EcoleBooks

Ecoletooks

	(ii) Let u be the velocity as the ball hits the surface for the first time Then $u = \sqrt{2gh}$	
	After the 1 st bounce the velocity, $v_1 = eu = e\sqrt{2gh}$	1⁄2
	After the 2 nd bounce the velocity, $v_2 = ev_1 = e^2 \sqrt{2gh}$	1⁄2
	After the 3 rd bounce the velocity, $v_3 = ev_2 = e^3 \sqrt{2gh}$	1/2
	So after the n th bounce the velocity, $v_n = ev_{n-1} = e^n \sqrt{2gh}$	72
	Now, total energy lost $E = mgh - \frac{1}{2}mv_n^2$	1/2 1/
	$=$ mgh - $\frac{1}{2}$ mge ⁿ $\sqrt{2gh}$ ²	72
	$= \operatorname{mgh}(1 - e^{2n})$	1⁄2
	(iii) Some of the kinetic energy is converted into heat.	1
(b)	(i) At any point, the gravitational potential is the work done in taking a mass of 1 kg from infinity to that point.	1
	(ii) At the earth's surface the gravitational potential is $\frac{-GM}{r}$ But at the earth's surface the gravitational force on a mass m equals the mass's	1
	weight there. i.e. $\frac{GMm}{r^2} = mg$	1
	$\therefore GM = gr^2$	
	Thus the gravitational potential there $= \frac{-gr^2}{r} = -gr$	1
(a)	(i) $m_1 = 300 \text{g}$ $m_2 = 200 \text{g}$	
(0)	(1) $\ln 1 = 300 \text{ g}, \ln 2 = 200 \text{ g}$ $ \mathbf{u}_1 = \mathbf{u}_2 = \sqrt{2gl(1 - \cos 80^\circ)} = \sqrt{2 \times 9.81 \times 1(1 - \cos 80^\circ)} = 4.03 \text{ m s}^{-1}$ ∴ $\mathbf{u}_1 = 4.03 \text{ m s}^{-1}$ and $\mathbf{u}_2 = -4.03 \text{ m s}^{-1}$	1
	$m_1v_1 + m_2v_2 = m_1u_1 + m_2u_2$	
	$300v_1 + 200v_2 = (300 \times 4.03) + (200 \times -4.03)$	1
	Now $v_1 - v_2 = -e(u_1 - u_2)$	72
	$\therefore \qquad v_1 - v_2 = -0.6(4.03 - 4.03)$	1
	$Eq(2) x 2: 2v_1 - 2v_2 = -9.64 \dots (3)$	1/2
	Eq(1) + eq(3): $5v_1 = -5.61$	1
	$\begin{array}{cccc} & & v_1 = -1.12 \text{ m s}^{-1} \\ From (2) & & v_2 = v_1 + 4.82 \end{array}$	1
	$= -1.12 + 4.82 = 3.7 \text{ m s}^{-1}$	1
	$\Delta E = \frac{1}{2} m u_1^2 + \frac{1}{2} m u_2^2 - \frac{1}{2} m v_1^2 - \frac{1}{2} m v_2^2$	
	$= \frac{1}{2}[0.4 \times 4.03^{2} \times 2 - 0.4 \times 1.12^{2} - 0.2 \times 3.7^{2}]$ - $\frac{1}{2}[13 0 - 0.502 - 2.738]$	
		L

