

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Ecolebooks.com

	Imagine a rod PQ lying parallel to a side RS of a rectangular frame of conductor	
	PSRQ	
	Suppose PQ is pulled with a uniform speed v by force F towards the right.	
	According to Lenz's law, the induced emf will produce a force towards the left.	1
	and since PQ is not accelerating, this force must be equal to F.	
	By consideration of energy, the mechanical work done per second by the external	1
	force equals the power supplied to the electrical circuit.	1/2
	Thus $EI = BIlv$ (force x velocity),	
	where E is the induced emf in the rod and I the induced current	1/2
	$\therefore E = Blv$	
	ALTERNATIVELY	
	The magnetic flux linkage of the circuit is $\Phi = Blx$, where x is the distance	
	between PQ and the side RS. The induced emf	
	$d\Phi$, dx	
	$E = -\frac{1}{dt} = BI\frac{1}{dt}$	
	dx	
	But $\frac{dA}{dt} = v$, which is the speed of the rod	
	Therefore $\mathbf{E} = \mathbf{B}\mathbf{I}\mathbf{v}$	
(c)	(i) There is no deflection on the galvanometer.	1
(-)	This is because the magnetic lines of force do not cut across the coil windings	-
	during rotation. So no emf is induced in the coil	1
	sum grounden so no enn is induced in the con.	1

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Ecolebooks.com

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM