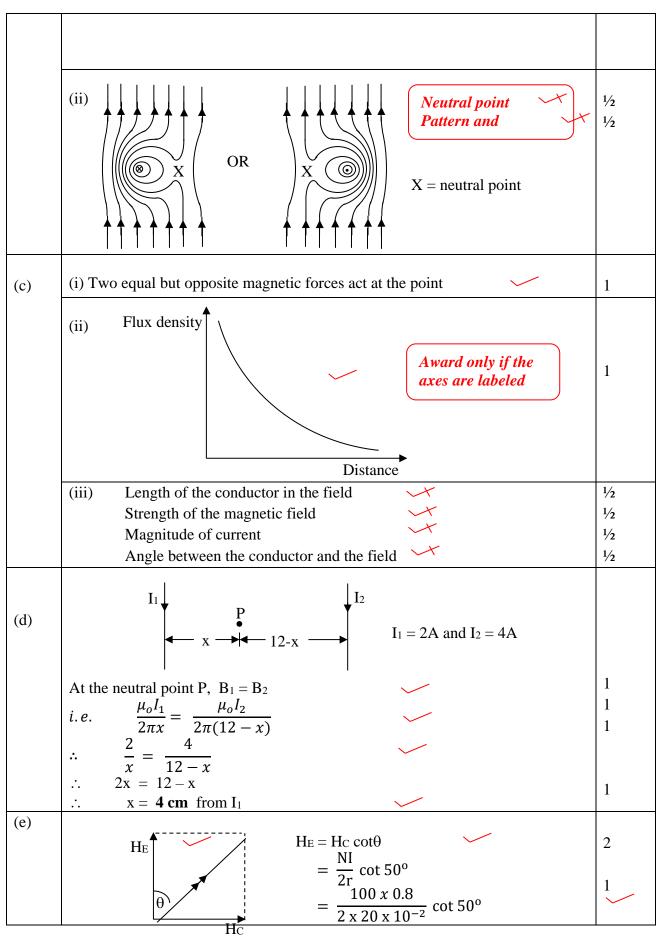

Qn	Answer	Marks
1. (a)	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$	1
	A pin O is placed to form an image I in the convex mirror. Then a small plane mirror, M, facing O is moved between O and P until the image, I', of the lower part of O coincides with I. The distances OP and MP are measured. Due to the plane mirror, $OM = MI$ $\therefore v = OM - MP$ (virtual) and $u = OP$ (real) The procedure is repeated for several positions of O each time working out u and v. A graph of 1/v against 1/u is plotted.	1/2 1 1 1/2 1/2 1/2 1
(b)	The intercept on each axis gives 1/f Let the ends be A and B, with A at 40 cm from the mirror For A $\frac{1}{-25} = \frac{1}{40} + \frac{1}{v_A}$	1
	$\therefore v_{A} = -\left(\frac{40 \times 25}{40 + 25}\right) = 15.4 \text{ cm}$ For B $\frac{1}{-25} = \frac{1}{140} + \frac{1}{v_{B}}$	1 1⁄2
	∴ $v_B = -\left(\frac{140 \times 25}{140 + 25}\right) = 21.2 \text{ cm}$ ∴ Length of the image = $21.2 - 15.4 = 5.8 \text{ cm}$	1 2
(c)	(i) h $15 cm$ $20 cm$ $10 cm$ h_1 h_1 h_1	2

(i) Using $\frac{1}{v} + \frac{1}{u} = \frac{1}{f}$ we have $\frac{1}{v} + \frac{1}{600} = \frac{1}{30}$ $\therefore \quad v = \frac{30 \times 600}{600 - 30} = \frac{30 \times 600}{570} = 31.6 \text{ cm}$ 1 For lens L₂, I is a virtual object. Thus, u' = (31.6 - 20) = -11.6 cm $\frac{1}{v'} + \frac{1}{-116} = \frac{1}{-5}$ 1 :. $v' = \frac{11.6 \text{ x} 5}{5 - 11.6} = -8.8 \text{ cm}$:. 1 So the image is <u>virtual</u> and is **8.8 cm** to the left of L_2 1 (ii) Overall magnification, $m = m_1 x m_2$ $= \frac{v}{u} x \frac{v'}{u'} = \frac{31.6}{600} x \frac{8.8}{11.6} = 0.04$ 2 Total = 20This is the resistance per unit cross-sectional area per unit length of a material 3. (a) 1 (b) (i) Thick copper strips 1⁄2 1 G Uniform resistance $\frac{1}{2}$ wire 1 m long (ii) 1 G l_1 l_2



