

6. (a)	(i) the development of an emf in a coil due to variations of current	
	flowing in the coil itself.	1
	(11) the development of an emf in a coil as a result of variation of	1
	current in a nearby coil.	1
(h)		
(0)	The induced emf is in such a direction as to oppose the flux change	1
	causing it	1
	Faraday's Law:	
	The magnitude of the induced emf is directly proportional to the rate	. 1
	of change of flux linkage.	
		1⁄2
	Consider a magnetic pole thrust towards a coil connected to a sensitive	
	galvanometer	1/2
	When the north pole is approaching, the coil repels it;	1/2
	When the north pole is retreating from the coil, it attracts it.	1⁄2
	The induced current in the coil sets up a force, which the agent moving	
	the magnet must overcome;	1⁄2
	The work done in overcoming this force provides the electrical energy of	1 /
	the current.	1/2
	converted into electrical energy of the coil	1
	converted into electrical energy of the con.	1
(c)	(i)	
	Ohmic Loss:	1/2
	This is energy lost in form of heat in the resistance of the coil. It is	
	minimised a low-resistance material for the coil – copper is used.	1⁄2
	Eddy Current Loss:	1 /
	This is due to circulation of current induced in the core. It is	1/2
	minimised by using a laminated core.	1/2
	Hysteresis Loss:	1/2
	This is energy lost due to forcing the magnetic field to reverse	
	magnetically soft material for the core is soft iron	1⁄2
	Flux Leakage:	1⁄2
	This loss is brought due to some magnetic field lines failing to go	
	through the space enclosed by the secondary coil.	17
		*/2
	(ii) $V_p = 240V$, $V_s = 20V$	

	$V_{2}^{2}/R = 20^{2}/40$	1	
	$0.8 = \frac{s}{I_p V_p} = \frac{I_p x}{I_p x 240}$	•	
		2	
	$\therefore I_{\rm p} = \frac{1}{0.8 \mathrm{x} 240} = 0.0521 \mathrm{A}$		
(d)	(i) When the switch is first closed, the rate of change of current from the		
(u)	battery is high.	1/2	
	This gives to a very large back emf in the coil.	1⁄2	
	Hence very little current flows through it; so most current flows through the ammeter	1/2	
	As the current in the circuit increases o maximum, its rate of change	× 1/2	
	decreases,	1/2	
	and the induced back emf in the coil decreases.	1/2	
	The current through the ammeter therefore tends to zero		
	\therefore The ammeter reading gradually decays from maximum to nearly zero.		
	(ii) When K is opened, the large rate of decay of the current leads to a		
	great induced emf in the coil.	1/2	
	This tends to maintain a great current in the upper circuit.	1/2	
	Hence current flows in the ammeter in the opposite direction	$\frac{1/2}{1/2}$	
	zero.	72	
	Total = 20		
7. (a)	(i) The r.m.s value of an alternating voltage is that value of steady voltage which would dissipate heat at the same rate in a given resistor as the alternating voltage.	1	
	(ii) The peak value is the maximum value of the voltage in a cycle \checkmark	1	
(b)	(i) Let $I_{d,c}$ be the steady current equivalent to the alternating current, i.e.	1	
	I _{r.m.s}		
	Then $I_{d,c}^2 R = (Mean \text{ value of } I^2) \times R$		
	$\therefore I_{d.c} = I_{r.m.s} = \sqrt{\text{mean value of } I^2}$	1	
	If the alternating current is sinusoidal, then $I = I_0 \sin \omega t$ and	-	
	$I_{r.m.s} = \sqrt{\text{mean value of } I_0^2 \sin^2 \omega t}$	1	
	$= I_0 \sqrt{\text{mean value of sin}^2 \omega t}$	-	
	Now, over a full cycle, the mean value of $\sin^2 \omega t = \frac{1}{2}$	1	
	:. $I_{r.m.s} = I_o \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} I_o = 0.707 I_o$	/	
(c)	- Non-linear scale		
	Non-inteal scale	1/2	
	Coil	1 /	
	Control spring	1/2 1/2	
	Zero		
DOWINEOAD WORGINGOU			
	Movable soft iron rod		
	φ φ		

	$0.2(R_1 + R_2) = 2.0$	
	$P_{2} = \frac{2.0}{2.0}$ P = 10 5.625 = 4.375 O	
	$\dots \mathbf{K}_2 = \frac{1}{0.2} - \mathbf{K}_1 = 10 - 5.025 = 4.575 \mathbf{Z}_2$	1
	Total = 20	
9. (a)	(i) the ratio of the magnitude of charge on either plate to the potential difference between the plates.	1
	(ii)the highest electric intensity the dielectric can be subjected to without breaking its insulation	1
(b)	$\begin{array}{c} + & + \\$	1
	When a p.d is applied between the plates, the molecules of the dielectric get polarised, with their positive ends facing the negative plate, and their negative ends facing the positive plate. Charge inside the material cancel each other's influence but the surfaces adjacent to the plates develop charge opposite to that on the near plate. This arrangement reduces the positive potential of the positive plate and does the same on the negative potential of the negative plate. So the potential difference between the plates is lowered. Electrons are then drawn from the positive plate and get deposited on the negative one to restore the potential difference to that of the supply. This way the dielectric assists the plates to store charge.	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
(c)		1
	 A parallel- plate capacitor is set up as shown, one being earthed and the other connected to a gold leaf electroscope. The plate connected to the gold-leaf electroscope is given a charge. The divergence of the leaf is observed for various distances, d, of separation of the plates. It is observed that the divergence increases with the distance, d, implying that the p.d between the plates increases. Since the charge on the plates is constant, it means that the 	1/2 1/2 1 1
	capacitance decreases with the increase in thickness of the dielectric.	1⁄2

