CONTINUOUS PROBABILITY DISTRIBUTION

This is a distribution which takes on any value within a given interval.

Summary:

A probability density function ($\mathbf{p} \square \mathbf{d} \square \mathbf{f}$) is a function that defines the probability of an event to occur.

A continuous $\mathrm{p} \square \mathrm{d} \square \mathrm{f} f(x)$ defined over the interval $\mathbf{a} \square \mathbf{x} \square$ bis such that:
(a) The total area under $f(x)=$ sum of all probabilities $=\mathbf{1}$.
b
$\square \square \square_{f(x)}$ dx 1. a $\quad \mathbf{x}_{2}$
(b) $\mathbf{P}\left({ }^{\mathbf{X}}{ }_{1} \square X \square^{\mathbf{x}_{2}}\right) \square \square f(x) d \mathbf{d} . \mathbf{x}_{1}$

NOTE:
(i) The values of $\mathbf{P}\left({ }_{\mathbf{X}}^{\mathbf{1}} \square \mathbf{X} \square^{\mathbf{X}}{ }_{\mathbf{2}}\right), \mathbf{P}\left({ }^{\mathbf{X}}{ }_{1} \square \mathbf{X} \square{ }^{\mathbf{X}} \mathbf{2}\right), \mathbf{P}\left(\mathbf{X}_{\mathbf{1}} \square \mathbf{X} \square^{\mathbf{X}}{ }_{\mathbf{2}}\right)$ and

(ii) The values $\mathbf{P}\left(\mathbf{X} \square^{\mathbf{X}}{ }_{1}\right) \square \mathbf{P}\left(\mathbf{X} \square^{\mathbf{x}}{ }_{\mathbf{2}}\right) \square \mathbf{0}$ since \mathbf{X} deals with a range of values b
(c) Expectation, $\mathbf{E}(\mathbf{X}) \square \quad \square \mathbf{a}^{x f(x)} \mathbf{d x} \cdot$
(d) Variance, $\operatorname{Var}(\mathbf{X}) \square \mathbf{E}\left(\mathbf{X}^{\mathbf{2}}\right) \square \mathbf{E}^{\mathbf{2}}(\mathbf{X})$.
b
where $\mathbf{E}\left(\mathbf{X}^{2}\right) \square \square x^{2 f(x)} \mathbf{d x}, \quad \mathbf{E}^{2}(\mathbf{X}) \square \square \mathbf{E}(\mathbf{X}) \square^{2}$.
(e) Standard deviation $\boldsymbol{\sigma} \quad \square \sqrt{\text { ariance }}$
(f) For a continuous $r \square v \mathbf{X}$ and constants \mathbf{a} and \mathbf{b},

(i) $\mathbf{E}(\mathbf{a})=\mathbf{a}$	$\operatorname{Var}(\mathbf{a})=\mathbf{0}$
(ii) $\mathbf{E}(\mathbf{a X})=\mathbf{a E}(\mathbf{X})$	$\operatorname{Var}(\mathbf{a X})=\mathbf{a}^{2} \operatorname{Var}(\mathbf{X})$
(iii) $\mathbf{E}(\mathbf{a X}+\mathbf{b})=\mathbf{a E}(\mathbf{X})+\mathbf{b}$	$\operatorname{Var}(\mathbf{a X}+\mathbf{b})=\mathbf{a}^{2} \operatorname{Var}(\mathbf{X})$

m
(g) Median is the value \mathbf{m} which satisfies the relation $\square^{f(x)} \mathbf{d x} \square 0 \square 5$. a I $\square \mathbf{e}$ The median encloses an area of $\mathbf{0} \mathbf{5}$ below it. q1
(h) Lower quartile is the value \mathbf{q}_{1} which satisfies the relation $\square^{f(x)} \mathbf{d x} \square$ 0ㄴ25. a
IDe The lower quartile encloses an area of $\mathbf{0} \mathbf{2 5}$ below it.
q3
(I) Upper quartile is the value \mathbf{q}_{3} which satisfies the relation $\square^{f(x)} \mathbf{d x} \square 0 \square 75$.
a
I $\square \mathbf{e}$ The upper quartile encloses an area of $\mathbf{0} \mathbf{0 7 5}$ below it.
(j) Interquartile range $=\mathbf{Q 3}_{\square} \mathbf{Q 1}$
(k) The $\mathbf{J}^{\text {th }}$ percentile is the value \mathbf{p} that satisfies the relation $\square^{f(x)} \mathbf{d x} \square \mathbf{1 0 0} \mathbf{J}$

- \mathbf{a}

NOTE: The median, quartiles and percentiles of a p $\square \mathrm{d} \square \mathrm{f}$ defined over different intervals are obtained by first investigating the interval in which they are located.
(L) The graph of the $\mathrm{p} \square \mathrm{d} \square \mathrm{f} f(x)$ can either be linear or a curve.
(m) Mode is value of \mathbf{x} at which the $\mathrm{p} \square \mathrm{d} \square \mathrm{f} f(\boldsymbol{x})$ attains its maximum value.

The graph of $f(x)$ gives the location of the mode. If the $\mathrm{p} \operatorname{Dd} \operatorname{ff} f(x)$ is non linear, the value \mathbf{x} at which $f(x)$ has a maximum value occurs when $f^{1}(x) \square$

0

provided $f^{11}(\boldsymbol{x}) \square \mathbf{0}$.

EXAMPLES:

1. The $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of a continuous $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is given by:

$$
\begin{gathered}
\square \boldsymbol{\beta x} \quad, \quad \mathbf{0} \square \mathbf{x} \square \mathbf{1} \\
f(x) \square \square_{\square-}^{1} \boldsymbol{\beta}(\mathbf{3} \square \mathbf{x}), \mathbf{1} \square \mathbf{x} \square \mathbf{3} \square_{\square} \mathbf{0} \\
\text { otherwise }
\end{gathered}
$$

