P1 S6 EXAM AUGUST 2017 MARKING GUIDE

is equal to the weight of the fluid displaced.	1
(ii) $\frac{\text{mg} - 2.06}{\text{mg} - 2.45} = 1.8$	1
$\begin{array}{ccc} \therefore & \text{mg} - 2.06 = 1.8\text{mg} - (1.8 \text{ x } 2.45) \\ \therefore & \text{mg}(1.8 - 1) = (1.8 \text{ x } 2.45) - 2.06 \end{array}$	1
\therefore m = $\frac{4.41 - 2.06}{0.8 \times 9.81}$ = 0.299 kg	1
 (b) (i) A particle is said to execute simple harmonic motion if it moves such that its acceleration along its path is always directed towards a fixed point in that path, and is proportional to its displacement from the fixed point. 	
	1
(ii) A damped oscillation is one whose amplitude decreases with time due to dissipation of energy	1
A forced oscillation is one that receives periodic impulses from an external agent	1
(c) (i) a = b b	
When freely floating, the height submerged is $\frac{\sigma}{\rho}$ h	
Weight of the cylinder, $W =$ weight of the liquid displaced $= hA\sigma g$ During motion, suppose at a certain instant the lower end is at a distance x below the equilibrium, O.	1
Then, the upthrust, $U = (\frac{\sigma}{\rho}h + x)A\rho g$	1
Let a = acceleration (positive away from O) Then, using ma = W – U, where m = $hA\sigma$	
$ma = hA\sigma g - hA\sigma g - xA\rho g$ $hA\sigma a = -xA\rho g$	
$\therefore \qquad a = -\frac{\rho g}{r} x$	1
σh° The negative sign means that the acceleration is towards O, and since it is proportional to the displacement x from O, the cylinder executes simple harmonic motion.	1

Ecolebooks.com

(b)	(i) surface tension is the work done in increasing the surface area by 1 m^2 under	
	isothermal conditions.	1
	(ii)	
	A Liquid molecules attract each other.	1⁄2
	In bulk, a molecule B is attracted in all directions by	1⁄2
	other molecules, and the resultant attractive force is	
	Liquid zero.	1⁄2
	A molecule A at the liquid surface has greater	1⁄2
	molecular separation than equilibrium separation.	
	The molecule A at the surface experiences greater	1/2
	attraction from its neighbours and this puts molecule	1⁄2
	at the surface in tension.	
	This is the phenomenon termed surface tension.	
	(iii) Let P_1 and P_2 be the external and internal pressures	
	An air bubble has one surface in contact with the liquid. So the surface tension force $F_{\gamma} = 1$	
	$P_1 \longrightarrow (2\pi r v)$	
		4
	For the soap bubble in equilibrium	4
	Force due to pressure P_1 + force due to surface tension = force due to pressure P_2	
	Thus, $2\pi r\gamma + \pi r^2 P_1 = \pi r^2 P_2$	
	$\therefore \qquad \mathbf{P}_2 - \mathbf{P}_1 = \frac{2\gamma}{r} \qquad \checkmark$	
(c)	r = 0.5 cm = 0.005 m	
	\sim = 20 v 10 ⁻² N m ⁻¹	
	$() \qquad $	
	$\gamma_{\text{water}} = 7.0 \times 10^{\circ} \text{ N III}$	
	Assuming zero angle of contact \checkmark	1
	$h\rho g - \frac{2\gamma_{water}}{2} = \frac{4\gamma_{soap}}{2}$	1
		-
	$\therefore h = \frac{1}{1000 \times 0.81} \left(\frac{4 \times 3.0 \times 10^{-2}}{0.005} + \frac{2 \times 7.0 \times 10^{-2}}{0.005} \right)$	2
	$= 3.06 \times 10^{-2} m$	1
(d)	Drops take on shapes for which the sum of the surface energy and gravitational potential	
()	energy is minimum	1
	For large drops, the effect of gravity is greater than that of the surface tension.	1
	Thus they flatten to reduce the gravitational potential.	
	Total = 20	

