S 5 EXERCISE IN THERMODYNAMICS

- 1. Explain the fact that the heat required to raise the temperature of a fixed mass of gas at constant volume by 1K is different from that required when the pressure is kept constant.
 - i. Derive an expression for the difference in molar heat capacities of a gas.
 - ii. State the conditions necessary for a reversible isothermal process
- 2. A fixed mass of gas at a pressure P_1 and volume V_1 expands isothermally to a pressure P_2 and volume V_2 .
 - i. Derive an expression for the work done by the gas.
 - A gas of volume 2 litres at a temperature of 27°C and pressure of 1.5 x 10⁵ Pa is heated at constant pressure until its volume doubles. It is then cooled at constant volume back to its original temperature before finally being compressed isothermally to its original volume. Draw a p-V diagram of the whole cycle and find the net work done by the gas.
- 3. State Boyle's law.
 - i. Describe an experiment to verify Boyle's law.
 - ii. Derive the ideal gas equation
 - iii. A cylinder contains 100 litres of gaseous oxygen at a pressure of 1.217×10^7 Pa and temperature 20°C. Assuming oxygen behaves as an ideal gas in this region of pressure and temperature, find the volume of liquid oxygen (density 1140 kg m⁻³) that may be made by liquefying completely the contents of the cylinder. [Relative molecular mass of oxygen = 32]
- 4. A gas at a pressure of 1.2 x 10⁶ Pa and temperature 90°C expands adiabatically to twice its volume and then compressed isothermally to its original volume. [Take ratio of the principal heat capacities,
 - i. Find the final pressure and temperature of the gas.
 - ii. Sketch and label the two stages on a P-V diagram.
- 5. An ideal gas at a pressure of 2.0×10^{6} Pa occupies a volume of 2.0×10^{-3} m³ at 47.5°C. The gas expands adiabatically to a final pressure of 1.1×10^{5} Pa. The ratio of specific heat capacity at constant pressure to that at constant volume is 1.4. Calculate the:

- i. Number of moles of the gas
- ii. Final volume of the gas
- iii. Work done by the gas
- 6. The temperature of one mole of oxygen gas at a pressure of 3.0×10^5 Pa falls from 80°C to 17°C when the gas expands adiabatically. Find the final pressure of the gas.[Take $\gamma = 1.40$]
 - i. Explain the conditions for a reversible adiabatic change.
 - ii. Explain why a gas heats up when it is compressed adiabatically.
- 7. An ideal gas of volume $1 \ge 10^{-3} \text{ m}^3$ at s.t.p expands at a constant pressure to a volume of $3.0 \ge 10^{-3} \text{ m}^3$. Calculate :
 - i. The work done by the gas.
 - ii. The final temperature of the gas.