$\square 2$
Find:
(i) the value of $\mathrm{\square}$
(ii) $\mathbf{P}(\mathbf{X} \square 2)$
(iii) $\mathbf{P}(\mathbf{X} \square 2)$
(iv) $P(X \quad 1 \square 4)$
(v) $\mathbf{P}(0 \square 8 \square X \square 2)$
(vi) $\mathbf{P}(X \subset 1 \mid \square 0 \square 6)$
(vii) $P(X \subset 1 \mid 0 \square 6)$
(viii) $\mathbf{P}(0 \square 2 \square X \quad 2 \square 5 / X \quad \square 0 \square 7)$
(ix) the mode, mean and standard deviation of \mathbf{X}.
(x) $\quad \mathbf{E}(\mathbf{3 X}+5)$
(xi) $\quad \operatorname{Var}(3 X+5)$
(xii) the median and semi-interquartile range of \mathbf{X}. (xiii) the value of \mathbf{b} such that $\mathbf{P}(\mathbf{X}$
b) $=06 . \square \square$
(xiv) the $\mathbf{3 0}^{\text {th }}$ to $\mathbf{8 0}{ }^{\text {th }}$ percentile range of \mathbf{X}.
2. The $\mathrm{p} \square \mathrm{d} \square f(\boldsymbol{f}(\boldsymbol{x})$ of a $\mathbf{r} \square \mathbf{v} \mathbf{X}$ takes on the form shown in the sketch below:

Find the:
(i) value of \square
(ii) equations of the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$
(iii) $\mathbf{P}(\mathbf{0} 5<\mathbf{X} 2) \square$
(iv) mean of \mathbf{X}.
(v) median of \mathbf{X}.
3. The $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of a continuous $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is such that:

$$
\begin{gathered}
f(x) \square \square \square \mathrm{Qx}(6 \square \mathbf{x})^{2}, \quad \mathbf{0} \square \mathbf{x} \square \mathbf{~} 6 \square \mathbf{0} \\
\text { otherwise }
\end{gathered}
$$

Find the:
(i) value of \square
(ii) mode of \mathbf{X}
(iii) mean of \mathbf{X}
4. The outputs of $\mathbf{9}$ machines in a factory are independent random variables each with probability density function given by

$$
\begin{aligned}
& \square \beta \mathbf{x} \quad, \quad 0 \square \mathbf{x} \square 10 \\
& f(x) \square{ }^{\square}{ }_{\square} \boldsymbol{\beta}(\mathbf{2 0} \square \mathbf{x}), \quad \mathbf{1 0 \square \mathbf { x } \square} \\
& 20 \\
& { }^{\circ} \mathrm{O} \text { 0 , otherwise }
\end{aligned}
$$

Find the:
(i) value of \square.
(ii) expected value and variance of the output of each machine.

Hence or otherwise find the expected value and variance of the total output from all machines.
5. The mass $\mathbf{X ~ k g}$ of maize flour produced per hour is modeled by a continuous $r \square \mathrm{v}$ whose $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ is given by:

(a) Sketch the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X}. Hence state the mode of \mathbf{X}
(b) Find the:
(i) value of $\boldsymbol{\beta}$
(ii) $\mathbf{P}\left(\begin{array}{lll}\mathbf{X} & 3 & 2\end{array}\right) \square$
(iii) mean mass produced per hour
(c) Given that maize flour is sold at sh 2400 per kg and the cost of running the production is $\mathbf{s h} \mathbf{2 0 0}$ per hour, taking shs \mathbf{Y} as the profit made hour.
(i) Express \mathbf{Y} in terms of \mathbf{X}.
(ii) Find the expected value of \mathbf{Y}.
6. A $\mathrm{r} \square \mathrm{v} \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$

$$
\begin{aligned}
& \square \beta \mathbf{x} \quad, \quad 1 \square \mathbf{x} \square 3 f(x) \\
& \square \square_{\square} \lambda(4 \square x) \text {, } 3 \square x \square 4 \square_{\square \square} 0 \\
& \text {, otherwise }
\end{aligned}
$$

(a) Show that $\lambda \square 3 \boldsymbol{\beta}$.
(b) Find :
(i) the values of $\boldsymbol{\beta}$ and $\boldsymbol{\lambda}$
(ii) the mean and variance of \mathbf{X}
(iii) the median of \mathbf{X}
(iv) $\mathbf{P}(\mathbf{3} \square \mathbf{X} \square \mathbf{4} / \mathbf{X} \square \mathbf{2})$
7. A r $\square \mathrm{v} \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$.

$$
\begin{array}{cl}
\square \underline{2}(x \square 1) & , \quad 0 \square x \square a \\
& 013 \\
f(x) \square \square \square 13^{\underline{2}}(5 \square x) & , \text { a } \square x \square b \\
\square & , \text { otherwise }
\end{array}
$$

Find the:
(i) values of \mathbf{a} and \mathbf{b}.
(ii) median of \mathbf{X}.
(iii) $\mathbf{P}\left(\begin{array}{lllll}\mathbf{X} & 05025 & \mathbf{X} & 1\end{array}\right) \square$ 마

CUMULATIVE DISTRIBUTION FUNCTION $\boldsymbol{F}(\boldsymbol{x})$

This function gives the accumulated probability up to \mathbf{x}. It is obtained by
\mathbf{x}
integrating the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ as follows: $\mathbf{F}(\mathbf{x}) \square \mathbf{P}(\mathbf{X} \square \mathbf{x}) \square \square f(t) \mathbf{d t}$. ㅁ

The cumulative distribution function is sometimes known as a distribution function

PROPERTIES OF $\boldsymbol{F}(\boldsymbol{x})$

(i) $\mathbf{F}(\mathbf{x})$ must be defined over the interval $\square \square \square \mathbf{x} \square \square$.
(ii) $0 \square \mathbf{F}(\mathbf{x}) \square \mathbf{1}$, for all values of \mathbf{x}.
(iii) $\mathbf{P}\left({ }_{1}{ }_{1} \square X \square{ }^{\mathbf{X}}{ }_{2}\right) \square P\left(X \square{ }^{\mathbf{X}}{ }_{2}\right) \square P\left(X \square{ }^{\mathbf{X}}{ }_{1}\right) \square F\left({ }^{\mathbf{X}}{ }_{2}\right) \square F\left({ }^{\mathbf{X}}{ }_{1}\right)$
(iv) The median, m, lower quartile, \mathbf{q}_{1}, and upper quartile $\mathbf{q}_{\mathbf{3}}$ are the values for which $\mathbf{F}(\mathbf{m}) \square \frac{1}{2}, F\left(\mathbf{q}_{1}\right) \square \underline{14}$ and $\mathbf{F}\left(\mathbf{q}_{\mathbf{2}}\right) \square 4 \underline{3}$ respectively. (v) $\mathbf{P}(\mathbf{X} \square \mathbf{x}) \square \mathbf{P}(\mathbf{X} \square \mathbf{x}) \square \mathbf{1}$
\square The complementary cumulative distribution function

$$
\mathbf{P}(\mathbf{X} \square \mathbf{x}) \square \mathbf{1} \square \mathbf{P}(\mathbf{X} \square \mathbf{x})=\mathbf{1} \square \mathbf{F}(\mathbf{x})(\mathbf{v i}) \text { The } \mathrm{p} \square \mathrm{~d} \square f f(x) \text { can be }
$$

obtained by differentiating the cumulative distribution
$\square \quad F^{1}(x) \square \mathrm{p} \square \mathrm{d} \square \mathrm{f} f(x)$

