Qn	Answer	Marks
1 (a)	(i) two equal but unlike parallel forces whose lines of action are not the same.	1
	(ii) The moment of a force about a given point is the product of the force and the perpendicular distance from the point to the line of action of the force.	- 1
(b)	$F \xrightarrow{B}_{A' \rightarrow A} A$ Let the lines of action of the forces, F, be separated by a distance s. Suppose AB rotates through an angle θ , in radians, to position A'B'. The displacement of each of the forces, F, is $\frac{1}{2} s \theta$ The total work done by the two forces is $W = F.s\theta$ i.e. $W = T.\theta$ where T is the torque.	1 1 1
	∴ Work done by a couple = torque x angle of rotation	1
(c)	4N θ θ 12N 6N	1
	Let F be the additional force at an angle θ to the 4N force Then F sin θ + 6 sin 30° - 12 cos 30° = 0 \therefore F sin θ = 12 cos 30° - 6 sin 30° $= 6\sqrt{3} - 3 = 7.39$ N and F cos θ + 4 - 6 cos 30° - 12 cos 60° = 0	1 1⁄2 1
	$\therefore F \cos\theta = 6 \cos 30^{\circ} + 12 \cos 60^{\circ} - 4$ = $3\sqrt{3} + 6 - 4 = 7.20 \text{ N}$	1⁄2
	$\therefore F = \sqrt{7.39^2 + 7.20^2} = \sqrt{54.61 + 51.84} \\ = 10.32 \text{ N}$ Now $\tan \theta = \frac{F \sin \theta}{F \cos \theta} = \frac{7.39}{7.20} = 45.7^{\circ}$	1 1

Ecolebooks.com

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

When the track is banked, the horizontal components of the normal forces R1 and 1 R₂ also contribute to the centripetal force. If v_2 is the velocity when the car is on the point of sliding outwards, then $\frac{mv_2^2}{r} = (F_1 + F_2) \cos \theta + \mu(R_1 + R_2) \sin \theta$ $= \mu(R_1 + R_2) \cos \theta + (R_1 + R_2) \sin \theta$ $= (\mathbf{R}_1 + \mathbf{R}_2)(\mu\cos\theta + \sin\theta) \dots (2)$ X 1⁄2 From (1) and (2) it is clear that $v_2 > v_1$ (b) 0.5 m (i) It will break when the stone is in the lowest position 1 because the tension at that point will be $T = mg + mr\omega^2$, 1 where r is the length of the string and ω the angular speed $mg + mr\omega^2 = 20$ 1 (ii) $g + r\omega^2 = \frac{20}{m}$ $9.81 + 0.5\omega^2 = \frac{20}{0.5} = 40$ *.*.. 1/2 $\omega^2 = \frac{40 - 9.81}{0.5} = 60.4$ $\frac{1}{2}$ *.*.. 1 $\omega = \sqrt{60.4} = 7.77$ radians *.*.. 1⁄2 (iii) The stone sets off with a speed $v = r\omega = 0.5 \times 7.77$ Let t be the time to hit the ground. Then, using $s = ut + \frac{1}{2}at^2$ 1/2 $0.5 = 0 + \frac{1}{2} \times 9.81t^2$ t = $\sqrt{\frac{0.5}{4.905}}$ 0.319 s *.*.. 1⁄2 The stone lands at a distance x = vt away 1⁄2 $= 0.5 \times 7.77 \times 0.319$ 1 = 1.24 m(c) ES LIKE THIS ON ECOLEBOOKS.COM DOWNLOAD MORE RE

	The weight, mg, of the rider and his bicycle, is concentrated at the centre of gravity, G.	1/2	
	For him to describe a circle, a force, F, must act on him towards the centre of the circle and this is provided by the frictional force at the road surface.	1/2	
	Now, a horizontal centrifugal force, F' equal to F, acts on him through G. \checkmark This produces a moment that would topple the rider outwards.	1⁄2	
	So he leans inwards so as that his weight provides an equal counterbalancing moment.	1⁄2	
	i.e $Fh = mgx$	1/2 1/2	
(d)	(i)an orbit round a planet in which a satellite always remains positioned vertically above the same point on the planet's surface.		
		1	
	(ii) Let $m = mass$ of the satellite and $\omega = angular$ velocity in the orbit T = period		
	Then $m(r+h)\omega^2 = \frac{GMm}{(r+h)^2}$	1	
	$\therefore \qquad m(r+h)\frac{4\pi^2}{T^2} = \frac{GMm}{(r+h)^2}$		
	But from equation at the earth's surface, $GM = gr^2$ Substituting for GM, we have	1⁄2	
	$\frac{4\pi^2}{T^2} = \frac{gr^2}{(r+h)^3}$	1/2	
	$\therefore \qquad T = \sqrt{\frac{4\pi^2(r+h)^3}{gr^2}}$	1	
	(iii) Now $(r+h)^3 = \frac{gr^2T^2}{4\pi^2}$		
	$\therefore \qquad h = \sqrt[3]{\frac{gr^2T^2}{4\pi^2}} - r$	1⁄2	
	$= \sqrt[3]{\frac{9.81 \times (6.4 \times 10^6)^2 \times (24 \times 3.6 \times 10^3)^2}{4\pi^2}} - 6.4 \times 10^6$	1/2	
	$= 42.35 \text{ x } 10^{6} - 6.4 \text{ x } 10^{6}$ $= 3.6 \text{ x } 10^{6} \text{ m}$	1	
<i>Total</i> = 20			