Ecolebooks.com

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

	Now angular magnification = $\frac{f_o}{f_e} = \frac{48}{3} = 16$	1
	Total = 20	
2(a)	(i) The r.m.s value of an alternating current is that value of steady current which would dissipate heat at the same rate in a given resistor as the alternating current.	1
	(ii) This is the maximum value of current in a cycle of alternating current.	1
(b)	(i) Let $I_{d,c}$ be the steady current equivalent to the alternating current, i.e. $I_{r.m.s}$ Then $I_{d,c}^2 R = (Mean value of I^2) \times R$ $\therefore I_{d,c} = I_{r.m.s} = \sqrt{mean value of I^2}$ If the alternating current is sinusoidal, then I_{-} Lisin of and	1
	$I_{r.m.s} = \sqrt{\text{mean value of } I_0^2 \sin^2 \omega t}$	1
	= $I_0 \sqrt{\text{mean value of } \sin^2 \omega t}$ Now, over a full cycle, the mean value of $\sin^2 \omega t = \frac{1}{2}$	1
	:. $I_{r.m.s} = I_0 \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}} I_0 = 0.707 I_0$	1
(c)	 Non-linear scale Coil Control spring Fixed soft iron rod Movable soft iron rod Movable soft iron rod Since like poles repel, the soft iron rods repel each other with the result that the movable one moves away thereby turning the pointer fixed to it. The pointer turns until the counter torque developed in the control spring is enough to stop it. The repulsion force, and therefore the angle turned through by the pointer, depends on the current flowing in the coil (but not linearly). 	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$
(d)		

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

		IR = $\pi\mu$ nIfr ² , where n = number of turns per metre of the solenoid			
	:.	$R = \pi \mu n f r^2$	\checkmark		
Total = 20					