EXAMPLES:

1. The $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of a continuous $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is given by: $\square \boldsymbol{\beta}(\mathbf{x} \square$
1) , $1 \square \mathbf{x} \square \square$

$\square_{\square} 0 \quad$, otherwise
$\square 2$
Find:
(i) the value of \square, hence $f(x)$
(ii) the cumulative distribution function $\mathbf{F}(\mathbf{x})$ and sketch it.
(iii) $\mathbf{P}(\mathbf{2} \square 8 \quad \mathrm{X} \square 5 \square 2)$
(iv) $\mathbf{P}(\mathbf{X} \square 4)$
(v) the median of \mathbf{X}.
(vi) the interquartile range of X
(vii) the $\mathbf{2 0}^{\text {th }}$ percentile of \mathbf{X}.

Solution:

(ii) Note: $\mathbf{F}(\mathbf{x})$ is concave up parabola over the interval $1 \square \mathbf{x} \square$ 3and concave down parabola over the interval $3 \square \mathbf{x} \square$.
2. A continuous $\mathrm{r} \square \mathrm{v} \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$.
$\square k(3 \square x) \quad, \quad 1 \square x \square 2$
$f(x)$ प $\boldsymbol{k} \quad, 2$
$\square \mathrm{x} \quad 3$

(a) Sketch $f(x)$, hence deduce the mean and median of \mathbf{X}.
(b) Find:
(i) the value of \boldsymbol{k}.
(ii) the cumulative distribution function $\mathbf{F}(\mathbf{x})$ and sketch it.
(iii) $\mathbf{P}(X \quad \square 3 \square 5 / 3 \square X \square 4)$
3. The distribution function of a continuous $\mathbf{r} \square \mathbf{v} \boldsymbol{X}$ is as follows:

$$
\begin{aligned}
& \square 0 \quad, \quad x \square 1 \\
& { }_{\square} \frac{1}{(x \square 1)^{2}} \quad, \quad 1 \square x \square 3
\end{aligned}
$$

$$
\begin{aligned}
& \square_{\square} \quad 1 \quad, \quad x \square 7
\end{aligned}
$$

Find:

(i) the values of $\boldsymbol{\beta}$ and $\boldsymbol{\lambda}$
(ii) $P(X \square 4)$
(iii) the median of \boldsymbol{X}
(iii) the $p \square d \square f$ of \boldsymbol{X}
(iv) the mean, $\boldsymbol{\mu}$ of the distribution
(v) $\boldsymbol{P}(|X \square \mu| \square 0 \square 8)$
4. The cumulative distribution of a continuous $\mathbf{r} \square \mathbf{v}$ is such that:

Find:
(i) the values of \square and \square, hence sketch $\mathbf{F}(\mathbf{x})$.
(ii) $\mathbf{P}(|\boldsymbol{X} \square 0 \square 375| \square 0 \square 25)$
(iii) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} and sketch it, hence deduce the mean and median of \mathbf{X}.
5. A continuous $r \square v \mathbf{X}$ is distributed as follows:

$$
\mathbf{P}(\mathbf{X}>) \quad \mathbf{x} \square \mathbf{a}+\mathbf{b} \mathbf{x}^{\mathbf{3}}, \quad \mathbf{0} \quad \mathbf{x} \quad \square \square \mathbf{4}
$$

(i) By first finding the cumulative distribution of \mathbf{X} or otherwise, find the values of \mathbf{a} and \mathbf{b}.
(ii) Show that $\mathbf{E}(\mathbf{X})=\mathbf{3}$, and find the standard deviation \square of \mathbf{X}.

UNIFORM DISTRIBUTION

This distribution is sometimes called a rectangular distribution.

Summary:

If a $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval $\square \mathbf{a}, \mathbf{b} \square$, then:

(i) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} is given by: $\boldsymbol{f (x)}$
(ii) the mean of \mathbf{X} is $\underline{\mathbf{a}} \underline{\mathbf{b}}$.
(iii) the variance of \mathbf{X} is $\underline{(\mathbf{b}} \underline{\square}$.

$$
\underline{\mathbf{a}}^{\square \underline{\mathbf{b}}}
$$

(iv) the median of \mathbf{X} is 2
(v) the graph of $f(x)$ is as follows:

$$
f(x)
$$

EXAMPLES:

1. A $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval $\square \mathbf{a}, \mathbf{b} \square$.
(a) State the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} and sketch it.
(b) Show that:
(i) the mean of \mathbf{X} is $\underline{\mathbf{a}} \underline{\mathbf{b}}$.
(ii) the variance of \mathbf{X} is $\underline{(\mathbf{b} \quad \square \mathbf{a}) 2}$.

12
(iii) the median of \mathbf{X} is $\underline{\mathbf{a}}$.

2
(c) Find the cumulative distribution function of \mathbf{X} and sketch it.
2. (a) A $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval $\square 2,5 \square$. Find

(b) The number of vehicles crossing a roundabout take on a $\mathbf{r} \square \mathbf{v} \mathbf{X}$ with uniformly distribution over the interval $\square^{\mathbf{x}}, \mathbf{x}_{\mathbf{2}}$. If the expected number of vehicles crossing the roundabout is $\mathbf{1 5}$ with variance $\mathbf{3}$, calculate the:
(i) values of \mathbf{X}_{1} and $\mathbf{x}_{\mathbf{2}}$.
(ii) probability that at least $\mathbf{1 4}$ vehicles cross the roundabout.
(iii) probability that the number of vehicles crossing the roundabout lies within one standard deviation of the mean.

