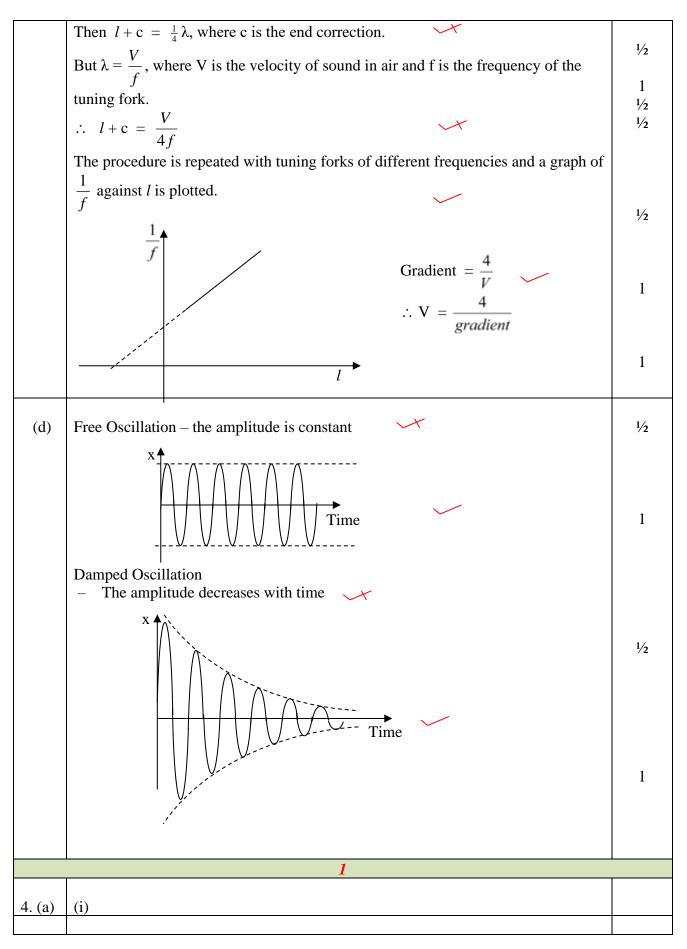

Ecolebooks.com

Ecoletooks

(c)	(ii)		
		1	
	- Using a convex lens L, a real image of an illuminated object O is formed at	1	
	point C. Distance LC is noted. - The convex mirror is then placed between L and C with its reflecting surface.	1⁄2	
	facing the lens and is moved along the axis OC until a real image of O is	1	
	formed at O. Distance LP is noted. Under these conditions the rays from O must be striking the mirror normally e.g.	1/2	
	at M and N.		
	Thus $PC = r$, the radius of curvature Now $PC = LC - LP$	1⁄2	
	\therefore r = LC - LP		
	$\therefore \text{ focal length, } \mathbf{f} = \frac{1}{2} \mathbf{r} = \frac{1}{2} (\mathbf{L}\mathbf{C} - \mathbf{L}\mathbf{P}) \qquad \checkmark$	1⁄2	
(d)	A		
(u)			
		1	
	15 m M	-	
	$4 15 cm \qquad 8 cm \qquad r = 2f$		
	For the convex lens		
	$\frac{1}{8+2f} + \frac{1}{15} = \frac{1}{10}$	1	
	$\therefore \qquad \frac{1}{8+2f} = \frac{1}{10} - \frac{1}{15} = \frac{1}{30}$		
	$\begin{array}{ccc} \therefore & 8+2f = 30 \\ \therefore & f = 11 \end{array}$	1	
	$\therefore f = -11 \text{ cm} \checkmark$	1	
-	<i>Total</i> = 20		
2. (a)	(i) the ratio of the velocity of light in vacuum to the velocity of light in the \checkmark	1	
	medium		
	(ii) Consider an object O below the surface of the liquid of refractive index n.		
S ₁ T			
DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM			
	air		



DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

		T
	$\therefore r_4 = 50^\circ - r_3 = 50^\circ - 37.4^\circ = 12.6^\circ$	
	Now, $\sin \theta = n_B \sin r_4 = 1.62 \sin 12.6^\circ = 0.353$	1
	$\therefore \theta = \underline{20.7^{\circ}}$	
3. (a)	(i) Frequency is the number of vibrations per second. Amplitude is the maximum displacement of a vibrating particle from the equilibrium position.	1
	(ii)	
	PROGRESSIVE STATIONARY	
	Profile of the wave movesProfile of the wave is stationaryNeighbouring particles along the direction of the wave vibrate out of phaseThere are segments in which all the particles vibrate in phaseDerticles wibrate with the sameThe amplitude of the particles	2
	amplitude varies along the direction of the wave	
	Energy is transmitted No energy is transmitted.	<u> </u>
(b)	(i) The equation is of the form $y = a \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right)$	1
	So $\lambda = 1.5$ m and T = 0.2 s	1
	\therefore speed, $v = \frac{\lambda}{T} = \frac{1.5}{0.2}$	1
	$= 7.5 \text{ m s}^{-1}$	1
	- 7.5 m 5 •	1
	(ii) The maximum velocity of the particles, $v_{max} = \omega a$ = $2\pi f a$ = $2\pi x 5a = 10\pi a$	1 1 1
(c)	(ii) Tuning fork Resonance tube Water Clip Rubber tubing	1
	 A resonance tube is almost filled with water A tuning fork is sounded near and above the mouth of the tube while the water level is allowed to fall gradually until resonance occurs. Then the length, <i>l</i>, of the air column is measured. 	

Ecolebooks.com

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM