array}{ll}4692-5.4198 & 5 . \\ & 2\end{array} & 0.0247\end{array}$

Working value $=\bar{m} \bar{\square}^{4 \square 5.8} \square 5.4444$ (obtained by substituting the values of m and n $n \square m \quad 5.8 \square 4$
given in the question)

Note:
(i) The range of values of an expression can be stated as \square Min. value , Max.value \square or Min. value \square True value \square Max. value.
(ii) If required to state the limits within which the exact value of an expression lies, then list them individually, i.e.
Lower Limit $=$ Minimum value $=$ Least value
Upper Limit $=$ Maximum value $=$ Greatest value
Example 4
The length, breadth and height of a metallic tank were measured as $4.2 \mathrm{~m}, 3 \mathrm{~m}$ and 4.25 m respectively, to the given number of decimal places.
(a) State the possible error made in each of the length, breadth and height.
(b) Calculate the range within which the volume of the tank lies.

Solution
(a) Length, $l=4.2$; $\square l \square 0.05$, Breadth, $b=3$; $\square b \square \square 0.5$, height, $h=4.25$; $\square h \square 0.005$
(b) Volume, $V=l \square b \square h$
$V_{\max } \square l_{\max } \square b_{\max } \square h_{\max } \square 4.25 \square 3.5 \square 4.255 \square 63.2931 \mathrm{~m}^{3}$
$V_{\text {min }} \square l_{\text {min }} \square b_{\text {min }} \square h_{\text {min }} \square 4.15 \square 2.5 \square 4.245 \square 44.0439 \mathrm{~m}^{3}$

Range $=\square 44.0439$, 63.2931

Maximum and Minimum values of trigonometric functions

Suppose that CD is the error made in measuring the angle, \square, then;

111
(c) $\square_{\sec } \square \square_{\max } \overline{\square \square}$ and $\square_{\sec } \square \square_{\min } \square$

1
1
(d)
$\square \operatorname{cosec} \square \square_{\max } \bar{\square} \quad \overline{\text { and } \square \operatorname{cosec} \square \square_{\min } \square}$
$\square \sin \square \square_{\min } \sin \square \square \square \square \square \square$

Example 5

Given that $y \square \sec \square$ and $\square 15 \square 0.1^{0}$, find the limits within which the exact value of y lies. Solution

Lower limit $=\square \sec \square \square_{\min } \square \frac{1}{\cos (15-0.1)} \square 1.0348$
Upper Limit $=\square \sec \square \square_{\max } \square^{\frac{1}{\cos (15+0.1)}} \square 1.0358$
Example 6
The area of a triangle with adjacent sides a and b and included angle \square, is calculated using the 1
formula A प2absinロ. Given that $a \square 6.2 \square 0.25 \mathrm{~cm}, b \square 4.4 \square 0.05 \mathrm{~cm}$ and $\square \square 25 \square 0.5^{0}$, find the limits within which the true value of the area lies.

Solution

1
Lower Limit $=A_{\min } \square _a_{\min } \square b_{\min } \square \square \sin \square \square_{\text {min }}$
2
$\frac{1}{2}$
$\square 2 \square 5.95 \square 4.35 \square \sin 24.5^{\circ} \square 5.3666 \mathrm{~cm}^{2}$

1
Upper Limit $=A_{\text {max }} \square-a_{\text {max }} \square b_{\text {max }} \square \square \sin \square \square_{\text {max }}$
2
$\square^{\frac{1}{2}} \square 6.45 \square 4.45 \square \sin 25.5^{\circ} \square 6.1784 \mathrm{~cm}^{2}$
Example 7

Given that the numbers $a \operatorname{\square D} 4.8, b \square 2.54$ and $c \square 9$ are rounded off to the given number of decimal places, find the limit within which the exact values of the following expressions lie.
(a) $a(b+c)$
(b)
$\frac{a}{b \square c}$
(c)
c
$a \square b$

Solution

In each of the following parts, first obtain the working value. If the working value is negative, then there is need for critical thinking, i.e. a bigger negative will be the minimum value whereas the smaller negative will be the maximum value.
(a) $\quad a \square b \square c \square$

(b)

factorise a negative sign and then analyse.

$$
\begin{array}{ccccc}
\square & 4.8 & \square & \square & 4.85
\end{array}
$$

(c)

$$
c
$$

$$
a \square b
$$

Page

$\square \square \mathrm{i}$ i.e. factorise a negative from the denominator.

\square	9	\square	9.5			- 1.3040
Lower Limit $=$ ¢		4.8	54 [$\square_{\text {max }}$		$75+2.5354$.	
\square	9	\square	8.5			
Upper Limit = प		4.8	$85+2.545$	\square	.54 $\square_{\square} \square_{\min }$. $\mathrm{\square} \mathrm{\square} 1.1494$

EXERCISE

1. The numbers $A=12.31$ and $B=6.241$ are rounded off to the given number of decimal places. Find the maximum error made in the following expressions (a) $A+B$ (b) $A-B$ A
(c) $A B(\mathrm{~d}) \ldots$ Ans: $0.0055,0.0055,0.0374,0.00096$

B
2. The numbers $P=2.41, q=1.23$ and $r=2.0$ have been rounded off to the given number of decimal places. Calculate to four significant figures the limits within which the exact q value of $P \square _$lies. Ans: 1.772, $1.817 r$
3. Given that $x=5.73, y=-2.496$ and $z=5.9765$ are rounded off to the given number of decimal places, find correct to three significant figures, the maximum and minimum x values of $\frac{}{y \square z}$. Ans: - 0.677, - 0.676
4. The radius and height of a cone are measured as 4.7 cm and 12.65 cm with errors of 0.3 and 0.45 cm respectively. Calculate the interval within which the volume of the cone lies. Ans: 247.3397, 342.9572
5. Given that the numbers $w=28.114, \mathrm{x}=7.136, \mathrm{y} 41.84464$ and $\mathrm{z}=3.6827$ are estimated
to the given number \bar{r} of decimal places, find the percentage of the error made in \square.

Ans: 0.0074
6. The numbers $\mathrm{A}=12.4, \mathrm{~B}=29.45$ and $\mathrm{C}=4.25$ are rounded off with percentage errors of A
$2 \%, 0.2 \%$ and 1%, find the limits within which the exact value of \qquad ${ }_{2}$ lies.

$\square B \square C \square$

7. Calculate the range within which the exact value of $5.22 \sqrt{.85}$ lies.
8. The numbers $x \square 4.2, y \square 16.02$, and $z \square 25$ are rounded off with corresponding percentage errors of $0.5,0.45$ and 0.02 , calculate the absolute relative error made in \qquad x^{\square} ${ }^{y} . z$
9. Given that $y=\sin \square$ and \square is measured with maximum possible error of 2%.

If $\mathrm{D}=30^{\circ}$, determine the: (i) absolute error in y (ii) interval within which the value of y lies.
10. Given that $P=4.8$ and $Q=21.32$ are rounded off with percentage errors 0.2 and
0.06 respectively. Find the percentage error in the numbers \qquad