EER:

1. The $p \square d \square f$ of a continuous $r \square v \mathbf{X}$ is given by
$f(x) \square \square \square \square(1 \square \mathbf{x 2} \square \quad, \quad 0 \square \mathbf{x} \square \mathbf{1}$

Find:
(i) the value of \square.
(ii) the mean, $\boldsymbol{\mu}$ and standard deviation, \square of \mathbf{X}.
(iii) $\mathbf{E}(\mathbf{8 X}+3)$ and $\operatorname{Var}(\mathbf{8 X}+3)$

$$
\left(\mathbf{i v}^{)} \mathbf{P}(|\mathbf{X} \square \boldsymbol{\mu}| \square \boldsymbol{\sigma})\right.
$$

$\square A n s:(i) 1 \square 5$ (ii) 0 $0 \square 375,0 \square 2437$ (iii) 6, $3 \square 8$ (iii) $0 \square 6145 \square$
2. The $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of a continuous $\mathrm{r} \square \mathrm{v} \mathbf{X}$ is given by

(a) Show that $f(x)$ represents a probability density function.
(b) Find the:
(i) median of \mathbf{X}
(ii) $\mathbf{8 0}{ }^{\text {th }}$ percentile of \mathbf{X}.
(iii) value of \mathbf{b} such that $\mathbf{P}(\mathbf{X} \square \mathbf{b}) \square 0 \square 6$.
(iv) expressions for $\mathbf{P}(\mathbf{X} \square \mathbf{x})$ and sketch it.

$\square A n s: ~ b(i) 1 \square 2679 ~(i i) ~ 1 \square 9046 ~(i i i) ~ 1 \square 4508 \square ~$

3. The $p \square d \square f$ of a continuous $r \square v \mathbf{X}$ is given by

$$
\square^{\square} \square \mathbf{x} \square \square \mathbf{x} 2 \quad, \quad 0 \quad \square \mathbf{x} \square 2
$$

$f(x) \square \square$
ㅁ 0 , otherwise
Given that the mean of \mathbf{X} is $\mathbf{1}$, find the:
(i) values of \square and \square.
(ii) variance of \mathbf{X}
(iii) mode of \mathbf{X}
$\square A n s: ~(i) 1 \square 5,0 \square 75$ (ii) $0 \square 2$ (iii) $1 \square$
4. The $\mathrm{p} \square \mathrm{d} \square \mathrm{f} f(x)$ of a $\mathbf{r} \square \mathbf{v} \mathbf{X}$ takes on the form shown in the sketch below: $f(x)$

Find:
(i) the value of \square
(ii) the equations of the $\mathrm{p} \square \mathrm{d} \square \mathrm{f} \quad$ (iii) the mean of
X.

$$
\begin{aligned}
& \text { (iv) } P(\mid X \square 1 \square 25 \square 0 \square 75) \\
& \text { (v) } P(0 \square 2 \square X \quad 1 \square 5 X \quad \square 0 \square 6) \\
& \quad \square A n s: \text { (i) } \frac{1}{2} \text { (iii) } 1 \square 0833 \text { (iv) } 0 \square 625 \text { (v) } 0 \square 5982 \square
\end{aligned}
$$

5. A r $\square \mathrm{v} X$ is uniformly distributed with mean $7 \square 5$ and variance $\mathbf{0} \square 75$ over the interval $\square \mathbf{a}, \mathbf{b} \square$. Find:
(i) the values of \mathbf{a} and \mathbf{b}.
(ii) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of the distribution.
(iii) $\mathbf{P (7 \square 2 \square X ~} \square 8 \square 4)$
(iv) $80^{\text {th }}$ percentile of \mathbf{X}.
(v) probability that \mathbf{X} lies within one standard deviation of the mean.
(vi) cumulative distribution function of \mathbf{X}.
$\square A n s: ~(i) 6,9 \quad$ (iii) $0 \square 4$ (iv) $8 \square 4 \quad$ (v) $0 \square 5774$
6. The time taken to perform a particular task t hours is given by the $p \square d \square f$:

$$
\begin{aligned}
& \square_{\square} 10 \beta t^{2} \quad, \quad 0 \square t \square 0 \square 6 \\
& f(t) \quad \square \square_{\square} 9 \beta(1 \square t) \quad, \quad 0 \square 6 \square t \square 1 \\
& \text { प०० } 0 \text {, otherwise }
\end{aligned}
$$

(a) Find the:
(i) value of \square
(ii) most likely time.
(iii) expected time.
(b) Determine the probability that the time will be:
(i) more than $\mathbf{4 8}$ minutes.
(ii) between 24and 48 minutes.
DAns: (a) (i)
(ii) $\frac{\mathbf{2 5}}{\mathbf{3 6}} \quad \mathbf{0} \square 6$
(iii) $0 \square 591$
(b) (i) $0 \square 125$ (ii) $0 \square 727 \square$
7. A continuous $\mathrm{r} \square \mathrm{v} \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$

$$
\begin{aligned}
& \square_{\square} \quad 0 \quad \text {, otherwise }
\end{aligned}
$$

Given that $\mathbf{P}(\mathbf{X}>\mathbf{1})=\mathbf{0} \square 8$, find the:
(i) values of \boldsymbol{k} and \square.
(ii) probability that \mathbf{X} lies between $0 \square 5$ and $2 \square 5$
(iii) mean of \mathbf{X}

$$
\square A n s: ~(i) ~ \square 1, \mathcal{P}_{15}^{\prime} \text { (ii) } 0 \square 6667 \text { (iii) } 1 \square 8 \square
$$

8. A continuous $\mathbf{r} \square \mathbf{v} \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$:

$$
\begin{gathered}
\square_{\square} \boldsymbol{\beta} \mathbf{x}^{2}, \quad 0 \square \mathbf{x} \square \mathbf{2} \\
f(x) \square \square_{\square} \boldsymbol{\beta}(6 \square x), \quad 2 \square x \square \mathbf{x}
\end{gathered}
$$

$\square_{\text {OL }} 0$, otherwise
(a) Sketch $f(x)$
(b) Find:
(i) the value of \square.
(ii) the median of \mathbf{X}.
(iii) $\mathbf{P}\left(\begin{array}{lll}\mathrm{X} & 275 & 125\end{array}\right) \square$
$\square A n s: ~ b(i) \frac{3}{32}$ (ii) $2 \square 734$ (iii) $0 \square 7070 \square$
9. A continuous $r \square v \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$

