MENGO SENIOR SCHOOL SENIOR 5 END OF TERM I, 2004 PHYSICS I TIME : 11/2 HRS.

INSTRUCTIONS:	 Attempt all questions. Assume where necessary; -acceleration due to gravity g = 9.81ms⁻² 			
1. a) (i) (ii)	What is meant by <u>Dimensions of a physical quantity?</u> The velocity V of sound traveling along a rod made of a material depends on Young's modulus Y, and density of the material. Derive an expression for the relation between the quantities if Young's modulus is (stress/strain)			

b) The frequency of vibration of a drop will depend on the surface tension S of t he drop, its density and the radius r of the drop, as shown:

$$f = KS^x r^z$$

What are the values of x, y and z if K is a dimensionless constant. (3mks)

- c) i. What is meant by scalar and vector quantities? 2mks) Identify scalar vector quantities from the following; ii. momentum, density, acceleration, impulse, pressure and temperature.
- What is meant by <u>uniformly accelerated motion</u>? d) i.
 - ii. Sketch speed – time and distance – time graphs for a body moving with uniform acceleration. (2mks)

A ball A is thrown vertically upwards at 25m^{s-1} from a point P. Three seconds e) later a second ball B is also thrown vertically upwards from the point P at 25ms⁻¹. Calculate:

- How long A has been in motion when the balls meet. (3mks) i.
- The height above P at which A and B meet. (2mks) ii.
- 2. Five forces of 1.7N, 3.5N, 2.3N, 2.5N and 5.4N act on a particle as shown. a)

Find the magnitude and dissection of the resultant force. (6mks)

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

- b) A body of mass 5kg, initially at rest on a smooth horizontal surface is pulled along the surface by a constant force P inclined at 45⁰ above the horizontal. In the first 5 seconds of motion, the body moves a distance of 10m along the surface. Find the acceleration of the body, the magnitude of P and the normal reaction between the body and the surface. (5mks)
- c) The diagram below shows a mass m on a surface inclined at an angle of 30^0 to the Horizontal.

A horizontal force P acts on the body and causes it to accelerate up the plane. If R is the normal reaction between the body and the plane, prove that: (5mks)

$$\mathbf{P} = \mathbf{m}(2\mathbf{a} + \mathbf{g})$$

3

d) A car AP is moving at a velocity of 8k/hr in a direction N80⁰ W, and a car Q is moving at a velocity of 5km/h in a direction of S 25°W.
 Find the magnitude and direction of the resultant of the velocities of the 2 cars. (4mks)

3.	a)	Define i. iii.	e the following terms: Displacement (2mks) linear acceleration	ii.	Speed	(2mks)	
b) c)	b)	i.	What is meant by free fall?	(2mk	s)		
		ii.	A stone is projected vertically upwards from ground level at a speed of 24.5ms ⁻¹ . Find how long after projection the stone is at a height of 19.6m above the ground.				
			- For the first time		(4)		
			- For the second time.		(4mks)		
	c)	i.	For streamline flow of a non-vi	scous, inco	ompressil	ole fluid, the pressure,	
			P at a point is related to the height h and the velocity, V by the equation				
		$(P-a) = g(h-b) + \frac{1}{2} (v^2 - d)$, where a, b and d are constant					

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM

the density of the fluid and g is the acceleration due to gravity. Given that the equation is dimensionally consistent, find the dimensions of a, b and d.

Ecolebooks.com

ColeBooks

DOWNLOAD MORE RESOURCES LIKE THIS ON ECOLEBOOKS.COM