	$\therefore 0.2 \ge \overline{\text{AD}} \ge \frac{9}{100} = 1.5$		
	15	1⁄2	
	$\therefore \overline{\text{AD}} = \frac{1.5}{0.2 \ge 0.09} = 83.3 \text{ cm}$	1	
	(ii) Terminal p.d = $\frac{70}{100} \times 0.2 \times 9 = 1.26 \text{ V}$	1/2	
	$\therefore 2 \ge \frac{1.5}{2+r} = 1.26$	1	
	\therefore 3 = 2.56 + 1.26r	1⁄2	
	$\therefore \mathbf{r} = \frac{0.44}{1.26} = 0.35\mathbf{\Omega}$	1	
	Total = 20		
4.(a)	(i) An electric field is a region in which an electric force is detected.	1	
	(ii) The electric potential at a point in a field is the work done in moving a		
	positive charge of one coulomb from infinity to the point.	1	
(b)	(i) $E_1 = \frac{Q_1}{4\pi\epsilon r_1^2} = \frac{3 \times 9 \times 10^9 \times 10^{-6}}{0.1^2} = 2.7 \times 10^6 \text{ NC}^{-1}$	1	
	$E_2 = \frac{Q_2}{4\pi\epsilon r_2^2} = \frac{2 \times 9 \times 10^9 \times 10^{-6}}{0.1^2} = 1.8 \times 10^6 \text{ NC}^{-1}$	1	
	$\mathbf{E_2} \qquad \mathbf{E_p}^2 = \mathbf{E_1}^2 + \mathbf{E_2}^2 + 2\mathbf{E_1}\mathbf{E_2}\cos 60^\circ$	1	
	$= [2.7^2 + 1.8^2 + 2 \times 2.7 \times 1.8 \times 0.5] \times 10^{12}$	1	
	$= 15.37 \times 10^{12}$	1	
	$\therefore E_p = 3.92 \times 10^6 \text{ NC}^{-1}$	L	
	(ii) At point Y the magnitudes of the intensities are equal. So $E_1 = E_2$	1/2	
	Let $x = distance of point Y from Q_1$.	12	
	-		
	Then $\frac{Q_1}{4\pi x^2} = \frac{Q_2}{4\pi (10-x)^2}$	1	
	$\therefore \frac{3}{x^2} = \frac{2}{(10-x)^2}$	1/	
	x^{2} $(10-x)^{2}$	1/2	

Ecolebooks.com

	2 - 2 - 200 = 0			
	$\therefore x^2 - 60x + 300 = 0$			
	$\therefore x = \frac{60 \pm \sqrt{60^2 - 1200}}{2} = 5.5 \text{ or } 54.5$			
	Since x must be less than 10 cm, x must be 5.5 cm	1		
(c)		1		
(0)	(i) C ₂ is in series with $(C_1 + C_3) = C'$	1		
	C' = 40 + 20 = 60 wE	1		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-		
	$C_{2} C' = 40 + 20 - 60 \mu F$ Equivalent capacitance of the whole circuit, $C_{2} C' = 40 + 20 - 60 \mu F$ Equivalent capacitance of the whole circuit, $C_{2} C' = 30 \times 60$			
	$\Box \qquad 90V \circ \qquad \qquad C_2C' \qquad 30 \times 60$	1		
	$C = \frac{2}{C_2 + C'} = \frac{2}{30 + 60} = 20 \mu\text{F}$			
	$C = \frac{C_2 C'}{C_2 + C'} = \frac{30 \times 60}{30 + 60} = 20 \mu\text{F}$ $\therefore \text{Energy stored in the circuit, E} = \frac{1}{2} \text{CV}^2 = \frac{1}{2} \times 20 \times 10^{-6} \times 90^2$	1		
	$= 8.1 \times 10^{-2} \text{ J}$	1		
	- 0.1 A 10 J			
	(ii) The capacitance of C ₂ becomes $3 \times 30 = 90 \mu\text{F}$	1		
	This is in series with $(C_1 + C_3) = 60 \ \mu F$ The equivalent capacitance for the whole circuit is			
		1		
	$C = \frac{C_2(C_1 + C_3)}{C_2 + C_1 + C_2} = \frac{90 \times 60}{150} = 36 \mu\text{F}$			
	Energy stored, E' = $\frac{1}{2}$ x 36 x 10 ⁻⁶ x 90 ² = 1.46 x 10 ⁻¹ J	1		
		1		
	Change in energy = E' - E = $0.146 - 0.081$ = 0.055 J	1		
	Total = 20			
	10000 - 20			
	(i) <i>Hysteresis</i> is the lagging of the flux density behind the magnetising intensity.			
5. (a)	This is because once iron has been magnetized, some domains remain aligned	1		
	even when the magnetizing force is removed.	1		
	(ii) <i>Remanance</i> , is the retained magnetic flux density in an originally	1		
	magnetised material when the magnetising force has been removed.			
	It is due to the tendency of the domains to stay put once they have been aligned.	1		
	(iii) The <i>coersive force</i> is the minimum opposing magnetising force required to			
	bring the residual flux density to zero.			
	It is the measure of the difficulty of breaking up the alignment of the domains.			
1				
	(i) Neutral point	1/2		
(b)	Neutral point	1/2 1/2		
(b)	Nautral point	1/2 1/2		

X = neutral point DOWNLOAD MORE RESOURCES LIKE THIS ON **ECOLEBOOKS.COM**

= 167.8 A m ⁻¹	\checkmark	1
	Total = 20	