(a) Sketch $f(x)$
(b) Find:
(i) the value of \mathbf{k}.
(ii) the mean and variance of \mathbf{X}.
(iii) $\mathbf{P}(\mathbf{X}-2 \square 5)$
(iv) $\mathbf{P (1 \square X \square 2 \square 5)}$
(v) $\quad \mathbf{P}(0 \quad X \quad \square \mathbf{2} / \mathbf{X} \square 1)$
$\square A n s: ~(i) ~(i i), \frac{1}{4} \quad \frac{43}{24} \quad 0 \square 8316$ (iii) $0 \square 3125$ (iv) $0 \square 4375 \frac{1}{3}$
(v)
10. The cumulative distribution of a continuous $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is such that:

Find:
(i) the values of \square and \square.
(ii) $\mathbf{P}(\mathbf{2} \square 8 \square \mathrm{X} \square 5 \square 2)$
(iii) the median of \mathbf{X}
(iv) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} and sketch it.
(v) the mean, μ of \mathbf{X}.

$$
\begin{aligned}
& \text { (vi) } P(|X \square \mu| \square 0 \square 8) \\
& \quad \square \text { Ans: } \quad \frac{1}{12} \\
& 0 \square \\
& 0 \square 5578 \square
\end{aligned}
$$

11. The number of boats \mathbf{X} crossing a river is uniformly distributed between 150 and 210.
(a) State the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of the distribution.
(b) Find the:
(i) probability that between $\mathbf{1 7 0}$ and $\mathbf{1 9 4}$ boats cross the river.
(ii) expected number of boats to cross the river.
(iii) standard deviation for the distribution.
$\square A n s: ~ b(i) 0 \square 4$ (ii) 180 (iii) $7 \square 7460 \square$
12. The cumulative distribution of a continuous $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is such that:

Find:
(i) the values of \square and \square. Hence sketch $\mathbf{F}(\mathbf{x})$
(ii) $\mathbf{P}\left(1 \square 5 \square X \square 2 \square 5 / X \quad \mathbf{2}^{2}\right)$
(iii) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} and sketch it. Hence deduce the mean, mode and median
$\square A n s:(i) 3$, $\square 0 \square 5$ (ii) $0 \square 75$ (iii) 2, 2, $2 \square$
13. A continuous $r \square v \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$.
$\square k(3 \square x) \quad, \quad 1 \square x \square 2$

(a) Sketch $f(x)$, hence deduce the mean and median of \mathbf{X}.
(b) Find:
(i) the value of \boldsymbol{k}.
(ii) $\mathbf{P}(\mathbf{X} \square 3 \square 5 / 3 \square X \square 4)$
(iii) the $\mathbf{8 0}{ }^{\text {th }}$ percentile of \mathbf{X}.
$\square A n s: ~(a) 2 \square 5,2 \square 5 \quad$ b(i) $0 \square 25$ (ii) $0 \square 583$ (iii) $3 \square 5492 \square$
14. The time, T, taken to complete a certain task can be modeled as in the diagram below, where \mathbf{t} is the time in minutes.

Determine the:

(i) value of \square
(ii) equations of the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$
(iii) $\mathbf{E}(\mathbf{T})$
(iv) probability that the task will be completed between $\mathbf{4}$ and $\mathbf{7}$ minutes.
(v) probability that the task will be completed in less than $\mathbf{2}$ minutes
पAns: (i) 0■2
(iii) 5 (iv) $0 \square 5$
(v) $0 \square 08 \mathrm{\square}$
15. A $\square \mathrm{Dv} \mathbf{X}$ is uniformly distributed with variance $\mathbf{6} 7 \mathbf{7 5}$ over the interval

3 x b. \square Find:
(i) the value of \mathbf{b}.
(ii) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of the distribution.
(iii) $\mathbf{P}(5 \quad \square$

X \quad 9/ $\mathbf{X ~ \square 7) ~}$
\square Ans: (i) 12 (iii) $0 \square 4 \square$
16. A $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval $\square \mathbf{a}, \mathbf{b} \square$.
(a) State the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} and sketch it.
(b) Show that:
(i) the mean of \mathbf{X} is $\underline{\mathbf{a}} \underline{\mathbf{b}}$.

2
(ii) the variance of \mathbf{X} is $\underline{(\mathbf{b} \quad \mathbf{a}) 2}$.

12
(iii) the median of \mathbf{X} is $\underline{\mathbf{a}} \underline{\mathbf{b}}$.

2
(c) Find the cumulative distribution function of \mathbf{X} and sketch it.
17. $\mathrm{Ar} \square \mathrm{v} \mathbf{X}$ has the following cumulative distribution function

(a) Sketch $\mathbf{F}(\mathbf{x})$
(b) Find the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X}. Hence show that the variance of \mathbf{X} is $\underline{\left(\mathbf{b} \square \mathbf{a}^{\mathbf{2}}\right.}{ }^{\text {. }}$
18. A $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is uniformly distributed with lower quartile 5 and upper quartile 9 in the interval $\square \mathbf{a}, \mathbf{b} \square$. Find the:
(i) values of \mathbf{a} and \mathbf{b}.
(ii) $\mathbf{P}(6 \square \mathbf{X} \square 7)$
(iii) probability that \mathbf{X} lies within one standard deviation of the mean.
(iv) cumulative distribution function of \mathbf{X}.
$\square A n s:(i) 3,11$ (ii) $0 \square 125$ (iii) $0 \square 5774 \square$
19. The $\mathrm{p} \square d \square f$ of a $\mathrm{r} \square \mathrm{v} \mathbf{X}$ is given by:

(i) Identify the distribution
(ii) Find $\mathbf{P}(\mathbf{X}|\square \square \boldsymbol{\mu}|) \boldsymbol{\sigma}$ where \square and \square is the mean and standard deviation of \mathbf{X} respectively.

पAns: (ii) $0 \square 5774$

20. The life time in years of a battery is known to be uniformly distributed with mean 4 and variance $4 / 3$, issued with a three years guarantee. If two such batteries are picked at random, find the probability that both will be replaced under the guarantee.

पAns: (ii) $0 \square 0625 \square$
21. $\mathrm{Ar} \square \mathrm{v} \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$.
$\square 3 \mathrm{xa}, 0 \square \mathrm{x} \square 1 f(x)$
$\square \square_{\square}$

$$
\square_{\square} \mathbf{0} \quad, \quad \text { otherwise }
$$

Find the:
(i) value of \mathbf{a}.
(ii) median of \mathbf{X}.