Ecolebooks.com

EcoleBooks

	(ii) At first the ball is invisibleIt becomes dull red, then bright red and finally less red, tending to white.	¹ /2 1
	This is because as the temperature rises, the intensity of the shorter wavelengths increases more rapidly.	1
	which is a narrow band.	1/2
	(iii) The cavities approximate to black bodies.So the radiation from the cavities is of higher intensity than that from the rest of the areas.	1 1
(b)	(i) <i>Wien's displacement law:</i> The wavelength of the highest intensity is inversely proportional to the absolute temperature of the body.	1
	Stefan,s law: The total power radiated by a black body per m ² is directly proportional to the fourth power of the body's absolute temperature	1
	(ii) According to Wien's displacement law $\lambda_m T = 2.9 \times 10^{-3} \text{mK}$	1/2
	$\therefore \qquad T = \frac{2.9 \times 10^{-3}}{1.5 \times 10^{-6}}$	1/2
	= 1933 K (iii) Dull black tin plate	1
	Cork held by wax	
	DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM	<u> </u>

Ecoletooks

	Then $PV = \frac{1}{2}n_1m_1\overline{c_1^2} = \frac{1}{2}n_2m_2\overline{c_2^2} = \frac{1}{2}n_2m_2\overline{c_2^2}$	
	Since the gases are at the same temperature, $m_1c_1^2 = m_2c_2^2 = m_3c_3^2$ Therefore $n_1 = n_2 = n_3$	
7. (a)	(i)the quantity of heat required to convert 1 kg mass of a substance from liquid to vapour at constant temperature.	1
	(11) The apparatus is set up as shown in the diagram. The setup is switched on and given time to attain steady conditions, with the liquid at its boiling point	1⁄2
	LaggingLagging	1
	Vapour Va	1
	jacket $V_1 = p.d$ across the heater coil Heater $H_1 = current through the coilh = heat lost per second$	1
	Vapour L = specific latent heat of vaporisation of the liquid Then $LV_1 = m_1L + h$ (1)	1⁄2
	Condenser $ -$ The experiment is repeated at new values I ₂ and V ₂ of current and p.d respectively.	1⁄2
	= 1 $ = 1 $ $ = 1$	1
	$\mathbf{L} = \frac{\mathbf{I}_1 \mathbf{V}_1 - \mathbf{I}_2 \mathbf{V}_2}{\mathbf{m}_1 - \mathbf{m}_2}$	1⁄2
		1
(c)	(i) the quantity of heat required to raise the temperature of 1 kg of a substance by 1 K.	
	 (ii) Let m = mass of liquid evaporated M = original mass of liquid P = electrical power C = heat capacity of flask 	
	Then $Pt = (Mc + C)(78 - 28) + mL$ mL = Pt - (Mc + C)(78 - 28)	2
	$= (500 \times 10 \times 60) - (2 \times 2500 + 840) \times 50$ = 3.0 x 10 ⁵ - 2.92 x 10 ⁵ = 8 x 10 ³	1 1
	:. $m = \frac{8 \times 10^3}{8.54 \times 10^3} = 0.937 \text{ kg}$	1 1

Ecolebooks.com

	It is assumed that all the electrical energy is used to heat and evaporate the liquid.	
(d)	(i)the temperature at which the saturated vapour pressure of a liquid is equal to the external pressure acting on the liquid.	1
	(ii) When the external pressure is increased, the liquid molecules will need a higher kinetic energy in order to develop the vapour pressure that will equal to the external. So the liquid boils at a higher temperature	2
	<i>Total</i> = 20	
8.(a)	 (i) It is used to establish the electronic charge. Or to show that charge is quantised. (ii) A constant temperature bath is used to: Eliminate convectional currents 	1 2
(b)	- Eliminate the variations of viscosity of air due to temperature change.	
	 (i) Work function – infinitum energy required for an election to be ejected from a metal surface. (ii) Stopping potential – is the value of the negative potential difference which just stops the electrons with maximum kinetic energy from reaching the anode from the cathode. 	
(c)	(i) Laboratory Experiment to verify Einstein's photoelectric	
	Colour filter	1⁄2
	d.c amplifier	1⁄2
		1⁄2 1⁄2
	The circuit is connected as shown in which P is a potential divider. The incident light is passed through a colour filter to select a desired frequency f. The frequency of the filter is noted. The p.d V, applied to the anode A, is increased negatively until the current,	1⁄2
	noted. It is the stopping potential for the frequency used. The procedure is repeated using different colour filters, each time poting the $\sqrt{2}$	1⁄2
	corresponding stopping potentials V_{α}	1/2
	A graph of V_s against f is plotted. It is a straight line with a negative intercept on the V_s	12
	axis.	1⁄2
	Vs♠ /	1⁄2
	DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM	
	Ψ'	