	= 4.88 J	1
	(11) Let the angle be θ Then the height risen is $h = 1 \cos \theta$ (since length = 1m)	
	Now $\frac{1}{2}mv^2 = mgh = mg(1 - cos\theta)$	1
	100° 7210° 100° 100° 100° 100°	
	$\therefore \cos \theta = 1 - \frac{1}{2g} = 1 - \frac{3.7}{2 \times 9.81} = 1 - 0.698 = 0.302$	1
	$\therefore \Theta = \mathbf{72.4^{o}}$	1
	$T_{otal} = 20$	
	10111 - 20	
3. (a)	(i) Kinetic energy is the energy possessed by a body by virtue of its motion while Potential energy is the energy possessed by a body by virtue of its position.	1 1
	(ii) Suppose a constant force, F, accelerates a body of mass m from rest to a velocity v in a distance s. Then, the work done by F is	
	W = Fs	1
	= ma.s, where a = acceleration $\sqrt{2}$	1
	Using $2as = v^2 - u^2$, we have that $as = \frac{1}{2}v^2$	1
	$\therefore \qquad W = \frac{1}{2} mv^2$	1
	This is the kinetic energy of the body of mass m which is moving with a velocity v	
(b)	(i) A conservative force is one whose work done on a body depends only on the initial and final positions of the body	1
		-
	(ii) Suppose a particle of mass m moving vertically upwards passes the datum level, Ω with a velocity u	
	Then the particle's mechanical energy at O is	
	$ A \qquad m.e = k.e + p.e $	
	$= \frac{1}{2} mu^2 + 0 = \frac{1}{2} mu^2$	1
	When the particle is at point A its potential energy = mgh and its velocity v is given by $v^2 = u^2 - 2gx$.	
	Thus, its kinetic energy is $\frac{1}{2}$ mv ² = $\frac{1}{2}$ m(u ² - 2gx)	1
	Hence, the total mechanical energy of the particle at A is	1
	O - O m.e = k.e + p.e	
	$= \frac{1}{2}m(u^2 - 2gx) + mgx = \frac{1}{2}mu^2$	
	which is the same as the total mechanical energy at O.	1
(c)	(1) The moment of a force about a given point is the product of the force and the perpendicular distance from the point to the line of action of the force.	1
	(ii) Energy stored in the spring $-$ work done by the couple	
	$= \text{ torque x angle turned through in radians}$ $= Fd\theta$	1
	$= 6 \text{ x} 2 \text{ x} 0.5 \text{ x} \frac{120\pi}{180}$	1
	= 12.56 J	1

	Now force = mass x acceleration	
	$\therefore \qquad \mathbf{F} = \mathbf{m}\omega^2 \mathbf{a} = \frac{4\pi^2}{\mathbf{T}^2}\mathbf{m}\mathbf{a}$	1
	$\therefore \qquad T^2 = \frac{4\pi^2 ma}{F} = \frac{4\pi^2 \times 0.1 \times 3.6 \times 10^{-2}}{3.52} = 0.0404$	
	T = 0.201 s	1
	(ii) The displacement, $x = (4.5 - 3.6) \times 10^{-2} = 0.9 \times 10^{-2} \text{ m}^{-2}$	1/2
	Now $y = \omega \sqrt{a^2 - x^2}$	1⁄2
	k.e = $\frac{1}{2}mv^2 = \frac{1}{2}m\omega^2(a^2 - x^2)$	1⁄2
	$= \frac{1}{2} \times 0.1 \times \frac{4\pi^2}{0.0404} (3.6^2 - 0.9^2) \times 10^{-4}$	1⁄2
	= 0.0594 J	1
	(iii) Total energy = $\frac{1}{2}m\omega^2 a^2 = \frac{1}{2} \times 0.1 \times \frac{4\pi^2}{0.0404} \times 3.6^2 \times 10^{-4}$	1
	= 0.0633 J	1
	Total = 20	1
5. (a)	 (i) - The range of the temperatures to be measured Whether the temperature is rapidly changing Whether the temperature is to be taken at a point (in a limited space) 	1
	 (ii) The property should vary continuously with temperature, in value or otherwise, over a wide range be observable be measurable have reproducible values at the respective temperatures have distinguishable values even for small differences in temperature 	2
(b)	(i)a universally chosen temperature for reference of any measured temperature at which all thermometers agree and at which temperature certain physical changes occur.	1
	(ii) the temperature at which saturated water vapour, pure water and melting ice are all in equilibrium.	1
(c)	(i) Constriction Bulb Bulb Mercury	1/2 1/2 1/2 1/2

-END-