P425/1 PURE MATHEMATICS PAPER 1 July/August 2017 3hrs

RESOURCEFUL MOCK EXAMINATIONS, 2017 Uganda Advanced Certificate of Education PURE MATHEMATICS (P425/1) TIME: 3HOURS

INSTRUCTIONS TO CANDIDATES

- ✓ Attempt all the questions in section A and five from section B.
- ✓ Working must be shown clearly
- ✓ Silent non programmable calculator may be used.
- ✓ Any additional question(s) answered will not be marked.

SECTION A

1. Prove that

 $\tan^{-1} x + \cot^{-1} x = \frac{\pi}{2}$

- 2. The first term of an AP and G.P are each $\frac{2}{3}$ their common difference and common ratio are x and the sum of their first 3 terms is equal. Find the possible values of x.
- $3. \qquad \int 2^{\sqrt{3x-1}} \, dx.$
- 4. Solve $3\sin(2x + \pi/6) \cos(2x + \pi/6) = 2$
- 5. Find the equation of the normal to the curve $\frac{y}{x+sinv} = 3$ at the point where $y = \pi$.

6. Show that when the quadratic expression.

$$x^{2} + bx + c = 0 \text{ and } x^{2} + px + q = 0 \text{ have a common root then}$$

$$(c - q)^{2} = (b - p)(pc - bq)$$

7. Given that

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

$$P = \log_2 3$$
 and $q = \log_4 5$, show that $\log_{45} 2 = \frac{1}{2(p+q)}$

8. Use the substitution.

$$y = x + \frac{1}{x}$$
 to solve the equation $2x^4 - 9x^3 + 14x^2 - 9x + 2 = 0$

SECTION B

- 9. Describe the locus of the complex number z which moves in the argand diagram. $Arg\left(\frac{z-3}{z-2i}\right) = \frac{\pi}{2}$ b) Find the fourth roots of -16i
- 10. If A, B and C are angles of a triangle prove that sin² A + sin²B + sin²C = 2 + 2cosAcosBcosC
 b) By expressing 6cos²θ + 8sinθcosθ in the form Rcos(2θ 2). Find the maximum and minimum value of 6cos²θ + 8sinθcosθ = 4
- 11. The curve with the equation $y = \frac{ax+b}{x(x+2)}$ where a and b are constants has a turning point at (1, -2). Find the values of a and b.

Find the equation of all the asymptotes.

Sketch the curve.

12. Differentiate

$$y = 2x^{cosx}$$
$$y = \frac{e^{sinx}}{tanx}$$

b) Prove that $\int_{1}^{3} \left(\frac{3-x}{x-1}\right)^{\frac{1}{2}} dx = \pi$. Use the substitution $x = 3sin^{2}\theta + cos^{2}\theta$.

c) The displacement of a particle at time t is x measured from a fixed point and $\frac{dx}{dt} = \frac{C(e^{2act}-1)}{e^{2act}+1}$, prove that $x = \frac{C(e^{2act}-1)}{e^{2act}+1}$, if x = 3 when t = 1 and x = $\frac{75}{17}$, prove that c = 5 Show that the lines

13. Show that the lines

 $r = 2i - 3j + 4k + \lambda(3i - 2j + k)$ and $r = i + 3j + k + \mu(-i - 2j + k)$ intersect. Find the point of intersection.

b) OAB is a triangle with $OA = \underline{a}$, $OB = \underline{b}$, c is amidpoint of OB, D is the midpoint of AB and E is amidpoint of OA. OD and AC interest at F. if AF = hAC and OF = KOD. Find the values of h & k. show that B, F & E are collinear. 14. a) Solve $\frac{dy}{dx} + 2ytanx = cos^2 x$ y(0) = 2

b) A radioactive substance disintegrates at a rate proportional to it's mass one half of the given mass of a substance distergrates 136 days, calculate the time required for $\frac{5}{8}$ of a substance to disintergrate. If the original mass of a substance was 100gm. Calculate the mass after 34 days.

- 15. Find the equation of the tangents to the curve at $y = x^3$ at (t, t^3) prove that this tangent meets the curve again at Q(-2t 8t³). Find the locus of the midpoint of PQ.
 - b) Given that y = mx + c is a tangent to the circle $(x a)^2 + (y b)^2 = r^2$. Show that

$$(1 + m^2)r^2 = (c-b+am)^2$$
.

16. a)
$$\int_{1}^{2} \frac{8x+6}{(2x-1)^{2}(x+2)^{2}}$$

b) $\int_{0}^{\pi/2} \frac{1}{2+\cos^{2}x} dx$

END