-			
		\checkmark	1⁄2
	The slope, s of the graph is obtained. Then the slope $\times e$, where e is the electronic cha (ii) $f = 8.8 \times 10^{14}$ Hz, $W_0 = 2.5 eV = 2.5 \times 10^{14}$ By Einstein's equation, $\frac{1}{2}mv^2 = hf - W_0$	Planck's constant is calculated from rge. $(1.6 \times 10^{-19} = 4 \times 10^{-19} J$	1⁄2
	$\frac{1}{2}mv^{2} = 6.6 \times 10^{-34} \times 8.8 \times 10^{14} - 4 \times 10^{-19} =$	1.808×10^{-19}	
	$v^{2} = \frac{2 \times 1.808 \times 10^{-19}}{9.11 \times 10^{-31}} = 3.96926 \times 10^{11}$		
	$v = 6.30 \times 10^{5} ms^{-1}$		4
(d)	Given: $D = 4.0 \times 10^{-2}$ m, $d = 4.0 \times 10^{-2}$ m, V The horizontal velocity remains the same	$= 12V, v = 1.0 \times 10^6 \text{ ms}^{-1},$	1/2
	The time taken between the plates is $t = \frac{I}{2}$		1/2
	and the vertical acceleration, $a_y = \frac{Ve}{dm}$		⁷² 1/2
	Let v_y = the vertical velocity Then, using $v = u + at$, where $u = 0$, we have $v_y = \frac{VeD}{v}$	ave	
	$\frac{dmv}{Now} \tan \theta = \frac{v_y}{v_y} = \frac{VeD}{VeD}$		1⁄2
	$v dmv^2$ 12×1.6×10 ⁻¹⁹	$\times 4.0 \times 10^{-2}$ 2.11	1
	$= \frac{12}{4.0 \times 10^{-2} \times 9.11 \times 10^{-2}}$	$10^{-31}1.0 \times 10^{12} = 2.11$	1
	0 - 04.0 - Tota	1 - 20	1
		$\iota = 20$	Т
9.(a)	 Electrons are thermionically emitted fr The electrons are accelerated to high sp cathode On hitting the target metal, electrons ir On falling back X-ray radiation is emitted 	om the cathode heated by a low voltage supply. beeds by E.H.T. applied between the anode and a deeper energy levels are displaced. ted.	the
	(ii)		+
	(II) X-ravs	Positive rays	
	Carry no charge	Carry a positive charge	
	Not deflected by electric field	Deflected by electric field	
	Travel at the speed of light	Do not travel at speed of light	

X

	Let $d = distance$ between plates Y_1 v = velocity of electrons on e B = magnetic field density			
	Then $\frac{Ve}{d} = Bev \dots \dots$ and $\frac{1}{2} mv^2 = eV$, where m = mass of electron			1
	Eliminating v from (1) & (2) $e/m = \frac{V}{2B^2}$ The flux density B for the Helmholtz coils is a	$\frac{d^2}{d^2}$ B = $\frac{0.72\mu_0 \text{NI}}{2}$:
	where $N = no.$ of turns in one coil. Also, accept the J. Thomson's method for deter	R mination of specific charge.		
	Total =	20	T	
10.	<u>(i)</u>			
(a)	RADIOACTIVITY	NUCLEAR FISSION		
	Spontaneous disintegration of the An inc	luced disintegration of the nucleus		
	nucleus by bor	nbardment with neutrons.		
	Daughter nuclei are not of Daugh	ter nuclei are of comparable	1	
	comparable masses masse			
			1	
	 (ii) – Neutrons have no charge and therefore the The neutron-proton ratio increases hence it 	y are not repelled by the nucleus. naking the nucleus unstable.	1 1 1	
	 (ii) – Neutrons have no charge and therefore the The neutron-proton ratio increases hence n Ionisation Chamber Lid 	y are not repelled by the nucleus. naking the nucleus unstable.	1 1 1	
(b)	(ii) – Neutrons have no charge and therefore the - The neutron-proton ratio increases hence n Ionisation Chamber Lid Air at atmospheric	y are not repelled by the nucleus. naking the nucleus unstable. Ietal can (+ve electrode)	1 1 1 1 1/2	
(b)	(ii) – Neutrons have no charge and therefore the - The neutron-proton ratio increases hence r Ionisation Chamber Lid Air at atmospheric pressure	y are not repelled by the nucleus. naking the nucleus unstable. Ietal can (+ve electrode) Brass rod (-ve electrode)	1 1 1 1/2 1/2	
(b)	(ii) – Neutrons have no charge and therefore the - The neutron-proton ratio increases hence in Ionisation Chamber Lid Air at atmospheric pressure Insulating plug	y are not repelled by the nucleus. naking the nucleus unstable. Metal can (+ve electrode) Brass rod (-ve electrode) d.c amplifier	1 1 1/2 1/2 1	
(b)	(ii) – Neutrons have no charge and therefore the - The neutron-proton ratio increases hence in Ionisation Chamber Lid Air at atmospheric pressure Insulating plug	y are not repelled by the nucleus. naking the nucleus unstable. Metal can (+ve electrode) Brass rod (-ve electrode) d.c amplifier	1 1 1 1/2 1/2 1	
(b)	(ii) – Neutrons have no charge and therefore the - The neutron-proton ratio increases hence in Ionisation Chamber Lid Air at atmospheric pressure Insulating plug	y are not repelled by the nucleus. naking the nucleus unstable. Metal can (+ve electrode) Brass rod (-ve electrode) d.c amplifier	1 1 1 1/2 1/2 1/2	
(b)	 (ii) – Neutrons have no charge and therefore the The neutron-proton ratio increases hence it Ionisation Chamber Lid Air at atmospheric pressure Insulating plug Insulating plug 	y are not repelled by the nucleus naking the nucleus unstable. Metal can (+ve electrode) Brass rod (-ve electrode) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	1 1 1 1/2 1/2 1 1 1	
(b)	 (ii) – Neutrons have no charge and therefore the The neutron-proton ratio increases hence in Ionisation Chamber Lid Air at atmospheric pressure Insulating plug Insulating plug It consists of a metal can containing a co-axial be also the ather 	y are not repelled by the nucleus. naking the nucleus unstable. Metal can (+ve electrode) Brass rod (-ve electrode) $\downarrow \downarrow \downarrow$ d.c amplifier $\downarrow \downarrow \downarrow$ orass electrode. The can forms one	1 1 1 1/2 1/2 1/2 1/2 1/2 1/2	
(b)	 (ii) – Neutrons have no charge and therefore the The neutron-proton ratio increases hence r Ionisation Chamber Lid Air at atmospheric ressure Insulating plug Insulating plug It consists of a metal can containing a co-axial b electrode and the brass rod the other. 	y are not repelled by the nucleus naking the nucleus unstable. Metal can (+ve electrode) Brass rod (-ve electrode) $\downarrow \downarrow \downarrow$ d.c amplifier $\downarrow \downarrow \downarrow$ orass electrode. The can forms one	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	
(b)	 (ii) – Neutrons have no charge and therefore the The neutron-proton ratio increases hence in the interval in the increases hence in the increases hence in the interval in the inte	y are not repelled by the nucleus. naking the nucleus unstable. Metal can (+ve electrode) Brass rod (-ve electrode) $\downarrow \downarrow \downarrow$ d.c amplifier $\downarrow \downarrow \downarrow$ orass electrode. The can forms one the air as it does so. The positive	$ \begin{array}{c} 1 \\ $	
(b)	 (ii) – Neutrons have no charge and therefore the The neutron-proton ratio increases hence it Ionisation Chamber Lid Air at atmospheric pressure Insulating plug Insulating plug It consists of a metal can containing a co-axial be electrode and the brass rod the other. When a radioactive particle passes, it ionizes ions move to the central rod while the electrons for the other. 	y are not repelled by the nucleus. naking the nucleus unstable. Metal can (+ve electrode) Brass rod (-ve electrode) $\downarrow \downarrow \downarrow$ d.c amplifier $\downarrow \downarrow \downarrow$ orass electrode. The can forms one the air as it does so. The positive move to the can, causing a current to	1 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	
(b)	 (ii) – Neutrons have no charge and therefore the The neutron-proton ratio increases hence in Ionisation Chamber Lid Air at atmospheric pressure Insulating plug Insulating plug It consists of a metal can containing a co-axial be electrode and the brass rod the other. When a radioactive particle passes, it ionizes ions move to the central rod while the electrons flow in the external circuit. The ionization current is a containing a containing a containing in the external circuit. The ionization current is a containing in the external circuit. The ionizating is a containing in	y are not repelled by the nucleus. naking the nucleus unstable. Metal can (+ve electrode) Brass rod (-ve electrode) \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\$	

