P425/1
PURE MATHEMATICS
PAPER 1
July/August 2017
3hrs

RESOURCEFUL MOCK EXAMINATIONS, 2017
 Uganda Advanced Certificate of Education
 PURE MATHEMATICS
 (P425/1)

TIME: 3HOURS

INSTRUCTIONS TO CANDIDATES

\checkmark Attempt all the questions in section A and five from section B.
\checkmark Working must be shown clearly
\checkmark Silent non programmable calculator may be used.
\checkmark Any additional question(s) answered will not be marked.

SECTION A

1. Prove that

$$
\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}
$$

2. The first term of an AP and G.P are each $\frac{2}{3}$ their common difference and common ratio are x and the sum of their first 3 terms is equal. Find the possible values of x.
3. $\int 2^{\sqrt{3 x-1}} d x$.
4. Solve $3 \sin (2 x+\pi / 6)-\cos (2 x+\pi / 6)=2$
5. Find the equation of the normal to the curve $\frac{y}{x+\sin y}=3$ at the point where $y=\pi$.
6. Show that when the quadratic expression.

$$
\begin{aligned}
& x^{2}+b x+c=0 \text { and } x^{2}+p x+q=0 \text { have a common root then } \\
& \quad(c-q) 2=(b-p)(p c-b q)
\end{aligned}
$$

7. Given that

$$
P=\log _{2} 3 \text { and } q=\log _{4} 5, \text { show that } \log _{45} 2=\frac{1}{2(p+q)}
$$

8. Use the substitution.

$$
y=x+\frac{1}{x} \text { to solve the equation } 2 x^{4}-9 x^{3}+14 x^{2}-9 x+2=0
$$

SECTION B

9. Describe the locus of the complex number z which moves in the argand diagram. $\operatorname{Arg}\left(\frac{z-3}{z-2 i}\right)=\frac{\pi}{2}$
b) Find the fourth roots of $-16 i$
10. If A, B and C are angles of a triangle prove that
$\sin ^{2} A+\sin ^{2} B+\sin ^{2} C=2+2 \cos A \cos B \cos C$
b) By expressing $6 \cos ^{2} \theta+8 \sin \theta \cos \theta$ in the form $R \cos (2 \theta-2)$. Find the maximum and minimum value of $6 \cos ^{2} \theta+8 \sin \theta \cos \theta=4$
11. The curve with the equation $y=\frac{a x+b}{x(x+2)}$ where a and b are constants has a turning point at $(1,-2)$. Find the values of a and b.
Find the equation of all the asymptotes.
Sketch the curve.

12. Differentiate

$$
\begin{aligned}
& y=2 x^{\cos x} \\
& y=\frac{e^{\sin x}}{\tan x}
\end{aligned}
$$

b) Prove that $\quad \int_{1}^{3}\left(\frac{3-x}{x-1}\right)^{\frac{1}{2}} d x=\pi$. Use the substitution $x=3 \sin ^{2} \theta+\cos ^{2} \theta$.
c) The displacement of a particle at time t is x measured from a fixed point and $\frac{d x}{d t}=$ $\frac{C\left(e^{2 a c t}-1\right)}{e^{2 a c t}+1}$, prove that $x=\frac{C\left(e^{2 a c t}-1\right)}{e^{2 a c t}+1}$, if $\mathrm{x}=3$ when $\mathrm{t}=1$ and $\mathrm{x}=\frac{75}{17}$, prove that $\mathrm{c}=5$
13. Show that the lines
$r=2 i-3 j+4 k+\lambda(3 i-2 j+k)$ and $r=i+3 j+k+\mu(-i-2 j+k)$ intersect. Find the point of intersection.
b) OAB is a triangle with $\mathrm{OA}=\underset{\sim}{a}, O B={\underset{\sim}{c}}_{b}, \mathrm{c}$ is amidpoint of OB, D is the midpoint of AB and E is amidpoint of $O A . O D$ and $A C$ interest at F. if $A F=h A C$ and $O F=K O D$. Find the values of h \& k. show that $B, F \& E$ are collinear.
14. a) Solve $\frac{d y}{d x}+2 y \tan x=\cos ^{2} x$

$$
y(0)=2
$$

b) A radioactive substance disintegrates at a rate proportional to it's mass one half of the given mass of a substance distergrates 136 days, calculate the time required for $\frac{5}{8}$ of a substance to disintergrate. If the original mass of a substance was 100 gm . Calculate the mass after 34 days.
15. Find the equation of the tangents to the curve at $y=x^{3}$ at $\left(t, t^{3}\right)$ prove that this tangent meets the curve again at $\mathrm{Q}\left(-2 \mathrm{t}-8 \mathrm{t}^{3}\right)$. Find the locus of the midpoint of PQ .
b) Given that $y=m x+c$ is a tangent to the circle $(x-a)^{2}+(y-b)^{2}=r^{2}$. Show that $\left(1+m^{2}\right) r^{2}=(c-b+a m)^{2}$
16. a) $\int_{1}^{2} \frac{8 x+6}{(2 x-1)^{2}(x+2)^{2}}$
b) $\int_{0}^{\pi / 2} \frac{1}{2+\cos ^{2} x} d x$

END

