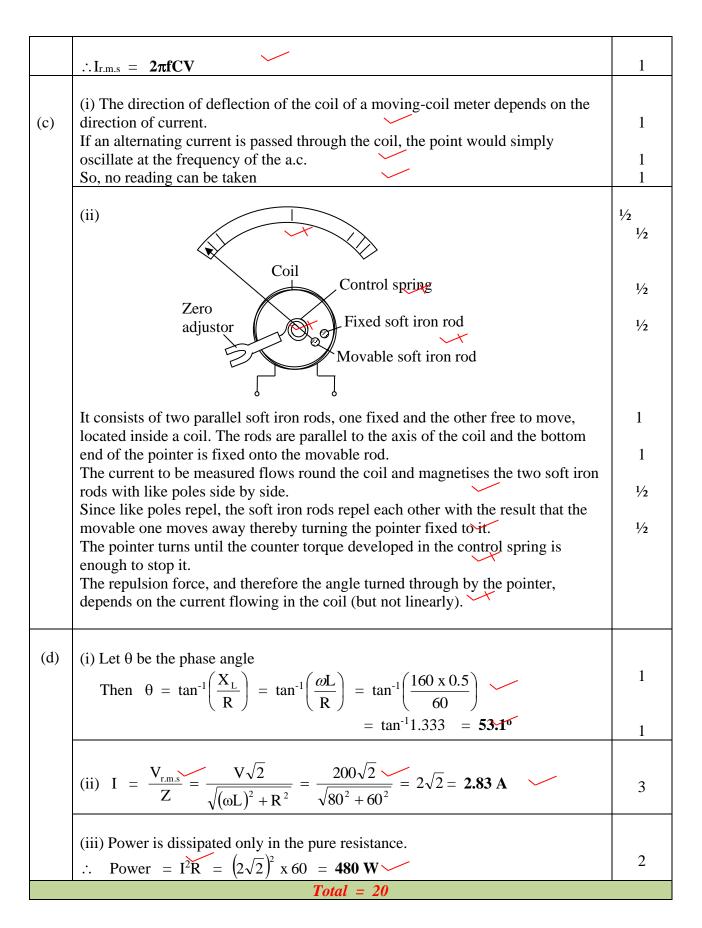

Ecolebooks.com

Qns	Answer	Marks
1 (a)	a wave whose profile remains static	1
(b)	(i) The equation is of the form $y = a \sin 2\pi \left(ft - \frac{x}{\lambda} \right)$	
	$\therefore \frac{1}{2} = 5$	1
	$ \therefore \lambda = 0.2 \mathrm{m} $	1
	(ii) Now, $f = 12 \text{ Hz}$ and $v = f\lambda = 12 \text{ x } 0.2 = 2.4 \text{ m s}^{-1}$	1 1
(c)	$y_{1} = 0.2 \sin 2\pi (12t - 5x)$ and $y_{2} = 0.2 \sin 2\pi (12t + 5x)$ the reflected ray So $y = y_{1} + y_{2}$ $= 0.2 \sin 2\pi (12t - 5x) + 0.2 \sin 2\pi (12t + 5x)$	1/2 1/2
	$= 0.4 \sin 24\pi t \cos 10\pi x$ = A sin 24\pi t	1⁄2
	where $A = 0.4 \cos 10\pi x = 0.4 \cos \left(\frac{2\pi x}{\lambda}\right)$	1⁄2
	So, the amplitude of the resultant wave is not constant but depends on the distance, x, along the direction of the wave. A is maximum when $x = 0$, $\frac{1}{2}\lambda$, λ , etc. These are the antinodes.	1/2 1/2
	A = 0 when $x = \frac{1}{4}\lambda, \frac{3}{4}\lambda, \frac{5}{4}\lambda$, etc. These are nodes. So the resultant is a stationary wave. At an antinode the amplitude = 0.4 m	1/2 1/2 1
(d)	(i) Beats means the periodic rise and fall of loudness that occur when two notes of slightly different frequencies but same amplitude are sounded together.	1
	Doppler effect is the apparent change in the frequency of a wave motion when there is relative motion between the source and the observer.	1
	 (ii) Used: in measuring unknown frequencies to tune an instrument to a certain frequency as intermediate frequency in radios, TVs, etc 	2


DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

Ecolebooks.com

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