पAns: (i) 2 (ii) $0 \square 7937$
$22 \mathrm{Ar} \square \mathrm{v}$ has the following cumulative distribution function

$$
\begin{aligned}
& 0 \quad, \quad x \square 0 \\
& F(x) \square \square_{\square}^{1}\left(x^{4} \square 8 x^{3} \square \boldsymbol{\beta} x^{2}\right), 0 \square x \square 4 \\
& { }^{\circ} 12 \\
& \text { प } 1 \quad, \quad x \quad 4
\end{aligned}
$$

Find:
(i) the value of $\boldsymbol{\beta}$.
(ii) $\mathbf{P}(\mathbf{X}<2)$
(iii) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} (iv) the
mode of the distribution
$\square A n s: ~(i) 18$ (ii) $0 \square 75$ (iv) $1 \square$
23. The cumulative distribution of a continuous $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is such that:

Find:
(i) the values of \square and \square.
(ii) $\mathbf{P}(\mathbf{3} \square 2 \mathrm{X} \square 5)$
(iii) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} and sketch it.
(iv) the mean, μ of \mathbf{X}.

$$
\square A n s: \text { (i) 0ם5, } \square 0 \square 25 \text { (ii) } 0 \square 4375 \text { (iv) 1 } \square 5 \square
$$

24. A continuous $r \square v \mathbf{X}$ is distributed as follows:
(i) Find the values of \square and \square.
(ii) Show that $\mathbf{E}(\mathbf{X})=\mathbf{2} \mathbf{2 5}$, and find the standard deviation \square of \mathbf{X}.
$\square A n s: ~(i) 1, \frac{-1}{27}$ (ii) $0 \square 581 \square$
25. The $p \square d \square f$ of $r \square v \mathbf{X}$ is given by
$\square^{\square} \square \mathbf{x}(16 \square \mathbf{x} 2) \quad, \quad 0 \quad \square \mathrm{x} \square 4$
$f(x) \square \square$

$$
\begin{array}{llll}
\square \\
\square & 0 & \text { otherwise }
\end{array}
$$

Find the:
(i) value of $\boldsymbol{\beta}$
(ii) mode of \mathbf{X}
(iii) mean of \mathbf{X}

$$
\square A n s: \text { (i) } \frac{1}{64} \text { (ii) } 2 \square 3094 \text { (iii) } \frac{32}{15} \square
$$

26. A $\mathbf{r} \square \mathrm{v} X$ is uniformly distributed over the interval $\square 2,6 \square$. Find

(ii) the variance of \mathbf{X}

पAns: (i) $0 \square 4$ (ii) $\frac{4}{3}$

27 A continuous $r \square v \mathbf{X}$ has the following p $\square \mathrm{d} \square \mathrm{f} . \square 2 \square \mathbf{4 x}$
, $0 \square \times \square \mathbf{x} 25$
$f(x) \square$ वा $1 \quad, \quad 0 \square 25 \square x \square 0 \square 5$
 , otherwise
(a) Sketch $f(x)$, hence deduce the mean, $\boldsymbol{\mu}$ and median of \mathbf{X}.
(b) Find:
(i) the cumulative distribution function of \mathbf{X}.
(ii) $\mathbf{P}\left(|X \square \mu| \square 0 \square^{\mathbf{2}}\right)$
$\square A n s:(a) 0 \square 375,0 \square 375 \quad$ b(ii) $0 \square 4225 \square$
28. The cumulative distribution of a continuous $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is such that:

$$
\begin{aligned}
& \square \quad 0 \quad, \quad \mathbf{x} \quad 1 \\
& \square_{\square} \underline{1}_{(x \square 1)^{2}} \quad, \quad 1 \square \mathbf{x} \square 3 \\
& F(x) \square \square_{\square}^{12} \underline{1}_{\left(14 x \square x^{2} \square 25\right)} \quad 3 \square \\
& \text { x } \quad 7 \\
& \square 24
\end{aligned}
$$

ロ 1 , $\mathbf{x} \square 7 \quad$ Find:
(i) $\mathbf{P}(\mathbf{2} \square \mathbf{8} \square \mathbf{X} \square \mathbf{5} \square \mathbf{2})$
(ii) the median of \mathbf{X}
(iii) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} and sketch it.
(iv) the standard deviation of \mathbf{X}.
पAns: (i) $0 \square 595$
(ii) $3 \square 45$
(iv) $1 \square 2472$
29. The number of boats \mathbf{X} crossing a river is uniformly distributed between

30 and 110 boats. Find the:
(i) probability that at least $\mathbf{9 0}$ boats cross the river.
(ii) expected number of boats to cross the river.
(iii) standard deviation for the number of boats to cross the river.
(iv) probability that \mathbf{X} lies within one standard deviation of the mean.
(v) upper quartile for the number of boats to cross the river.
(vi) $\mathbf{2 5}^{\text {th }}$ percentile for the number of boats to cross the river.
(vii) cumulative distribution function of \mathbf{X} and sketch it.

पAns: (i) $0 \square 25$ (ii) 70 (iii) $23 \square 094$ (iv) $0 \square 5774$ (v) 90 (vi) $50 \square$
30. The $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of $\mathrm{r} \square \mathrm{v} \mathbf{X}$ is given by

$$
\square^{\square} \square \mathbf{x}(\mathbf{3 x} \square \mathbf{x} 2) \quad, \quad \mathbf{0} \square \mathbf{x} \square \mathbf{3}
$$

$f(x) \square \square$

Find the:
(i) value of $\boldsymbol{\beta}$
(ii) mode of \mathbf{X}
(iii) mean of \mathbf{X}

पAns: (i) $4 / 27$ (ii) 2 (iii) $1 \square 8 \square$

31 The $\mathrm{p} \square \mathrm{d} \square f(\boldsymbol{x})$ of a $\mathbf{r} \square \mathbf{v} \mathbf{X}$ takes on the form shown in the sketch below:

Find the:
(i) value of \square
(ii) equations of the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$
(iii) median of X.

पAns: (i) 0■2 (iii) 4ロ2614 \square
32. The weekly demand for petrol \mathbf{X} in thousands of units at the petrol station is given by the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$

$$
\begin{array}{cc}
f(x) \square \square \square \square \mathbf{x}(\lambda \square \mathbf{x}) & , \quad \mathbf{0} \square \mathbf{x} \square \mathbf{1} \\
\square \square \quad \mathbf{0} & , \quad \text { otherwise }
\end{array}
$$

(i) Given that the mean weekly demand is $\mathbf{6 2 5}$ units, find the values of $\boldsymbol{\beta}$ and $\boldsymbol{\lambda}$. Hence obtain the mode of \mathbf{X}.
(ii) If every week the petrol station stocks $\mathbf{7 5 0}$ units of petrol, find the probability that in a given week the petrol station will be unable to meet the demand for petrol.
(iii) Find the amount of petrol that should be stocked in order to be $\mathbf{8 5} \square \mathbf{0 5 \%}$ certain that the demand for petrol in that week will be met.

पAns: (i) 1ロ5, 2 (ii) $0 \square 3672$ (iii) 900units
$33 \mathrm{Ar} \square \mathrm{v} \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$.
 $\square \mathbf{x}) \quad$, $0 \square \mathbf{x} \square \mathbf{2 a} \quad 0 \quad$, otherwise

Find:
(i) the value of \mathbf{a}.
(ii) the expressions for $\mathbf{P}(\mathbf{X} \square \mathbf{x})$ and sketch it
(iii) the median of \mathbf{X}.

$$
\text { (iv) } P(X \quad \square 1 \square 5 / X \subset 0)
$$

पAns: (i) 1 (iii) $0 \square 2679$ (iv) $0 \square 9375 \square$
34. $\mathrm{Ar} \square \mathrm{v} \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$.

$$
\begin{aligned}
& \square_{\square} 3^{1}(\mathbf{x} \square 2) \text {, } \square \mathbf{a} \square \mathbf{x} \square 1 \\
& f(x) \quad \square_{\square} \mathbf{a}^{\mathbf{1}}(\mathbf{2} \square \mathbf{x}) \quad, \quad 1 \square \mathbf{x} \square \mathbf{a} \\
& \text { - } 0 \text {, otherwise }
\end{aligned}
$$

Find:
(i) the value of \mathbf{a}.
(ii) $\mathbf{P}(\mathbf{X} \square \mathbf{0})$
(iii) the lower quartile of \mathbf{X}.

$$
\square A n s: \text { (i) } 2 \text { (iii) } 13 \text { (iii) } \square 0 \square 2679 \square
$$

35 A continuous $\mathrm{r} \square \mathrm{v} \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$

$$
\begin{aligned}
& f(x) \square \text { व०口 } \lambda \sin x, \quad 0 \square x \square \pi \\
& \text { पெ 0 , otherwise }
\end{aligned}
$$

Find:
(i) the value of λ.

(iii) the median of \mathbf{X}.
पAns: (i) $0 \square 5$
(ii) $0 \square 75$
(iii) $\frac{\pi}{2}$
36. A continuous $r \square v \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$

(a) Find:
(i) the value of λ.
(ii) $\mathbf{P}_{\square \square}^{\square_{\square}} \underline{\pi}_{3} \square \mathbf{X} \quad \underline{\mathbf{3}}_{4} \underline{\boldsymbol{\pi}}_{\square \square}$
(b) Show that the mean, $\boldsymbol{\mu}$ of the distribution is $1 \square \frac{\pi}{4}$.

$$
\begin{array}{ll}
\square A n s: ~(i) ~ & \frac{2}{\pi}
\end{array} \quad \text { (ii) } 0 \square 6982
$$

$37 \mathrm{Ar} \square \mathrm{v} \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$. ${ }^{\square} \lambda \boldsymbol{c o s} \mathbf{x}$ $\begin{array}{rrr}0 & \square \\ & \frac{\pi}{4}\end{array}$ $\begin{array}{llllll}\square \\ \square \operatorname{sinx} & , & \frac{\pi}{4} & \square & \mathbf{x} & \frac{\pi}{2} \\ \square & \square & 0 & & & \\ \text { otherwise } & & & & \end{array}$ $f(x) \square \square$

प
Find:
(i) the value of λ, hence sketch $f(x)$.

(iii) the mean of \mathbf{X}.
■Ans: (i)
$\sqrt{2}$
(ii) $0 \square 2265$
(iii) $\frac{\pi}{4}$
2
38. The cumulative distribution of a continuous $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is such that:

$$
\begin{aligned}
& \square \mathbf{0} \quad \text {, } \mathbf{x} \square \\
& \square^{\square} \beta \sin ^{\square 1} \mathbf{x} \quad, \quad 0 \square \mathbf{x} \square 1 \\
& \mathbf{F}(\mathbf{x}) \quad \square \\
& \square \lambda \tan ^{\square 1} \mathbf{x}, 1 \square \mathbf{x} \sqrt{3} \\
& \text { ■ } \mathbf{1} \quad, \quad \mathbf{x} 3
\end{aligned}
$$

(a) Find:
(i) the values of \square and \square.
(ii) $\mathbf{P}(0 \square 5 \square X \quad \square 1 \square 5)$
(iii) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X}.
(b) Show that the mean, μ of the distribution is $\frac{\mathbf{3}}{\mathbf{2 \pi}} \square \mathbf{1} \square$ In2 \square

$$
\square A n s: \text { (i) } \frac{3}{\pi}, \frac{3}{2 \pi} \quad \text { (ii) } 0 \square 6885 \square
$$

39. $\mathrm{Ar} \square \mathrm{v} \mathbf{X}$ has the following cumulative distribution function.

Find:
(i) the values of \square and \square.
(ii) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X}
(iii) the mean, $\boldsymbol{\mu}$ of \mathbf{X}.

$$
\begin{aligned}
& \left(\text { iv }^{)} P(|X \square \mu| \square 0 \square 5)\right. \\
& \quad \square \text { Ans: (i) } 1 / 12,1 / 4 \text { (ii) } 2 \square 0556 \text { (iii) } 0 \square 5412 \square
\end{aligned}
$$

40. The $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of a $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is given by:

Show that the:
(i) value of $\lambda \square \frac{4}{\pi}$.

