

	$\therefore y = x \tan \alpha - \frac{g}{2u^2 \cos^2 \alpha} x^2$ This is an equation of a parabola.	1
(d)	(i) Using $y = x \tan \alpha - \frac{g x^2}{2u^2 \cos^2 \alpha}$ we have	
	$u^{2} = \frac{g x^{2}}{2(x \tan \alpha - y)\cos^{2} \alpha}$	1
	$= \frac{9.81 \times 100^2}{2(100 \tan 30^\circ - 25) \cos^2 30^\circ} = \frac{9.81 \times 10^4}{2 \times 32.7 \times 0.75} = 2.0 \text{ x } 10^3$	1
	$\therefore \qquad \mathbf{u} = 44.7 \mathbf{m} \mathbf{s}^{-1} \qquad \qquad$	1
	(ii) The horizontal velocity, $v_x = u \cos 30^\circ = 44.7 \cos 30^\circ = 38.7 \text{ ms}^4$	1
	Time taken, t = $\frac{x}{v_x} = \frac{100}{38.7} = 2.58 \text{ s}$	1/2
	The vertical velocity, $v_y = u \sin 30^\circ - gt$ = 44.7 sin 30° - 9.81 x 2.58	
	$= 3.0 \text{ ms}^{-1}$	1
	v_y $\theta = \tan^{-1}\left(\frac{v_y}{v_x}\right) = \tan^{-1}\left(\frac{3.0}{38.7}\right)$	1/2
	$= 4.4^{\circ}$	
	Total = 20	
2. (a)	(i) the coefficient of viscosity is the tangential force acting on an area of 1 m^2 of fluid which resists the motion of one layer over another when the velocity gradient between them is 1 s^{-1} .	1
	(ii) Viscosity in gases is due to momentum transfer between the neighbouring	1
	layers of gases.	1
	 It is proportional to the average speed of the gas molecules. So, increase in gas temperature increases viscosity 	¹ /2 ¹ /2
(b)	(i) The flow should be laminar	1
	 (ii) The volume of liquid issuing per second from the pipe depends on: the coefficient of viscosity, η the radius of the pipe, r the pressure gradient set up along the pipe, s 	
	i.e. volume per second = $k\eta^x r^y s^z$ where k is a constant and x, y and z are indices to be found	1
	where K is a constant and X, y and Z are marces to be round.	
	Using dimensions: $L^{3}T^{-1} = (ML^{-1}T^{-1})^{x} L^{y} (ML^{-2}T^{-2})^{z}$ $\therefore 0 = x + z$	1

	When freely floating, the height submerged is $\frac{\sigma}{2}$ h	
	Weight of the cylinder, $W =$ weight of the liquid displaced $= hA\sigma g$ During motion, suppose at a certain instant the lower end is at a distance x below the equilibrium, O.	1
	Then, the upthrust, $U = (\frac{\sigma}{\rho}h + x)A\rho g$	1
	Let a = acceleration (positive away from O) Then, using ma = W – U, where m = hA σ ma = hA σ g - hA σ g - xA ρ g	
	$\therefore hA\sigma a = -xA\rho g$	1
	$\therefore \qquad a = -\frac{pg}{\sigma h}x$	1
	The negative sign means that the acceleration is towards O, and since it is proportional to the displacement x from O, the cylinder executes simple	-
	harmonic motion.	1
	(1) pg 2 $4\pi^2$	
	(11) Now $\frac{rs}{\sigma h} = \omega^2 = \frac{r}{T^2}$	1
	$\therefore \qquad T = 2\pi \sqrt{\frac{\sigma h}{\rho g}} \qquad \qquad \checkmark$	1
(d)	$a = \frac{1}{4\pi^2}$	
(u)	(i) $\omega^2 = \frac{\kappa}{m} = \frac{4\pi}{T^2}$	1⁄2
	$\therefore \qquad \mathbf{T} = 2\pi \sqrt{\frac{\mathbf{m}}{\mathbf{k}}} = 2\pi \sqrt{\frac{0.1}{24.5}} \qquad \checkmark$	1/2
	= 0.408 s	1
	(ii) Since it starts from maximum displacement, the equation of motion is	
	(ii) Since it starts from maximum displacement, the equation of motion is $y = a \cos \omega t$	1
	Now $\omega = \sqrt{\frac{k}{m}} = \sqrt{\frac{24.5}{0.1}} = 15.65 \text{ rad s}^{-1}$	1
	:. $\omega t = 15.65 \times 0.3 \text{ radians} = 15.65 \times 0.3 = \frac{180^\circ}{\pi} \times 15.65 \times 0.3 = 269^\circ$	1/2
	$\therefore \qquad y = 0.05 \cos 269^{\circ} \qquad \checkmark \qquad $	1⁄2
	$= 8.7 \times 10^{-4} \text{ m}$	1
10tat = 20		
4. (a)	(i)a single force having exactly the same effect as the number forces it represents	

 \square

Ecolebooks.com

Ecolebooks.com

Ecolebooks.com

$$= \sqrt{1.229 \times 10^{-12}} = 1.11 \times 10^{-6} \text{ m}$$
Also $\frac{V}{d}q = \text{mg} = 6\pi\eta \text{rv}$

$$\therefore \quad q = \frac{6 \times \pi \times \eta \times \text{rvd}}{V} = \frac{6 \pi \times 1.8 \times 10^{-5} \times 1.11 \times 10^{-6} \times 1.5 \times 10^{-3}}{780 \times 11.2}$$

$$= 6.47 \times 10^{-17} \text{ C}$$

$$1$$

$$Total = 20$$