(iii) $E \square X \square \square^{\frac{2 \operatorname{In} 2}{\pi}}$.
(iv) median of the distribution istan $\frac{\pi}{8}$
41. The cumulative distribution of a continuous $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is given by:

(a) Find:
(i) the value of $\boldsymbol{\beta}$.
(ii) $\mathbf{P}(\mathbf{X}>1)$
(b) Show
that the:

```
\(\underline{\pi}\)
```

(i) median of \mathbf{X} is $\boldsymbol{\operatorname { t a n }} \mathbf{6}$.
(ii) $\mathbf{7 5}^{\text {th }}$ percentile of X is $\boldsymbol{\operatorname { t a n }} \frac{\pi}{4}$.
(c) By stating the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X}, show that $\mathbf{E}(\mathbf{X}) \square \frac{3 \operatorname{In} \mathbf{2}}{\pi}$.
42. The times of arrival of a bus at its stage are uniformly distributed between the interval 9:00am to 2:00pm. Find the:
(i) mean and variance of the bus's time of arrival
(ii) probability that the time of arrival does not exceed $\mathbf{1 : 0 0} \mathbf{p m}$.

$$
\square A n s: \text { (i) 11ロ5h, } \quad 25 / 12 \text { (iii) } 0 \square 8 \square
$$

43. $\mathrm{A} \mathbf{r} \square \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval $\square \mathbf{a}, \mathbf{b} \square$.
(a) State the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} and sketch it.
(b) Show that the lower quartile of \mathbf{X} is $\underline{\mathbf{3 a}^{\mathbf{b}} \quad \text { b }}$ and the upper is $\underline{\square}$ $\mathbf{3}^{\text {b }}$.

4

4
44. A $\mathrm{r} \square \mathrm{v} X$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$

(a) Sketch $f(x)$
(b) Find:
(i) the values of $\boldsymbol{\beta}$ and $\boldsymbol{\lambda}$
(ii) the mean of \mathbf{X}
(iii) $\mathbf{P}(\mathbf{3} \square X \square 4 X \square 2) \square A n s: ~ b(i){ }^{2} \mathbf{1 1}^{\prime}, \mathbf{6}_{11}$ (ii) $2 \square 4848$ (iii) $0 \square 375 \square$ $1 /$
45. A continuous $r \square v \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$.

- 2口 $\boldsymbol{\beta}_{\mathrm{x}}$ otherwise	$5 \square \mathrm{x}$ [\square	0

$\square 3 \quad 3$

(a) Find the values of $\boldsymbol{\lambda}$ and $\boldsymbol{\beta}$
(b) Sketch $f(x)$, hence deduce the mean, $\boldsymbol{\mu}$ of \mathbf{X}.
(c) Find the:
(i) variance of \mathbf{X}.
(ii) $\mathbf{E}(\mathbf{3 X})$ and $\operatorname{Var}(\mathbf{3 X})$

$$
\square A n s:(a){ }^{1} 3, \square^{1 / 3} \text { (b) } 4 \quad \text { c(i) } 101 / 6 \text { (ii) } 12,151 \square 5 \square
$$

46. The mass \mathbf{X} kg of maize flour produced per hour is modeled by a continuous $r \square v$ whose $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ is given by:

$$
\begin{aligned}
& f(x) \quad \square_{\square \square} \lambda\left(4 \square x^{2}\right), \quad 0 \square x \square \\
& 2 \text { 미 , } \\
& \text { otherwise }
\end{aligned}
$$

(a) Find the:
(i) value of λ
(ii) mean mass produced per hour
(b) Given that maize flour is sold at $£ \mathbf{8}$ per kg and the cost of running the production is $\mathbf{£} \mathbf{1}$ per hour, find the:
(i) expected profit per hour.
(ii) probability that in an hour the profit will exceed $£ \mathbf{1 1}$.
पAns: $\mathbf{a (i)}{ }^{3 / 16}$
(ii) $3 / 4$ b(i) $£ 5$
(ii) $0 \square 0859 \square$
47. Ar $\square \mathbf{x}$ is uniformly distributed over the interval $\mathbf{a} \square \mathbf{X} \square \mathbf{b}$. Given that \mathbf{X} is distributed with mean $\mathbf{9}$ and variance 12, find:
(i) the values of \mathbf{a} and \mathbf{b}.
(ii) $\mathbf{P}(\mathbf{X} \square$ 10 $)$

पAns: (i) 3, 15 (ii) $7 / 12$
48. A $\mathbf{r} \square \mathbf{v} \mathbf{X}$ is uniformly distributed over the interval $\square \mathbf{a}, \mathbf{b} \square$.
(a) State the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} and sketch it.
(b) Show that $\mathbf{P}\left({ }^{\mathbf{x}}{ }_{1} \square \mathbf{X} \square^{\mathbf{x}_{2}}\right) \square \mathbf{x b}^{\underline{2}} \square^{\square} \mathbf{x}_{\mathbf{a}^{1}}$
49. A continuous $r \square v \mathbf{X}$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$

Find:
(i) the value of λ.
(ii) the mean of \mathbf{X}.
(iii) the cumulative distribution function of \mathbf{X}.

(iv) $\mathbf{P}(1 \square X \square 3)$

पAns: (i) $\frac{\mathbf{3}}{\mathbf{1 6}}$
(ii) $1 \square 75$ (iv) $0 \square 6875$
50. The lifetime X in years of an electric bulb is a $\square \mathrm{V} \mathbf{X}$ with the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$

$$
\begin{aligned}
& f(x) \square \square_{\square \square} \lambda(5 \square \mathbf{x}), \quad 0 \square \mathbf{x} \square 5 \\
& \text { ㅁ 0 , otherwise }
\end{aligned}
$$

(a) Find the:
(i) value of λ.
(ii) mean of \mathbf{X}.
(b) If two such new bulbs are sold, find the probability that:
(i) both bulbs fail to work within one year.
(ii) only one bulb works for more than three years.

$$
\text { पAns: (a) (i) } \frac{6}{125} \quad \text { (ii) } 2 \square 5 \quad \text { (b) (i) } 0 \square 0108 \text { (ii) } 0 \square 4562
$$

51. A uniformly distributed $\mathbf{r} \square \mathbf{v} X$ has the following $\mathrm{p} \square \mathrm{d} \square \mathrm{f} f(x)$:

$$
y
$$

Find the:

(i) value of \boldsymbol{k}
(ii) equations of the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \boldsymbol{X}
(iii) variance of \boldsymbol{X}
पAns: (i) 5 (iii) $\frac{\mathbf{4}}{\mathbf{3}} \square$
52. The cumulative distribution function of a continuous $r \square v \boldsymbol{X}$ is illustrated as follows:

$$
2
$$

(i) the $\mathrm{p} \square \mathrm{d} \square \mathrm{f}$ of \mathbf{X} and sketch it.
(ii) the mean and variance of \mathbf{X}.
(iii) $\mathbf{P}(\mathbf{X} \square \mathbf{3} / \mathbf{X} \square 5)$

$$
\text { ZAns: (ii) } 4, \frac{4}{3} \quad \text { (iii) } \frac{2}{3}
$$

